Use F16 for memory_k and memory_v
This commit is contained in:
parent
7b8858415e
commit
197020deee
1 changed files with 4 additions and 4 deletions
8
main.cpp
8
main.cpp
|
@ -217,8 +217,8 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
|
|||
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2
|
||||
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3
|
||||
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F16); // memory_k
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F16); // memory_v
|
||||
|
||||
ctx_size += (5 + 10*n_layer)*256; // object overhead
|
||||
|
||||
|
@ -304,8 +304,8 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
|
|||
const int n_mem = n_layer*n_ctx;
|
||||
const int n_elements = n_embd*n_mem;
|
||||
|
||||
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
||||
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
||||
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
||||
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
||||
|
||||
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue