gguf-dump.py: markdownTableWithAlignmentSupport() added

This commit is contained in:
brian khuu 2024-06-13 14:28:10 +10:00
parent dd8cdae659
commit 18b3b4e348

View file

@ -101,6 +101,54 @@ def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None:
json.dump(result, sys.stdout) json.dump(result, sys.stdout)
def markdownTableWithAlignmentSupport(header_map, data):
# JSON to Markdown table formatting: https://stackoverflow.com/a/72983854/2850957
# Alignment Utility Function
def strAlign(padding:int, alignMode:str, strVal:str):
if alignMode == 'center':
return strVal.center(padding)
elif alignMode == 'right':
return strVal.rjust(padding - 1) + ' '
elif alignMode == 'left':
return ' ' + strVal.ljust(padding - 1)
else: # default left
return ' ' + strVal.ljust(padding - 1)
def dashAlign(padding:int, alignMode:str):
if alignMode == 'center':
return ':' + '-' * (padding - 2) + ':'
elif alignMode == 'right':
return '-' * (padding - 1) + ':'
elif alignMode == 'left':
return ':' + '-' * (padding - 1)
else: # default left
return '-' * (padding)
# Calculate Padding For Each Column Based On Header and Data Length
rowsPadding = {}
for index, columnEntry in enumerate(header_map):
padCount = max([len(str(v)) for d in data for k, v in d.items() if k == columnEntry['key_name']], default=0) + 2
headerPadCount = len(columnEntry['header_name']) + 2
rowsPadding[index] = headerPadCount if padCount <= headerPadCount else padCount
# Render Markdown Header
rows = []
rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(columnEntry['header_name'])) for index, columnEntry in enumerate(header_map)))
rows.append('|'.join(dashAlign(rowsPadding[index], columnEntry.get('align')) for index, columnEntry in enumerate(header_map)))
# Render Tabular Data
for item in data:
rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(item[columnEntry['key_name']])) for index, columnEntry in enumerate(header_map)))
# Convert Tabular String Rows Into String
tableString = ""
for row in rows:
tableString += f'|{row}|\n'
return tableString
def element_count_rounded_notation(count: int) -> str: def element_count_rounded_notation(count: int) -> str:
if count > 1e15 : if count > 1e15 :
# Quadrillion # Quadrillion
@ -184,9 +232,7 @@ def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None
markdown_content += f'There is {len(reader.fields)} key/value pair(s) in this file\n' markdown_content += f'There is {len(reader.fields)} key/value pair(s) in this file\n'
markdown_content += '\n' markdown_content += '\n'
markdown_content += '| POS | TYPE | Elements | Key | Value |\n' kv_dump_table = []
markdown_content += '|-----|------------|----------|----------------------------------------|--------------------------------------------------------------------------------|\n'
for n, field in enumerate(reader.fields.values(), 1): for n, field in enumerate(reader.fields.values(), 1):
if not field.types: if not field.types:
pretty_type = 'N/A' pretty_type = 'N/A'
@ -216,7 +262,17 @@ def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None
for element_pos in range(render_element): for element_pos in range(render_element):
value += str(field.parts[-1 - element_pos][0]) + (", " if total_elements > 1 else "") value += str(field.parts[-1 - element_pos][0]) + (", " if total_elements > 1 else "")
value = f'[ {value}{" ..." if total_elements > 1 else ""} ]' value = f'[ {value}{" ..." if total_elements > 1 else ""} ]'
markdown_content += f'| {n:3} | {pretty_type:10} | {total_elements:8} | {field.name:38} | {value:<78} |\n' kv_dump_table.append({"n":n, "pretty_type":pretty_type, "total_elements":total_elements, "field_name":field.name, "value":value})
kv_dump_table_header_map = [
{'key_name':'n', 'header_name':'POS', 'align':'center'},
{'key_name':'pretty_type', 'header_name':'TYPE', 'align':'left'},
{'key_name':'total_elements', 'header_name':'Count', 'align':'left'},
{'key_name':'field_name', 'header_name':'Key', 'align':'left'},
{'key_name':'value', 'header_name':'Value', 'align':'left'},
]
markdown_content += markdownTableWithAlignmentSupport(kv_dump_table_header_map, kv_dump_table)
markdown_content += "\n" markdown_content += "\n"
@ -227,19 +283,23 @@ def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None
tensor_groups = {} tensor_groups = {}
total_elements = sum(tensor.n_elements for tensor in reader.tensors) total_elements = sum(tensor.n_elements for tensor in reader.tensors)
# Parsing Tensors Record
for key, tensor in enumerate(reader.tensors): for key, tensor in enumerate(reader.tensors):
tensor_components = tensor.name.split('.') tensor_components = tensor.name.split('.')
tensor_prefix = tensor_components[0]
if tensor_prefix == 'blk': # Classify Tensor Group
tensor_prefix = f"{tensor_components[0]}.{tensor_components[1]}" tensor_group_name = "base"
if tensor_components[0] == 'blk':
tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}"
if tensor_prefix not in tensor_groups: # Check if new Tensor Group
tensor_groups[tensor_prefix] = [] if tensor_group_name not in tensor_groups:
tensor_prefix_order.append(tensor_prefix) tensor_groups[tensor_group_name] = []
tensor_prefix_order.append(tensor_group_name)
# Record Tensor and Tensor Position
tensor_groups[tensor_group_name].append(tensor)
tensor_name_to_key[tensor.name] = key tensor_name_to_key[tensor.name] = key
tensor_groups[tensor_prefix].append(tensor)
# Tensors Mapping Dump # Tensors Mapping Dump
markdown_content += f'## Tensors Overview {element_count_rounded_notation(total_elements)} Elements\n' markdown_content += f'## Tensors Overview {element_count_rounded_notation(total_elements)} Elements\n'
@ -257,14 +317,27 @@ def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None
tensors = tensor_groups[group] tensors = tensor_groups[group]
group_elements = sum(tensor.n_elements for tensor in tensors) group_elements = sum(tensor.n_elements for tensor in tensors)
group_percentage = group_elements / total_elements * 100 group_percentage = group_elements / total_elements * 100
markdown_content += f"### {translate_tensor_name(group)} Tensor Group : {element_count_rounded_notation(group_elements)} Elements <a name=\"{group.replace('.', '_')}\"></a>\n" markdown_content += f"### <a name=\"{group.replace('.', '_')}\">{translate_tensor_name(group)} Tensor Group : {element_count_rounded_notation(group_elements)} Elements</a>\n"
markdown_content += "| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |\n"
markdown_content += "|------|---------------------------|----------------------------------------------------|----------------|---------------------------------|------|\n"
tensor_dump_table = []
for tensor in tensors: for tensor in tensors:
human_friendly_name = translate_tensor_name(tensor.name.replace(".weight", ".(W)").replace(".bias", ".(B)")) human_friendly_name = translate_tensor_name(tensor.name.replace(".weight", ".(W)").replace(".bias", ".(B)"))
prettydims = ' x '.join('{0:^5}'.format(d) for d in list(tensor.shape) + [1] * (4 - len(tensor.shape))) prettydims = ' x '.join('{0:^5}'.format(d) for d in list(tensor.shape) + [1] * (4 - len(tensor.shape)))
markdown_content += f"| {tensor_name_to_key[tensor.name]:4} | {tensor.name:25} | {human_friendly_name:50} | ({element_count_rounded_notation(tensor.n_elements):>4}) {tensor.n_elements:7} | [{prettydims:29}] | {tensor.tensor_type.name:4} |\n" element_count_string = f"({element_count_rounded_notation(tensor.n_elements):>4}) {tensor.n_elements:7}"
type_name_string = f"{tensor.tensor_type.name}"
tensor_dump_table.append({"t_id":tensor_name_to_key[tensor.name], "layer_name":tensor.name, "human_layer_name":human_friendly_name, "element_count":element_count_string, "pretty_dims":prettydims, "tensor_type":type_name_string})
tensor_dump_table_header_map = [
{'key_name':'t_id', 'header_name':'T_ID', 'align':'center'},
{'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'},
{'key_name':'human_layer_name', 'header_name':'Human Friendly Tensor Layer Name', 'align':'left'},
{'key_name':'element_count', 'header_name':'Elements', 'align':'left'},
{'key_name':'pretty_dims', 'header_name':'Shape', 'align':'left'},
{'key_name':'tensor_type', 'header_name':'Type', 'align':'left'},
]
markdown_content += markdownTableWithAlignmentSupport(tensor_dump_table_header_map, tensor_dump_table)
markdown_content += "\n" markdown_content += "\n"
markdown_content += f"- Total elements in {group}: ({element_count_rounded_notation(group_elements):>4}) {group_elements}\n" markdown_content += f"- Total elements in {group}: ({element_count_rounded_notation(group_elements):>4}) {group_elements}\n"
markdown_content += f"- Percentage of total elements: {group_percentage:.2f}%\n" markdown_content += f"- Percentage of total elements: {group_percentage:.2f}%\n"