Merge branch 'ggerganov:master' into master
This commit is contained in:
commit
18fb9a5382
6 changed files with 74 additions and 7 deletions
|
@ -132,7 +132,7 @@ static void sampler_queue(
|
||||||
const float temp = params.temp;
|
const float temp = params.temp;
|
||||||
const float dynatemp_range = params.dynatemp_range;
|
const float dynatemp_range = params.dynatemp_range;
|
||||||
const float dynatemp_exponent = params.dynatemp_exponent;
|
const float dynatemp_exponent = params.dynatemp_exponent;
|
||||||
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
|
const int32_t top_k = params.top_k;
|
||||||
const float top_p = params.top_p;
|
const float top_p = params.top_p;
|
||||||
const float min_p = params.min_p;
|
const float min_p = params.min_p;
|
||||||
const float tfs_z = params.tfs_z;
|
const float tfs_z = params.tfs_z;
|
||||||
|
|
|
@ -1078,17 +1078,76 @@ class MiniCPMModel(Model):
|
||||||
self.gguf_writer.add_name("MiniCPM")
|
self.gguf_writer.add_name("MiniCPM")
|
||||||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
|
||||||
self.gguf_writer.add_block_count(block_count)
|
self.gguf_writer.add_block_count(block_count)
|
||||||
|
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||||||
|
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||||
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
||||||
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
|
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
|
||||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||||||
self.gguf_writer.add_file_type(self.ftype)
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
|
||||||
|
|
||||||
def set_vocab(self):
|
def set_vocab(self):
|
||||||
self._set_vocab_hf()
|
self._set_vocab_hf()
|
||||||
|
|
||||||
|
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
|
||||||
|
if n_kv_head is not None and n_head != n_kv_head:
|
||||||
|
n_head //= n_kv_head
|
||||||
|
|
||||||
|
return (
|
||||||
|
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||||
|
.swapaxes(1, 2)
|
||||||
|
.reshape(weights.shape)
|
||||||
|
)
|
||||||
|
|
||||||
|
def write_tensors(self):
|
||||||
|
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||||||
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||||
|
n_head = self.hparams.get("num_attention_heads")
|
||||||
|
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||||
|
for name, data_torch in self.get_tensors():
|
||||||
|
# we don't need these
|
||||||
|
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
|
||||||
|
continue
|
||||||
|
|
||||||
|
old_dtype = data_torch.dtype
|
||||||
|
|
||||||
|
# convert any unsupported data types to float32
|
||||||
|
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||||
|
data_torch = data_torch.to(torch.float32)
|
||||||
|
|
||||||
|
# HF models permute some of the tensors, so we need to undo that
|
||||||
|
if name.endswith(("q_proj.weight")):
|
||||||
|
data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
|
||||||
|
if name.endswith(("k_proj.weight")):
|
||||||
|
data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
|
||||||
|
|
||||||
|
data = data_torch.squeeze().numpy()
|
||||||
|
|
||||||
|
# map tensor names
|
||||||
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||||
|
if new_name is None:
|
||||||
|
print(f"Can not map tensor {name!r}")
|
||||||
|
sys.exit()
|
||||||
|
|
||||||
|
n_dims = len(data.shape)
|
||||||
|
data_dtype = data.dtype
|
||||||
|
|
||||||
|
# if f32 desired, convert any float16 to float32
|
||||||
|
if self.ftype == 0 and data_dtype == np.float16:
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
|
||||||
|
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||||
|
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
|
||||||
|
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||||
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||||
|
data = data.astype(np.float16)
|
||||||
|
|
||||||
|
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||||
|
|
||||||
|
self.gguf_writer.add_tensor(new_name, data)
|
||||||
|
|
||||||
|
|
||||||
class QwenModel(Model):
|
class QwenModel(Model):
|
||||||
@staticmethod
|
@staticmethod
|
||||||
|
|
|
@ -14,14 +14,14 @@ Build with cmake or run `make llava-cli` to build it.
|
||||||
After building, run: `./llava-cli` to see the usage. For example:
|
After building, run: `./llava-cli` to see the usage. For example:
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
./llava-cli -m llava-v1.5-7b/ggml-model-q5_k.gguf --mmproj llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
|
./llava-cli -m ../llava-v1.5-7b/ggml-model-f16.gguf --mmproj ../llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
|
||||||
```
|
```
|
||||||
|
|
||||||
**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.
|
**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.
|
||||||
|
|
||||||
## Model conversion
|
## Model conversion
|
||||||
|
|
||||||
- Clone `llava-v15-7b`` and `clip-vit-large-patch14-336`` locally:
|
- Clone `llava-v15-7b` and `clip-vit-large-patch14-336` locally:
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b
|
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b
|
||||||
|
@ -38,7 +38,7 @@ python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b
|
||||||
3. Use `convert-image-encoder-to-gguf.py` to convert the LLaVA image encoder to GGUF:
|
3. Use `convert-image-encoder-to-gguf.py` to convert the LLaVA image encoder to GGUF:
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
python ./examples/llava/convert-image-encoder-to-gguf -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
|
python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
|
||||||
```
|
```
|
||||||
|
|
||||||
4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
|
4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
|
||||||
|
|
|
@ -2947,6 +2947,8 @@ static void llm_load_hparams(
|
||||||
} break;
|
} break;
|
||||||
case LLM_ARCH_MINICPM:
|
case LLM_ARCH_MINICPM:
|
||||||
{
|
{
|
||||||
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||||
|
|
||||||
switch (hparams.n_layer) {
|
switch (hparams.n_layer) {
|
||||||
case 40: model.type = e_model::MODEL_2B; break;
|
case 40: model.type = e_model::MODEL_2B; break;
|
||||||
default: model.type = e_model::MODEL_UNKNOWN;
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
|
@ -8586,6 +8588,10 @@ void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * can
|
||||||
|
|
||||||
const int64_t t_start_sample_us = ggml_time_us();
|
const int64_t t_start_sample_us = ggml_time_us();
|
||||||
|
|
||||||
|
if (k <= 0) {
|
||||||
|
k = candidates->size;
|
||||||
|
}
|
||||||
|
|
||||||
k = std::max(k, (int) min_keep);
|
k = std::max(k, (int) min_keep);
|
||||||
k = std::min(k, (int) candidates->size);
|
k = std::min(k, (int) candidates->size);
|
||||||
|
|
||||||
|
|
2
tests/.gitignore
vendored
2
tests/.gitignore
vendored
|
@ -1,3 +1,3 @@
|
||||||
*
|
*
|
||||||
!*.*
|
!*.*
|
||||||
test-c.o
|
*.o
|
||||||
|
|
|
@ -235,6 +235,8 @@ int main(void) {
|
||||||
|
|
||||||
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 1);
|
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 1);
|
||||||
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 3);
|
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 3);
|
||||||
|
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 4);
|
||||||
|
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0);
|
||||||
|
|
||||||
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0);
|
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0);
|
||||||
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f);
|
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f);
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue