From 18c67bdd8450d06e36630da439ab97a8b7b45e8e Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 18 Dec 2023 13:28:10 +0200 Subject: [PATCH] ggml : add ggml_mul_mat_set_prec ggml-ci --- ggml-cuda.cu | 104 ++++++++++++++++++++++++++++++++++----------------- ggml.c | 8 ++++ ggml.h | 12 ++++++ llama.cpp | 29 ++++++++------ 4 files changed, 108 insertions(+), 45 deletions(-) diff --git a/ggml-cuda.cu b/ggml-cuda.cu index b03c10858..4c986db9c 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -7376,6 +7376,8 @@ inline void ggml_cuda_op_mul_mat_cublas( const int64_t row_diff = row_high - row_low; + // TODO: handle dst->op_params[0] != GGML_PREC_DEFAULT + int id; CUDA_CHECK(cudaGetDevice(&id)); @@ -8309,27 +8311,27 @@ static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor } static __global__ void k_compute_batched_ptrs( - const half * src0_as_f16, const half * src1_as_f16, half * dst_f16, + const half * src0_as_f16, const half * src1_as_f16, char * dst, const void ** ptrs_src, void ** ptrs_dst, - int ne12, int ne13, - int ne23, - int nb02, int nb03, - int nb12, int nb13, - int nb2, int nb3, - int r2, int r3) { - int i13 = blockIdx.x * blockDim.x + threadIdx.x; - int i12 = blockIdx.y * blockDim.y + threadIdx.y; + int64_t ne12, int64_t ne13, + int64_t ne23, + size_t nb02, size_t nb03, + size_t nb12, size_t nb13, + size_t nbd2, size_t nbd3, + int64_t r2, int64_t r3) { + int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x; + int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y; if (i13 >= ne13 || i12 >= ne12) { return; } - int i03 = i13 / r3; - int i02 = i12 / r2; + int64_t i03 = i13 / r3; + int64_t i02 = i12 / r2; ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03; ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12/2 + i13*nb13/2; - ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst_f16 + i12* nb2/2 + i13* nb3/2; + ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3; } static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { @@ -8385,7 +8387,41 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream); size_t dst_as = 0; - half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as); + + half * dst_f16 = nullptr; + char * dst_t = nullptr; + + cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F; + cudaDataType_t cu_data_type = CUDA_R_16F; + + // dst strides + size_t nbd2 = dst->nb[2]; + size_t nbd3 = dst->nb[3]; + + const half alpha_f16 = 1.0f; + const half beta_f16 = 0.0f; + + const float alpha_f32 = 1.0f; + const float beta_f32 = 0.0f; + + const char * alpha = (const char *) &alpha_f16; + const char * beta = (const char *) &beta_f16; + + if (dst->op_params[0] == GGML_PREC_DEFAULT) { + dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as); + dst_t = (char *) dst_f16; + + nbd2 /= sizeof(float) / sizeof(half); + nbd3 /= sizeof(float) / sizeof(half); + } else { + dst_t = (char *) dst_ddf; + + cu_compute_type = CUBLAS_COMPUTE_32F; + cu_data_type = CUDA_R_32F; + + alpha = (const char *) &alpha_f32; + beta = (const char *) &beta_f32; + } GGML_ASSERT(ne12 % ne02 == 0); GGML_ASSERT(ne13 % ne03 == 0); @@ -8394,9 +8430,6 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const const int64_t r2 = ne12/ne02; const int64_t r3 = ne13/ne03; - const half alpha_f16 = 1.0f; - const half beta_f16 = 0.0f; - #if 0 // use cublasGemmEx { @@ -8406,12 +8439,12 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const int i02 = i12 / r2; CUBLAS_CHECK( - cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N, + cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N, ne01, ne11, ne10, - &alpha_f16, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half), - (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float), - &beta_f16, ( char *) dst_f16 + i12* dst->nb[2]/2 + i13* dst->nb[3]/2, CUDA_R_16F, ne01, - CUBLAS_COMPUTE_16F, + alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half), + (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float), + beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01, + cu_compute_type, CUBLAS_GEMM_DEFAULT_TENSOR_OP)); } } @@ -8423,11 +8456,11 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const CUBLAS_CHECK( cublasGemmStridedBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N, ne01, ne11, ne10, - &alpha_f16, (const char *) src0_as_f16, CUDA_R_16F, nb01/sizeof(half), src0->nb[2]/sizeof(half), // strideA - (const char *) src1_as_f16, CUDA_R_16F, nb11/sizeof(float), src1->nb[2]/sizeof(float), // strideB - &beta_f16, ( char *) dst_f16, CUDA_R_16F, ne01, dst->nb[2]/sizeof(float), // strideC + alpha, (const char *) src0_as_f16, CUDA_R_16F, nb01/sizeof(half), src0->nb[2]/sizeof(half), // strideA + (const char *) src1_as_f16, CUDA_R_16F, nb11/sizeof(float), src1->nb[2]/sizeof(float), // strideB + beta, ( char *) dst_t, cu_data_type, ne01, dst->nb[2]/sizeof(float), // strideC ne12*ne13, - CUBLAS_COMPUTE_16F, + cu_compute_type, CUBLAS_GEMM_DEFAULT_TENSOR_OP)); } else { // use cublasGemmBatchedEx @@ -8444,24 +8477,24 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const dim3 block_dims(ne13, ne12); k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>( - src0_as_f16, src1_as_f16, dst_f16, + src0_as_f16, src1_as_f16, dst_t, ptrs_src, ptrs_dst, ne12, ne13, ne23, nb02, nb03, nb12, nb13, - dst->nb[2], dst->nb[3], + nbd2, nbd3, r2, r3); CUDA_CHECK(cudaGetLastError()); CUBLAS_CHECK( cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N, ne01, ne11, ne10, - &alpha_f16, (const void **) (ptrs_src + 0*ne23), CUDA_R_16F, nb01/sizeof(half), - (const void **) (ptrs_src + 1*ne23), CUDA_R_16F, nb11/sizeof(float), - &beta_f16, ( void **) (ptrs_dst + 0*ne23), CUDA_R_16F, ne01, + alpha, (const void **) (ptrs_src + 0*ne23), CUDA_R_16F, nb01/sizeof(half), + (const void **) (ptrs_src + 1*ne23), CUDA_R_16F, nb11/sizeof(float), + beta, ( void **) (ptrs_dst + 0*ne23), cu_data_type, ne01, ne23, - CUBLAS_COMPUTE_16F, + cu_compute_type, CUBLAS_GEMM_DEFAULT_TENSOR_OP)); if (ptrs_src_s != 0) { @@ -8473,11 +8506,14 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const } #endif - const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); - to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream); + if (dst->op_params[0] == GGML_PREC_DEFAULT) { + const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); + to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream); + + ggml_cuda_pool_free(dst_f16, dst_as); + } ggml_cuda_pool_free(src1_as_f16, src1_as); - ggml_cuda_pool_free(dst_f16, dst_as); } static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { diff --git a/ggml.c b/ggml.c index 249ee8cc1..6da65bd92 100644 --- a/ggml.c +++ b/ggml.c @@ -4098,6 +4098,14 @@ struct ggml_tensor * ggml_mul_mat( return result; } +void ggml_mul_mat_set_prec( + struct ggml_tensor * a, + enum ggml_prec prec) { + const int32_t prec_i32 = (int32_t) prec; + + ggml_set_op_params_i32(a, 0, prec_i32); +} + // ggml_mul_mat_id struct ggml_tensor * ggml_mul_mat_id( diff --git a/ggml.h b/ggml.h index 68f7833b6..f1003984f 100644 --- a/ggml.h +++ b/ggml.h @@ -343,6 +343,12 @@ extern "C" { GGML_TYPE_COUNT, }; + // precision + enum ggml_prec { + GGML_PREC_DEFAULT, + GGML_PREC_F32, + }; + enum ggml_backend_type { GGML_BACKEND_CPU = 0, GGML_BACKEND_GPU = 10, @@ -1057,6 +1063,12 @@ extern "C" { struct ggml_tensor * a, struct ggml_tensor * b); + // change the precision of a matrix multiplication + // set to GGML_PREC_F32 for higher precision (useful for phi-2) + GGML_API void ggml_mul_mat_set_prec( + struct ggml_tensor * a, + enum ggml_prec prec); + // indirect matrix multiplication // ggml_mul_mat_id(ctx, as, ids, id, b) ~= ggml_mul_mat(as[ids[id]], b) GGML_API struct ggml_tensor * ggml_mul_mat_id( diff --git a/llama.cpp b/llama.cpp index 1afc994c0..edd2910b3 100644 --- a/llama.cpp +++ b/llama.cpp @@ -4082,6 +4082,7 @@ static struct ggml_tensor * llm_build_ffn( // if max_alibi_bias > 0 then apply ALiBi static struct ggml_tensor * llm_build_kqv( struct ggml_context * ctx, + const llama_model & model, const llama_hparams & hparams, const llama_kv_cache & kv, struct ggml_tensor * wo, @@ -4116,6 +4117,12 @@ static struct ggml_tensor * llm_build_kqv( struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q); cb(kq, "kq", il); + if (model.arch == LLM_ARCH_PHI2) { + // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs + // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847 + ggml_mul_mat_set_prec(kq, GGML_PREC_F32); + } + if (max_alibi_bias > 0.0f) { // temporary branch until we figure out how to handle ggml_alibi through ggml_add kq = ggml_scale(ctx, kq, kq_scale); @@ -4342,7 +4349,7 @@ struct llm_build_context { llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - cur = llm_build_kqv(ctx0, hparams, kv_self, + cur = llm_build_kqv(ctx0, model, hparams, kv_self, model.layers[il].wo, model.layers[il].bo, Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); @@ -4525,7 +4532,7 @@ struct llm_build_context { // apply ALiBi for 13B model const float max_alibi_bias = model.type == MODEL_13B ? 8.0f : -1.0f; - cur = llm_build_kqv(ctx0, hparams, kv_self, + cur = llm_build_kqv(ctx0, model, hparams, kv_self, model.layers[il].wo, NULL, Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, max_alibi_bias, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); @@ -4649,7 +4656,7 @@ struct llm_build_context { llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - cur = llm_build_kqv(ctx0, hparams, kv_self, + cur = llm_build_kqv(ctx0, model, hparams, kv_self, model.layers[il].wo, NULL, Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); @@ -4749,7 +4756,7 @@ struct llm_build_context { llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - cur = llm_build_kqv(ctx0, hparams, kv_self, + cur = llm_build_kqv(ctx0, model, hparams, kv_self, model.layers[il].wo, model.layers[il].bo, Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); @@ -4958,7 +4965,7 @@ struct llm_build_context { llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); // TODO: not tested, could be broken - cur = llm_build_kqv(ctx0, hparams, kv_self, + cur = llm_build_kqv(ctx0, model, hparams, kv_self, model.layers[il].wo, model.layers[il].bo, Q, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); @@ -5049,7 +5056,7 @@ struct llm_build_context { llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - cur = llm_build_kqv(ctx0, hparams, kv_self, + cur = llm_build_kqv(ctx0, model, hparams, kv_self, model.layers[il].wo, NULL, Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, 8.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); @@ -5146,7 +5153,7 @@ struct llm_build_context { llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - cur = llm_build_kqv(ctx0, hparams, kv_self, + cur = llm_build_kqv(ctx0, model, hparams, kv_self, model.layers[il].wo, model.layers[il].bo, Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, 8.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); @@ -5240,7 +5247,7 @@ struct llm_build_context { llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - cur = llm_build_kqv(ctx0, hparams, kv_self, + cur = llm_build_kqv(ctx0, model, hparams, kv_self, model.layers[il].wo, NULL, Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, hparams.f_max_alibi_bias, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); @@ -5353,7 +5360,7 @@ struct llm_build_context { llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - cur = llm_build_kqv(ctx0, hparams, kv_self, + cur = llm_build_kqv(ctx0, model, hparams, kv_self, model.layers[il].wo, NULL, Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); @@ -5470,7 +5477,7 @@ struct llm_build_context { llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - cur = llm_build_kqv(ctx0, hparams, kv_self, + cur = llm_build_kqv(ctx0, model, hparams, kv_self, model.layers[il].wo, NULL, Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); @@ -5591,7 +5598,7 @@ struct llm_build_context { llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - cur = llm_build_kqv(ctx0, hparams, kv_self, + cur = llm_build_kqv(ctx0, model, hparams, kv_self, model.layers[il].wo, model.layers[il].bo, Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f, cb, il); cb(cur, "kqv_out", il);