Merge branch 'master' into phi-1

This commit is contained in:
teleprint-me 2024-01-06 19:32:30 -05:00
commit 1a108adf8a
No known key found for this signature in database
GPG key ID: B0D11345E65C4D48
82 changed files with 7764 additions and 5833 deletions

View file

@ -14,7 +14,8 @@ ARG CUDA_DOCKER_ARCH=all
RUN apt-get update && \
apt-get install -y build-essential python3 python3-pip git
COPY requirements.txt requirements.txt
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt

View file

@ -23,7 +23,8 @@ ARG ROCM_DOCKER_ARCH=\
gfx1101 \
gfx1102
COPY requirements.txt requirements.txt
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt

View file

@ -5,7 +5,8 @@ FROM ubuntu:$UBUNTU_VERSION as build
RUN apt-get update && \
apt-get install -y build-essential python3 python3-pip git
COPY requirements.txt requirements.txt
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt

View file

@ -23,7 +23,8 @@ ARG ROCM_DOCKER_ARCH=\
gfx1101 \
gfx1102
COPY requirements.txt requirements.txt
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt

22
.devops/nix/apps.nix Normal file
View file

@ -0,0 +1,22 @@
{
perSystem =
{ config, lib, ... }:
{
apps =
let
inherit (config.packages) default;
binaries = [
"llama"
"llama-embedding"
"llama-server"
"quantize"
"train-text-from-scratch"
];
mkApp = name: {
type = "app";
program = "${default}/bin/${name}";
};
in
lib.genAttrs binaries mkApp;
};
}

13
.devops/nix/devshells.nix Normal file
View file

@ -0,0 +1,13 @@
{
perSystem =
{ config, lib, ... }:
{
devShells =
lib.concatMapAttrs
(name: package: {
${name} = package.passthru.shell;
${name + "-extra"} = package.passthru.shell-extra;
})
config.packages;
};
}

View file

@ -0,0 +1,39 @@
{ inputs, ... }:
{
perSystem =
{
config,
system,
lib,
pkgsCuda,
...
}:
{
legacyPackages =
let
caps.llamaPackagesXavier = "7.2";
caps.llamaPackagesOrin = "8.7";
caps.llamaPackagesTX2 = "6.2";
caps.llamaPackagesNano = "5.3";
pkgsFor =
cap:
import inputs.nixpkgs {
inherit system;
config = {
cudaSupport = true;
cudaCapabilities = [ cap ];
cudaEnableForwardCompat = false;
inherit (pkgsCuda.config) allowUnfreePredicate;
};
};
in
builtins.mapAttrs (name: cap: (pkgsFor cap).callPackage ./scope.nix { }) caps;
packages = lib.optionalAttrs (system == "aarch64-linux") {
jetson-xavier = config.legacyPackages.llamaPackagesXavier.llama-cpp;
jetson-orin = config.legacyPackages.llamaPackagesOrin.llama-cpp;
jetson-nano = config.legacyPackages.llamaPackagesNano.llama-cpp;
};
};
}

View file

@ -0,0 +1,35 @@
{ inputs, ... }:
{
# The _module.args definitions are passed on to modules as arguments. E.g.
# the module `{ pkgs ... }: { /* config */ }` implicitly uses
# `_module.args.pkgs` (defined in this case by flake-parts).
perSystem =
{ system, ... }:
{
_module.args = {
pkgsCuda = import inputs.nixpkgs {
inherit system;
# Ensure dependencies use CUDA consistently (e.g. that openmpi, ucc,
# and ucx are built with CUDA support)
config.cudaSupport = true;
config.allowUnfreePredicate =
p:
builtins.all
(
license:
license.free
|| builtins.elem license.shortName [
"CUDA EULA"
"cuDNN EULA"
]
)
(p.meta.licenses or [ p.meta.license ]);
};
# Ensure dependencies use ROCm consistently
pkgsRocm = import inputs.nixpkgs {
inherit system;
config.rocmSupport = true;
};
};
};
}

265
.devops/nix/package.nix Normal file
View file

@ -0,0 +1,265 @@
{
lib,
config,
stdenv,
mkShell,
cmake,
ninja,
pkg-config,
git,
python3,
mpi,
openblas, # TODO: Use the generic `blas` so users could switch between alternative implementations
cudaPackages,
darwin,
rocmPackages,
clblast,
useBlas ? builtins.all (x: !x) [
useCuda
useMetalKit
useOpenCL
useRocm
],
useCuda ? config.cudaSupport,
useMetalKit ? stdenv.isAarch64 && stdenv.isDarwin && !useOpenCL,
useMpi ? false, # Increases the runtime closure size by ~700M
useOpenCL ? false,
useRocm ? config.rocmSupport,
llamaVersion ? "0.0.0", # Arbitrary version, substituted by the flake
}@inputs:
let
inherit (lib)
cmakeBool
cmakeFeature
optionals
strings
versionOlder
;
# It's necessary to consistently use backendStdenv when building with CUDA support,
# otherwise we get libstdc++ errors downstream.
stdenv = throw "Use effectiveStdenv instead";
effectiveStdenv = if useCuda then cudaPackages.backendStdenv else inputs.stdenv;
suffices =
lib.optionals useBlas [ "BLAS" ]
++ lib.optionals useCuda [ "CUDA" ]
++ lib.optionals useMetalKit [ "MetalKit" ]
++ lib.optionals useMpi [ "MPI" ]
++ lib.optionals useOpenCL [ "OpenCL" ]
++ lib.optionals useRocm [ "ROCm" ];
pnameSuffix =
strings.optionalString (suffices != [ ])
"-${strings.concatMapStringsSep "-" strings.toLower suffices}";
descriptionSuffix =
strings.optionalString (suffices != [ ])
", accelerated with ${strings.concatStringsSep ", " suffices}";
# TODO: package the Python in this repository in a Nix-like way.
# It'd be nice to migrate to buildPythonPackage, as well as ensure this repo
# is PEP 517-compatible, and ensure the correct .dist-info is generated.
# https://peps.python.org/pep-0517/
llama-python = python3.withPackages (
ps: [
ps.numpy
ps.sentencepiece
]
);
# TODO(Green-Sky): find a better way to opt-into the heavy ml python runtime
llama-python-extra = python3.withPackages (
ps: [
ps.numpy
ps.sentencepiece
ps.torchWithoutCuda
ps.transformers
]
);
# apple_sdk is supposed to choose sane defaults, no need to handle isAarch64
# separately
darwinBuildInputs =
with darwin.apple_sdk.frameworks;
[
Accelerate
CoreVideo
CoreGraphics
]
++ optionals useMetalKit [ MetalKit ];
cudaBuildInputs = with cudaPackages; [
cuda_cccl.dev # <nv/target>
# A temporary hack for reducing the closure size, remove once cudaPackages
# have stopped using lndir: https://github.com/NixOS/nixpkgs/issues/271792
cuda_cudart.dev
cuda_cudart.lib
cuda_cudart.static
libcublas.dev
libcublas.lib
libcublas.static
];
rocmBuildInputs = with rocmPackages; [
clr
hipblas
rocblas
];
in
effectiveStdenv.mkDerivation (
finalAttrs: {
pname = "llama-cpp${pnameSuffix}";
version = llamaVersion;
src = lib.cleanSourceWith {
filter =
name: type:
!(builtins.any (_: _) [
(lib.hasSuffix ".nix" name) # Ignore *.nix files when computing outPaths
(name == "README.md") # Ignore *.md changes whe computing outPaths
(lib.hasPrefix "." name) # Skip hidden files and directories
]);
src = lib.cleanSource ../../.;
};
postPatch = ''
substituteInPlace ./ggml-metal.m \
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
# TODO: Package up each Python script or service appropriately.
# If we were to migrate to buildPythonPackage and prepare the `pyproject.toml`,
# we could make those *.py into setuptools' entrypoints
substituteInPlace ./*.py --replace "/usr/bin/env python" "${llama-python}/bin/python"
'';
nativeBuildInputs =
[
cmake
ninja
pkg-config
git
]
++ optionals useCuda [
cudaPackages.cuda_nvcc
# TODO: Replace with autoAddDriverRunpath
# once https://github.com/NixOS/nixpkgs/pull/275241 has been merged
cudaPackages.autoAddOpenGLRunpathHook
];
buildInputs =
optionals effectiveStdenv.isDarwin darwinBuildInputs
++ optionals useCuda cudaBuildInputs
++ optionals useMpi [ mpi ]
++ optionals useOpenCL [ clblast ]
++ optionals useRocm rocmBuildInputs;
cmakeFlags =
[
(cmakeBool "LLAMA_NATIVE" true)
(cmakeBool "LLAMA_BUILD_SERVER" true)
(cmakeBool "BUILD_SHARED_LIBS" true)
(cmakeBool "CMAKE_SKIP_BUILD_RPATH" true)
(cmakeBool "LLAMA_BLAS" useBlas)
(cmakeBool "LLAMA_CLBLAST" useOpenCL)
(cmakeBool "LLAMA_CUBLAS" useCuda)
(cmakeBool "LLAMA_HIPBLAS" useRocm)
(cmakeBool "LLAMA_METAL" useMetalKit)
(cmakeBool "LLAMA_MPI" useMpi)
]
++ optionals useCuda [
(
with cudaPackages.flags;
cmakeFeature "CMAKE_CUDA_ARCHITECTURES" (
builtins.concatStringsSep ";" (map dropDot cudaCapabilities)
)
)
]
++ optionals useRocm [
(cmakeFeature "CMAKE_C_COMPILER" "hipcc")
(cmakeFeature "CMAKE_CXX_COMPILER" "hipcc")
# Build all targets supported by rocBLAS. When updating search for TARGET_LIST_ROCM
# in https://github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/CMakeLists.txt
# and select the line that matches the current nixpkgs version of rocBLAS.
# Should likely use `rocmPackages.clr.gpuTargets`.
"-DAMDGPU_TARGETS=gfx803;gfx900;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102"
]
++ optionals useMetalKit [ (lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1") ]
++ optionals useBlas [ (lib.cmakeFeature "LLAMA_BLAS_VENDOR" "OpenBLAS") ];
# TODO(SomeoneSerge): It's better to add proper install targets at the CMake level,
# if they haven't been added yet.
postInstall = ''
mv $out/bin/main $out/bin/llama
mv $out/bin/server $out/bin/llama-server
mkdir -p $out/include
cp $src/llama.h $out/include/
'';
# Define the shells here, but don't add in the inputsFrom to avoid recursion.
passthru = {
inherit
useBlas
useCuda
useMetalKit
useMpi
useOpenCL
useRocm
;
shell = mkShell {
name = "shell-${finalAttrs.finalPackage.name}";
description = "contains numpy and sentencepiece";
buildInputs = [ llama-python ];
inputsFrom = [ finalAttrs.finalPackage ];
};
shell-extra = mkShell {
name = "shell-extra-${finalAttrs.finalPackage.name}";
description = "contains numpy, sentencepiece, torchWithoutCuda, and transformers";
buildInputs = [ llama-python-extra ];
inputsFrom = [ finalAttrs.finalPackage ];
};
};
meta = {
# Configurations we don't want even the CI to evaluate. Results in the
# "unsupported platform" messages. This is mostly a no-op, because
# cudaPackages would've refused to evaluate anyway.
badPlatforms = optionals (useCuda || useOpenCL) lib.platforms.darwin;
# Configurations that are known to result in build failures. Can be
# overridden by importing Nixpkgs with `allowBroken = true`.
broken = (useMetalKit && !effectiveStdenv.isDarwin);
description = "Inference of LLaMA model in pure C/C++${descriptionSuffix}";
homepage = "https://github.com/ggerganov/llama.cpp/";
license = lib.licenses.mit;
# Accommodates `nix run` and `lib.getExe`
mainProgram = "llama";
# These people might respond, on the best effort basis, if you ping them
# in case of Nix-specific regressions or for reviewing Nix-specific PRs.
# Consider adding yourself to this list if you want to ensure this flake
# stays maintained and you're willing to invest your time. Do not add
# other people without their consent. Consider removing people after
# they've been unreachable for long periods of time.
# Note that lib.maintainers is defined in Nixpkgs, but you may just add
# an attrset following the same format as in
# https://github.com/NixOS/nixpkgs/blob/f36a80e54da29775c78d7eff0e628c2b4e34d1d7/maintainers/maintainer-list.nix
maintainers = with lib.maintainers; [
philiptaron
SomeoneSerge
];
# Extend `badPlatforms` instead
platforms = lib.platforms.all;
};
}
)

12
.devops/nix/scope.nix Normal file
View file

@ -0,0 +1,12 @@
{
lib,
newScope,
llamaVersion ? "0.0.0",
}:
lib.makeScope newScope (
self: {
inherit llamaVersion;
llama-cpp = self.callPackage ./package.nix { };
}
)

View file

@ -515,7 +515,6 @@ jobs:
- name: Build Xcode project
run: xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' build
# freeBSD-latest:
# runs-on: macos-12
# steps:

112
.github/workflows/nix-ci.yml vendored Normal file
View file

@ -0,0 +1,112 @@
name: Nix CI
on:
workflow_dispatch: # allows manual triggering
push:
branches:
- master
paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', '**/*.sh', '**/*.py', '**/*.nix']
pull_request:
types: [opened, synchronize, reopened]
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', '**/*.sh', '**/*.py', '**/*.nix']
jobs:
nix-eval:
strategy:
fail-fast: false
matrix:
os: [ ubuntu-latest, macos-latest ]
runs-on: ${{ matrix.os }}
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install Nix
uses: DeterminateSystems/nix-installer-action@v9
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
extra-conf: |
extra-substituters = https://${{ vars.CACHIX_NAME }}.cachix.org https://cuda-maintainers.cachix.org
extra-trusted-public-keys = ${{ vars.CACHIX_PUBLIC_KEY }} cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
- uses: DeterminateSystems/magic-nix-cache-action@v2
with:
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
- name: List all flake outputs
run: nix flake show --all-systems
- name: Show all output paths
run: >
nix run github:nix-community/nix-eval-jobs
-- --gc-roots-dir gcroot
--flake
".#packages.$(nix eval --raw --impure --expr builtins.currentSystem)"
nix-build:
if: ${{ vars.CACHIX_NAME != '' }}
strategy:
fail-fast: false
matrix:
os: [ ubuntu-latest, macos-latest ]
runs-on: ${{ matrix.os }}
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install Nix
uses: DeterminateSystems/nix-installer-action@v9
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
extra-conf: |
extra-substituters = https://${{ vars.CACHIX_NAME }}.cachix.org https://cuda-maintainers.cachix.org
extra-trusted-public-keys = ${{ vars.CACHIX_PUBLIC_KEY }} cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
- uses: DeterminateSystems/magic-nix-cache-action@v2
with:
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
- name: Set-up cachix to push the results to
uses: cachix/cachix-action@v13
with:
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
name: ${{ vars.CACHIX_NAME }}
- name: Build
run: >
nix run github:Mic92/nix-fast-build
-- --skip-cached --no-nom
--flake
".#checks.$(nix eval --raw --impure --expr builtins.currentSystem)"
nix-build-aarch64:
if: ${{ vars.CACHIX_NAME != '' }}
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install QEMU
# Copy-paste from https://github.com/orgs/community/discussions/8305#discussioncomment-5888654
run: |
sudo apt-get install -y qemu-user-static qemu-system-aarch64
sudo usermod -a -G kvm $USER
- name: Install Nix
uses: DeterminateSystems/nix-installer-action@v9
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
extra-conf: |
extra-platforms = aarch64-linux
extra-system-features = nixos-test kvm
extra-substituters = https://${{ vars.CACHIX_NAME }}.cachix.org https://cuda-maintainers.cachix.org
extra-trusted-public-keys = ${{ vars.CACHIX_PUBLIC_KEY }} cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
- uses: DeterminateSystems/magic-nix-cache-action@v2
with:
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
- name: Set-up cachix to push the results to
uses: cachix/cachix-action@v13
with:
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
name: ${{ vars.CACHIX_NAME }}
- name: Show all output paths
run: >
nix run github:nix-community/nix-eval-jobs
-- --gc-roots-dir gcroot
--flake
".#packages.aarch64-linux"
- name: Build
run: >
nix run github:Mic92/nix-fast-build
-- --skip-cached --no-nom
--systems aarch64-linux
--flake
".#checks.aarch64-linux"

22
.github/workflows/nix-flake-update.yml vendored Normal file
View file

@ -0,0 +1,22 @@
name: update-flake-lock
on:
workflow_dispatch:
schedule:
- cron: '0 0 * * 0' # runs weekly on Sunday at 00:00
jobs:
lockfile:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install Nix
uses: DeterminateSystems/nix-installer-action@main
- name: Update flake.lock
uses: DeterminateSystems/update-flake-lock@main
with:
pr-title: "nix: update flake.lock"
pr-labels: |
nix
pr-reviewers: philiptaron,SomeoneSerge
token: ${{ secrets.GITHUB_TOKEN }}

36
.github/workflows/nix-publish-flake.yml vendored Normal file
View file

@ -0,0 +1,36 @@
# Make the flake discoverable on https://flakestry.dev and https://flakehub.com/flakes
name: "Publish a flake to flakestry & flakehub"
on:
push:
tags:
- "*"
workflow_dispatch:
inputs:
tag:
description: "The existing tag to publish"
type: "string"
required: true
jobs:
flakestry-publish:
runs-on: ubuntu-latest
permissions:
id-token: "write"
contents: "read"
steps:
- uses: flakestry/flakestry-publish@main
with:
version: "${{ inputs.tag || github.ref_name }}"
flakehub-publish:
runs-on: "ubuntu-latest"
permissions:
id-token: "write"
contents: "read"
steps:
- uses: "actions/checkout@v4"
with:
ref: "${{ (inputs.tag != null) && format('refs/tags/{0}', inputs.tag) || '' }}"
- uses: "DeterminateSystems/nix-installer-action@main"
- uses: "DeterminateSystems/flakehub-push@main"
with:
visibility: "public"
tag: "${{ inputs.tag }}"

View file

@ -0,0 +1,29 @@
name: Python check requirements.txt
on:
push:
paths:
- 'scripts/check-requirements.sh'
- 'convert*.py'
- 'requirements.txt'
- 'requirements/*.txt'
pull_request:
paths:
- 'scripts/check-requirements.sh'
- 'convert*.py'
- 'requirements.txt'
- 'requirements/*.txt'
jobs:
python-check-requirements:
runs-on: ubuntu-latest
name: check-requirements
steps:
- name: Check out source repository
uses: actions/checkout@v3
- name: Set up Python environment
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: Run check-requirements.sh script
run: bash scripts/check-requirements.sh nocleanup

View file

@ -95,6 +95,7 @@ option(LLAMA_HIP_UMA "llama: use HIP unified memory arch
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT})
option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging" OFF)
option(LLAMA_METAL_SHADER_DEBUG "llama: compile Metal with -fno-fast-math" OFF)
option(LLAMA_MPI "llama: use MPI" OFF)
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
@ -154,9 +155,9 @@ if (APPLE AND LLAMA_ACCELERATE)
endif()
if (LLAMA_METAL)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
message(STATUS "Metal framework found")
set(GGML_HEADERS_METAL ggml-metal.h)
@ -173,6 +174,35 @@ if (LLAMA_METAL)
# copy ggml-metal.metal to bin directory
configure_file(ggml-metal.metal ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal COPYONLY)
if (LLAMA_METAL_SHADER_DEBUG)
# custom command to do the following:
# xcrun -sdk macosx metal -fno-fast-math -c ggml-metal.metal -o ggml-metal.air
# xcrun -sdk macosx metallib ggml-metal.air -o default.metallib
#
# note: this is the only way I found to disable fast-math in Metal. it's ugly, but at least it works
# disabling fast math is needed in order to pass tests/test-backend-ops
# note: adding -fno-inline fixes the tests when using MTL_SHADER_VALIDATION=1
# note: unfortunately, we have to call it default.metallib instead of ggml.metallib
# ref: https://github.com/ggerganov/whisper.cpp/issues/1720
set(XC_FLAGS -fno-fast-math -fno-inline -g)
if (LLAMA_QKK_64)
set(XC_FLAGS ${XC_FLAGS} -DQK_K=64)
endif()
add_custom_command(
OUTPUT ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
COMMAND xcrun -sdk macosx metal ${XC_FLAGS} -c ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air
COMMAND xcrun -sdk macosx metallib ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
DEPENDS ggml-metal.metal
COMMENT "Compiling Metal kernels"
)
add_custom_target(
ggml-metal ALL
DEPENDS ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
)
endif()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS}
${FOUNDATION_LIBRARY}
${METAL_FRAMEWORK}
@ -200,7 +230,11 @@ if (LLAMA_BLAS)
if (${LLAMA_BLAS_VENDOR} MATCHES "Generic")
pkg_check_modules(DepBLAS REQUIRED blas)
elseif (${LLAMA_BLAS_VENDOR} MATCHES "OpenBLAS")
pkg_check_modules(DepBLAS REQUIRED openblas)
# As of openblas v0.3.22, the 64-bit is named openblas64.pc
pkg_check_modules(DepBLAS openblas64)
if (NOT DepBLAS_FOUND)
pkg_check_modules(DepBLAS REQUIRED openblas)
endif()
elseif (${LLAMA_BLAS_VENDOR} MATCHES "FLAME")
pkg_check_modules(DepBLAS REQUIRED blis)
elseif (${LLAMA_BLAS_VENDOR} MATCHES "ATLAS")

View file

@ -13,21 +13,17 @@ let package = Package(
products: [
.library(name: "llama", targets: ["llama"]),
],
dependencies: [
.package(url: "https://github.com/ggerganov/ggml.git", .branch("master"))
],
targets: [
.target(
name: "llama",
dependencies: ["ggml"],
path: ".",
exclude: [],
sources: [
"ggml.c",
"llama.cpp",
"ggml-alloc.c",
"ggml-backend.c",
"ggml-quants.c",
"ggml-metal.m",
],
resources: [
.process("ggml-metal.metal")
],
publicHeadersPath: "spm-headers",
cSettings: [

View file

@ -103,6 +103,7 @@ as the main playground for developing new features for the [ggml](https://github
- [x] [Qwen models](https://huggingface.co/models?search=Qwen/Qwen)
- [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral)
- [x] [PLaMo-13B](https://github.com/ggerganov/llama.cpp/pull/3557)
- [x] [GPT-2](https://huggingface.co/gpt2)
**Multimodal models:**
@ -384,16 +385,30 @@ Building the program with BLAS support may lead to some performance improvements
Check [BLIS.md](docs/BLIS.md) for more information.
- #### Intel MKL
- #### Intel oneMKL
- Using manual oneAPI installation:
By default, `LLAMA_BLAS_VENDOR` is set to `Generic`, so if you already sourced intel environment script and assign `-DLLAMA_BLAS=ON` in cmake, the mkl version of Blas will automatically been selected. Otherwise please install oneAPI and follow the below steps:
```bash
mkdir build
cd build
source /opt/intel/oneapi/setvars.sh # You can skip this step if in oneapi-runtime docker image, only required for manual installation
cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_NATIVE=ON
cmake --build . --config Release
```
By default, `LLAMA_BLAS_VENDOR` is set to `Generic`, so if you already sourced intel environment script and assign `-DLLAMA_BLAS=ON` in cmake, the mkl version of Blas will automatically been selected. You may also specify it by:
- Using oneAPI docker image:
If you do not want to source the environment vars and install oneAPI manually, you can also build the code using intel docker container: [oneAPI-runtime](https://hub.docker.com/r/intel/oneapi-runtime)
```bash
mkdir build
cd build
cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
cmake --build . --config Release
```
```bash
mkdir build
cd build
cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_NATIVE=ON
cmake --build . --config Release
```
Building through oneAPI compilers will make avx_vnni instruction set available for intel processors that do not support avx512 and avx512_vnni.
Check [Optimizing and Running LLaMA2 on Intel® CPU](https://www.intel.com/content/www/us/en/content-details/791610/optimizing-and-running-llama2-on-intel-cpu.html) for more information.
- #### cuBLAS

View file

@ -1,2 +1,2 @@
torch>=2.0.0
torch>=2.1.1
transformers>=4.32.0

View file

@ -30,6 +30,12 @@ sd=`dirname $0`
cd $sd/../
SRC=`pwd`
CMAKE_EXTRA=""
if [ ! -z ${GG_BUILD_METAL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_METAL_SHADER_DEBUG=ON"
fi
## helpers
# download a file if it does not exist or if it is outdated
@ -81,8 +87,8 @@ function gg_run_ctest_debug {
set -e
(time cmake -DCMAKE_BUILD_TYPE=Debug .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time cmake -DCMAKE_BUILD_TYPE=Debug ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time ctest --output-on-failure -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
@ -109,8 +115,8 @@ function gg_run_ctest_release {
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
if [ -z ${GG_BUILD_LOW_PERF} ]; then
(time ctest --output-on-failure ) 2>&1 | tee -a $OUT/${ci}-ctest.log

View file

@ -65,4 +65,4 @@ endif()
target_include_directories(${TARGET} PUBLIC .)
target_compile_features(${TARGET} PUBLIC cxx_std_11)
target_link_libraries(${TARGET} PRIVATE llama build_info)
target_link_libraries(${TARGET} PRIVATE build_info PUBLIC llama)

View file

@ -1394,6 +1394,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false");
fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");

View file

@ -1107,7 +1107,7 @@ void print_common_train_usage(int /*argc*/, char ** /*argv*/, const struct train
fprintf(stderr, " --sample-start STR Sets the starting point for samples after the specified pattern. If empty use every token position as sample start. (default '%s')\n", params->sample_start.c_str());
fprintf(stderr, " --include-sample-start Include the sample start in the samples. (default off)\n");
fprintf(stderr, " --escape process sample start escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
fprintf(stderr, " --overlapping-samples Samples my overlap, will include sample-start of second and following samples. When off, samples will end at begin of next sample. (default off)\n");
fprintf(stderr, " --overlapping-samples Samples may overlap, will include sample-start of second and following samples. When off, samples will end at begin of next sample. (default off)\n");
fprintf(stderr, " --fill-with-next-samples Samples shorter than context length will be followed by the next (shuffled) samples. (default off)\n");
fprintf(stderr, " --separate-with-eos When fill-with-next-samples, insert end-of-sequence token between samples.%s\n", params->separate_with_eos ? " (default)" : "");
fprintf(stderr, " --separate-with-bos When fill-with-next-samples, insert begin-of-sequence token between samples.%s\n", params->separate_with_bos ? " (default)" : "");

View file

@ -58,7 +58,7 @@ class Model:
from safetensors import safe_open
ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
else:
ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", weights_only=True))
ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
with ctx as model_part:
for name in model_part.keys():
@ -181,6 +181,8 @@ class Model:
return QwenModel
if model_architecture == "MixtralForCausalLM":
return MixtralModel
if model_architecture == "GPT2LMHeadModel":
return GPT2Model
if model_architecture == "PhiForCausalLM":
return PhiModel
if model_architecture == "PlamoForCausalLM":
@ -224,6 +226,8 @@ class Model:
return gguf.MODEL_ARCH.QWEN
if arch == "MixtralForCausalLM":
return gguf.MODEL_ARCH.LLAMA
if arch == "GPT2LMHeadModel":
return gguf.MODEL_ARCH.GPT2
if arch == "PhiForCausalLM":
return gguf.MODEL_ARCH.PHI
if arch == "PlamoForCausalLM":
@ -237,7 +241,7 @@ class Model:
tokens: list[bytearray] = []
toktypes: list[int] = []
from transformers import AutoTokenizer # type: ignore[attr-defined]
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(dir_model)
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
@ -851,7 +855,7 @@ class StableLMModel(Model):
hparams = self.hparams
block_count = hparams["num_hidden_layers"]
self.gguf_writer.add_name(dir_model.name)
self.gguf_writer.add_name(self.dir_model.name)
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
@ -897,7 +901,7 @@ class QwenModel(Model):
tokens: list[bytearray] = []
toktypes: list[int] = []
from transformers import AutoTokenizer # type: ignore[attr-defined]
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
vocab_size = hparams["vocab_size"]
assert max(tokenizer.get_vocab().values()) < vocab_size
@ -992,6 +996,68 @@ class QwenModel(Model):
self.gguf_writer.add_tensor(new_name, data)
class GPT2Model(Model):
def set_gguf_parameters(self):
self.gguf_writer.add_name(self.dir_model.name)
self.gguf_writer.add_block_count(self.hparams["n_layer"])
self.gguf_writer.add_context_length(self.hparams["n_ctx"])
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
self.gguf_writer.add_head_count(self.hparams["n_head"])
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
self.gguf_writer.add_file_type(self.ftype)
def write_tensors(self):
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
for name, data_torch in self.get_tensors():
# we don't need these
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias")):
continue
if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
data_torch = data_torch.transpose(1, 0)
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
# note: GPT2 output is tied to (same as) wte in original model
if new_name == "token_embd.weight":
print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor("output.weight", data)
class PhiModel(Model):
def set_gguf_parameters(self):
block_count = self.hparams["n_layer"]
@ -1118,57 +1184,62 @@ def parse_args() -> argparse.Namespace:
return parser.parse_args()
args = parse_args()
def main() -> None:
args = parse_args()
dir_model = args.model
dir_model = args.model
if args.awq_path:
sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
from awq.apply_awq import add_scale_weights
tmp_model_path = args.model / "weighted_model"
dir_model = tmp_model_path
if tmp_model_path.is_dir():
print(f"{tmp_model_path} exists as a weighted model.")
if args.awq_path:
sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
from awq.apply_awq import add_scale_weights
tmp_model_path = args.model / "weighted_model"
dir_model = tmp_model_path
if tmp_model_path.is_dir():
print(f"{tmp_model_path} exists as a weighted model.")
else:
tmp_model_path.mkdir(parents=True, exist_ok=True)
print("Saving new weighted model ...")
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
print(f"Saved weighted model at {tmp_model_path}.")
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file=sys.stderr)
sys.exit(1)
ftype_map = {
"f32": gguf.GGMLQuantizationType.F32,
"f16": gguf.GGMLQuantizationType.F16,
}
if args.outfile is not None:
fname_out = args.outfile
else:
tmp_model_path.mkdir(parents=True, exist_ok=True)
print("Saving new weighted model ...")
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
print(f"Saved weighted model at {tmp_model_path}.")
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file=sys.stderr)
sys.exit(1)
print(f"Loading model: {dir_model.name}")
ftype_map = {
"f32": gguf.GGMLQuantizationType.F32,
"f16": gguf.GGMLQuantizationType.F16,
}
hparams = Model.load_hparams(dir_model)
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
with torch.inference_mode():
model_class = Model.from_model_architecture(hparams["architectures"][0])
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
print(f"Loading model: {dir_model.name}")
print("Set model parameters")
model_instance.set_gguf_parameters()
hparams = Model.load_hparams(dir_model)
print("Set model tokenizer")
model_instance.set_vocab()
with torch.inference_mode():
model_class = Model.from_model_architecture(hparams["architectures"][0])
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
if args.vocab_only:
print(f"Exporting model vocab to '{fname_out}'")
model_instance.write_vocab()
else:
print(f"Exporting model to '{fname_out}'")
model_instance.write()
print("Set model parameters")
model_instance.set_gguf_parameters()
print(f"Model successfully exported to '{fname_out}'")
print("Set model tokenizer")
model_instance.set_vocab()
if args.vocab_only:
print(f"Exporting model vocab to '{fname_out}'")
model_instance.write_vocab()
else:
print(f"Exporting model to '{fname_out}'")
model_instance.write()
print(f"Model successfully exported to '{fname_out}'")
if __name__ == '__main__':
main()

View file

@ -47,95 +47,96 @@ def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_ty
fout.seek((fout.tell() + 31) & -32)
if len(sys.argv) < 2:
print(f"Usage: python {sys.argv[0]} <path> [arch]")
print(
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
)
print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
sys.exit(1)
if __name__ == '__main__':
if len(sys.argv) < 2:
print(f"Usage: python {sys.argv[0]} <path> [arch]")
print(
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
)
print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
sys.exit(1)
input_json = os.path.join(sys.argv[1], "adapter_config.json")
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
input_json = os.path.join(sys.argv[1], "adapter_config.json")
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
model = torch.load(input_model, map_location="cpu")
arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
model = torch.load(input_model, map_location="cpu")
arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
if arch_name not in gguf.MODEL_ARCH_NAMES.values():
print(f"Error: unsupported architecture {arch_name}")
sys.exit(1)
if arch_name not in gguf.MODEL_ARCH_NAMES.values():
print(f"Error: unsupported architecture {arch_name}")
sys.exit(1)
arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
with open(input_json, "r") as f:
params = json.load(f)
with open(input_json, "r") as f:
params = json.load(f)
if params["peft_type"] != "LORA":
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
sys.exit(1)
if params["peft_type"] != "LORA":
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
sys.exit(1)
if params["fan_in_fan_out"] is True:
print("Error: param fan_in_fan_out is not supported")
sys.exit(1)
if params["fan_in_fan_out"] is True:
print("Error: param fan_in_fan_out is not supported")
sys.exit(1)
if params["bias"] is not None and params["bias"] != "none":
print("Error: param bias is not supported")
sys.exit(1)
if params["bias"] is not None and params["bias"] != "none":
print("Error: param bias is not supported")
sys.exit(1)
# TODO: these seem to be layers that have been trained but without lora.
# doesn't seem widely used but eventually should be supported
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
print("Error: param modules_to_save is not supported")
sys.exit(1)
# TODO: these seem to be layers that have been trained but without lora.
# doesn't seem widely used but eventually should be supported
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
print("Error: param modules_to_save is not supported")
sys.exit(1)
with open(output_path, "wb") as fout:
fout.truncate()
with open(output_path, "wb") as fout:
fout.truncate()
write_file_header(fout, params)
for k, v in model.items():
orig_k = k
if k.endswith(".default.weight"):
k = k.replace(".default.weight", ".weight")
if k in ["llama_proj.weight", "llama_proj.bias"]:
continue
if k.endswith("lora_A.weight"):
if v.dtype != torch.float16 and v.dtype != torch.float32:
write_file_header(fout, params)
for k, v in model.items():
orig_k = k
if k.endswith(".default.weight"):
k = k.replace(".default.weight", ".weight")
if k in ["llama_proj.weight", "llama_proj.bias"]:
continue
if k.endswith("lora_A.weight"):
if v.dtype != torch.float16 and v.dtype != torch.float32:
v = v.float()
v = v.T
else:
v = v.float()
v = v.T
else:
v = v.float()
t = v.detach().numpy()
t = v.detach().numpy()
prefix = "base_model.model."
if k.startswith(prefix):
k = k[len(prefix) :]
prefix = "base_model.model."
if k.startswith(prefix):
k = k[len(prefix) :]
lora_suffixes = (".lora_A.weight", ".lora_B.weight")
if k.endswith(lora_suffixes):
suffix = k[-len(lora_suffixes[0]):]
k = k[: -len(lora_suffixes[0])]
else:
print(f"Error: unrecognized tensor name {orig_k}")
sys.exit(1)
lora_suffixes = (".lora_A.weight", ".lora_B.weight")
if k.endswith(lora_suffixes):
suffix = k[-len(lora_suffixes[0]):]
k = k[: -len(lora_suffixes[0])]
else:
print(f"Error: unrecognized tensor name {orig_k}")
sys.exit(1)
tname = name_map.get_name(k)
if tname is None:
print(f"Error: could not map tensor name {orig_k}")
print(" Note: the arch parameter must be specified if the model is not llama")
sys.exit(1)
tname = name_map.get_name(k)
if tname is None:
print(f"Error: could not map tensor name {orig_k}")
print(" Note: the arch parameter must be specified if the model is not llama")
sys.exit(1)
if suffix == ".lora_A.weight":
tname += ".weight.loraA"
elif suffix == ".lora_B.weight":
tname += ".weight.loraB"
else:
assert False
if suffix == ".lora_A.weight":
tname += ".weight.loraA"
elif suffix == ".lora_B.weight":
tname += ".weight.loraB"
else:
assert False
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
write_tensor_header(fout, tname, t.shape, t.dtype)
t.tofile(fout)
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
write_tensor_header(fout, tname, t.shape, t.dtype)
t.tofile(fout)
print(f"Converted {input_json} and {input_model} to {output_path}")
print(f"Converted {input_json} and {input_model} to {output_path}")

1
convert-persimmon-to-gguf.py Normal file → Executable file
View file

@ -1,3 +1,4 @@
#!/usr/bin/env python3
import torch
import os
from pprint import pprint

61
examples/base-translate.sh Executable file
View file

@ -0,0 +1,61 @@
#!/bin/bash
#
# Few-shot translation example.
# Requires a base model (i.e. no fine-tuned or instruct models).
#
# Usage:
#
# cd llama.cpp
# make -j
#
# ./examples/base-translate.sh <model-base> "<text>" [extra-main-args]
#
if [ $# -lt 2 ]; then
echo "Usage: ./base-translate.sh <model-base> \"<text>\" [extra-main-args]"
exit 1
fi
eargs=""
if [ $# -gt 2 ]; then
eargs="${@:3}"
fi
ftmp="__llama.cpp_example_tmp__.txt"
trap "rm -f $ftmp" EXIT
echo "Translate from English to French:
===
sea otter, peppermint, plush girafe:
sea otter => loutre de mer
peppermint => menthe poivrée
plush girafe => girafe peluche
===
violin
violin => violon
===
phone, computer, mouse, keyboard:
phone => téléphone
computer => ordinateur
mouse => souris
keyboard => clavier
===
" > $ftmp
echo "$2
" >> $ftmp
model=$1
# generate the most likely continuation until the string "===" is found
./main -m $model -f $ftmp -n 64 --temp 0 --repeat-penalty 1.0 --no-penalize-nl -r "===" $eargs

View file

@ -61,7 +61,7 @@ For example to apply 40% of the 'shakespeare' LORA adapter, 80% of the 'bible' L
--lora lora-open-llama-3b-v2-q8_0-yet-another-one-LATEST.bin
```
The scale numbers don't need to add up to one, and you can also use numbers greater than 1 to further increase the influence of an adapter. But making the values to big will sometimes result in worse output. Play around to find good values.
The scale numbers don't need to add up to one, and you can also use numbers greater than 1 to further increase the influence of an adapter. But making the values too big will sometimes result in worse output. Play around to find good values.
Gradient checkpointing reduces the memory requirements by ~50% but increases the runtime.
If you have enough RAM, you can make finetuning a bit faster by disabling checkpointing with `--no-checkpointing`.

View file

@ -3,15 +3,9 @@
#include "llama.h"
#include "common.h"
#include "train.h"
#include <unordered_map>
#include <vector>
#include <cassert>
#include <climits>
#include <cstring>
#include <cstdarg>
#include <ctime>
#include <random>
#include <stdexcept>
#include <algorithm>
#include <string>

View file

@ -1,5 +1,7 @@
import Foundation
// To use this in your own project, add llama.cpp as a swift package dependency
// and uncomment this import line.
// import llama
enum LlamaError: Error {
@ -159,7 +161,7 @@ actor LlamaContext {
new_token_id = llama_sample_token_greedy(context, &candidates_p)
}
if new_token_id == llama_token_eos(context) || n_cur == n_len {
if new_token_id == llama_token_eos(model) || n_cur == n_len {
print("\n")
let new_token_str = String(cString: temporary_invalid_cchars + [0])
temporary_invalid_cchars.removeAll()

View file

@ -9,7 +9,6 @@
/* Begin PBXBuildFile section */
542376082B0D9BFB008E6A1C /* ggml-quants.c in Sources */ = {isa = PBXBuildFile; fileRef = 542376072B0D9BFB008E6A1C /* ggml-quants.c */; settings = {COMPILER_FLAGS = "-O3"; }; };
5423760B2B0D9C4B008E6A1C /* ggml-backend.c in Sources */ = {isa = PBXBuildFile; fileRef = 5423760A2B0D9C4B008E6A1C /* ggml-backend.c */; settings = {COMPILER_FLAGS = "-O3"; }; };
542378792ACE3F3500834A7B /* ggml-metal.metal in Resources */ = {isa = PBXBuildFile; fileRef = 549479C82AC9E10B00E0F78B /* ggml-metal.metal */; };
542EA09D2AC8723900A8AEE9 /* ggml.c in Sources */ = {isa = PBXBuildFile; fileRef = 542EA09B2AC8723900A8AEE9 /* ggml.c */; settings = {COMPILER_FLAGS = "-DGGML_USE_ACCELERATE -DGGML_USE_METAL -DGGML_USE_K_QUANTS -O3"; }; };
542EA0A02AC8725700A8AEE9 /* ggml-alloc.c in Sources */ = {isa = PBXBuildFile; fileRef = 542EA09F2AC8725700A8AEE9 /* ggml-alloc.c */; settings = {COMPILER_FLAGS = "-O3"; }; };
542EA0A32AC8729100A8AEE9 /* llama.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 542EA0A12AC8729100A8AEE9 /* llama.cpp */; settings = {COMPILER_FLAGS = "-DGGML_USE_K_QUANTS -DGGML_USE_METAL -O3"; }; };
@ -24,6 +23,8 @@
8A3F84242AC4C891005E2EE8 /* models in Resources */ = {isa = PBXBuildFile; fileRef = 8A3F84232AC4C891005E2EE8 /* models */; };
8A907F332AC7138A006146EA /* LibLlama.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A907F322AC7134E006146EA /* LibLlama.swift */; };
8A9F7C4D2AC332EE008AE1EA /* LlamaState.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */; };
F1FE20DC2B465C4500B45541 /* ggml-metal.metal in Resources */ = {isa = PBXBuildFile; fileRef = 549479C82AC9E10B00E0F78B /* ggml-metal.metal */; };
F1FE20E22B465ECA00B45541 /* LoadCustomButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = F1FE20E12B465EC900B45541 /* LoadCustomButton.swift */; };
/* End PBXBuildFile section */
/* Begin PBXFileReference section */
@ -52,6 +53,7 @@
8A3F84232AC4C891005E2EE8 /* models */ = {isa = PBXFileReference; lastKnownFileType = folder; name = models; path = llama.swiftui/Resources/models; sourceTree = "<group>"; };
8A907F322AC7134E006146EA /* LibLlama.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LibLlama.swift; sourceTree = "<group>"; };
8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LlamaState.swift; sourceTree = "<group>"; };
F1FE20E12B465EC900B45541 /* LoadCustomButton.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LoadCustomButton.swift; sourceTree = "<group>"; };
/* End PBXFileReference section */
/* Begin PBXFrameworksBuildPhase section */
@ -166,6 +168,7 @@
children = (
7FA3D2B22B2EA2F600543F92 /* DownloadButton.swift */,
8A1C83782AC328BD0096AF73 /* ContentView.swift */,
F1FE20E12B465EC900B45541 /* LoadCustomButton.swift */,
);
path = UI;
sourceTree = "<group>";
@ -241,7 +244,7 @@
isa = PBXResourcesBuildPhase;
buildActionMask = 2147483647;
files = (
542378792ACE3F3500834A7B /* ggml-metal.metal in Resources */,
F1FE20DC2B465C4500B45541 /* ggml-metal.metal in Resources */,
8A3F84242AC4C891005E2EE8 /* models in Resources */,
8A1C837E2AC328BE0096AF73 /* Preview Assets.xcassets in Resources */,
8A1C837B2AC328BE0096AF73 /* Assets.xcassets in Resources */,
@ -257,6 +260,7 @@
files = (
542376082B0D9BFB008E6A1C /* ggml-quants.c in Sources */,
549479CD2AC9E42A00E0F78B /* ggml-metal.m in Sources */,
F1FE20E22B465ECA00B45541 /* LoadCustomButton.swift in Sources */,
542EA09D2AC8723900A8AEE9 /* ggml.c in Sources */,
8A907F332AC7138A006146EA /* LibLlama.swift in Sources */,
542EA0A32AC8729100A8AEE9 /* llama.cpp in Sources */,

View file

@ -4,6 +4,7 @@ import Foundation
class LlamaState: ObservableObject {
@Published var messageLog = ""
@Published var cacheCleared = false
let NS_PER_S = 1_000_000_000.0
private var llamaContext: LlamaContext?
private var defaultModelUrl: URL? {
@ -20,12 +21,12 @@ class LlamaState: ObservableObject {
}
func loadModel(modelUrl: URL?) throws {
messageLog += "Loading model...\n"
if let modelUrl {
messageLog += "Loading model...\n"
llamaContext = try LlamaContext.create_context(path: modelUrl.path())
messageLog += "Loaded model \(modelUrl.lastPathComponent)\n"
} else {
messageLog += "Could not locate model\n"
messageLog += "Load a model from the list below\n"
}
}
@ -34,15 +35,29 @@ class LlamaState: ObservableObject {
return
}
let t_start = DispatchTime.now().uptimeNanoseconds
await llamaContext.completion_init(text: text)
let t_heat_end = DispatchTime.now().uptimeNanoseconds
let t_heat = Double(t_heat_end - t_start) / NS_PER_S
messageLog += "\(text)"
while await llamaContext.n_cur <= llamaContext.n_len {
while await llamaContext.n_cur < llamaContext.n_len {
let result = await llamaContext.completion_loop()
messageLog += "\(result)"
}
let t_end = DispatchTime.now().uptimeNanoseconds
let t_generation = Double(t_end - t_heat_end) / NS_PER_S
let tokens_per_second = Double(await llamaContext.n_len) / t_generation
await llamaContext.clear()
messageLog += "\n\ndone\n"
messageLog += """
\n
Done
Heat up took \(t_heat)s
Generated \(tokens_per_second) t/s\n
"""
}
func bench() async {
@ -56,10 +71,10 @@ class LlamaState: ObservableObject {
messageLog += await llamaContext.model_info() + "\n"
let t_start = DispatchTime.now().uptimeNanoseconds
await llamaContext.bench(pp: 8, tg: 4, pl: 1) // heat up
let _ = await llamaContext.bench(pp: 8, tg: 4, pl: 1) // heat up
let t_end = DispatchTime.now().uptimeNanoseconds
let t_heat = Double(t_end - t_start) / 1_000_000_000.0
let t_heat = Double(t_end - t_start) / NS_PER_S
messageLog += "Heat up time: \(t_heat) seconds, please wait...\n"
// if more than 5 seconds, then we're probably running on a slow device

View file

@ -42,46 +42,27 @@ struct ContentView: View {
Button("Send") {
sendText()
}
.padding(8)
.background(Color.blue)
.foregroundColor(.white)
.cornerRadius(8)
Button("Bench") {
bench()
}
.padding(8)
.background(Color.blue)
.foregroundColor(.white)
.cornerRadius(8)
Button("Clear") {
clear()
}
.padding(8)
.background(Color.blue)
.foregroundColor(.white)
.cornerRadius(8)
Button("Copy") {
UIPasteboard.general.string = llamaState.messageLog
}
.padding(8)
.background(Color.blue)
.foregroundColor(.white)
.cornerRadius(8)
}
}.buttonStyle(.bordered)
VStack {
VStack(alignment: .leading) {
DownloadButton(
llamaState: llamaState,
modelName: "TinyLlama-1.1B (Q4_0, 0.6 GiB)",
modelUrl: "https://huggingface.co/TheBloke/TinyLlama-1.1B-1T-OpenOrca-GGUF/resolve/main/tinyllama-1.1b-1t-openorca.Q4_0.gguf?download=true",
filename: "tinyllama-1.1b-1t-openorca.Q4_0.gguf"
)
.font(.system(size: 12))
.padding(.top, 4)
.frame(maxWidth: .infinity, alignment: .leading)
DownloadButton(
llamaState: llamaState,
@ -89,7 +70,6 @@ struct ContentView: View {
modelUrl: "https://huggingface.co/TheBloke/TinyLlama-1.1B-1T-OpenOrca-GGUF/resolve/main/tinyllama-1.1b-1t-openorca.Q8_0.gguf?download=true",
filename: "tinyllama-1.1b-1t-openorca.Q8_0.gguf"
)
.font(.system(size: 12))
DownloadButton(
llamaState: llamaState,
@ -97,8 +77,6 @@ struct ContentView: View {
modelUrl: "https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf?download=true",
filename: "tinyllama-1.1b-f16.gguf"
)
.font(.system(size: 12))
.frame(maxWidth: .infinity, alignment: .leading)
DownloadButton(
llamaState: llamaState,
@ -106,7 +84,6 @@ struct ContentView: View {
modelUrl: "https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q4_0.gguf?download=true",
filename: "phi-2-q4_0.gguf"
)
.font(.system(size: 12))
DownloadButton(
llamaState: llamaState,
@ -114,8 +91,6 @@ struct ContentView: View {
modelUrl: "https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q8_0.gguf?download=true",
filename: "phi-2-q8_0.gguf"
)
.font(.system(size: 12))
.frame(maxWidth: .infinity, alignment: .leading)
DownloadButton(
llamaState: llamaState,
@ -123,15 +98,17 @@ struct ContentView: View {
modelUrl: "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_0.gguf?download=true",
filename: "mistral-7b-v0.1.Q4_0.gguf"
)
.font(.system(size: 12))
Button("Clear downloaded models") {
ContentView.cleanupModelCaches()
llamaState.cacheCleared = true
}
.padding(8)
.font(.system(size: 12))
LoadCustomButton(llamaState: llamaState)
}
.padding(.top, 4)
.font(.system(size: 12))
.frame(maxWidth: .infinity, alignment: .leading)
}
.padding()
}

View file

@ -93,7 +93,7 @@ struct DownloadButton: View {
print("Error: \(err.localizedDescription)")
}
}) {
Text("\(modelName) (Downloaded)")
Text("Load \(modelName)")
}
} else {
Text("Unknown status")

View file

@ -0,0 +1,44 @@
import SwiftUI
import UniformTypeIdentifiers
struct LoadCustomButton: View {
@ObservedObject private var llamaState: LlamaState
@State private var showFileImporter = false
init(llamaState: LlamaState) {
self.llamaState = llamaState
}
var body: some View {
VStack {
Button(action: {
showFileImporter = true
}) {
Text("Load Custom Model")
}
}
.fileImporter(
isPresented: $showFileImporter,
allowedContentTypes: [UTType(filenameExtension: "gguf", conformingTo: .data)!],
allowsMultipleSelection: false
) { result in
switch result {
case .success(let files):
files.forEach { file in
let gotAccess = file.startAccessingSecurityScopedResource()
if !gotAccess { return }
do {
try llamaState.loadModel(modelUrl: file.absoluteURL)
} catch let err {
print("Error: \(err.localizedDescription)")
}
file.stopAccessingSecurityScopedResource()
}
case .failure(let error):
print(error)
}
}
}
}

View file

@ -24,7 +24,8 @@ endif()
if (NOT MSVC)
target_compile_options(llava PRIVATE -Wno-cast-qual) # stb_image.h
endif()
endif()
if(TARGET BUILD_INFO)
add_dependencies(llava BUILD_INFO)
endif()
@ -32,5 +33,5 @@ endif()
set(TARGET llava-cli)
add_executable(llava-cli llava-cli.cpp)
install(TARGETS llava-cli RUNTIME)
target_link_libraries(llava-cli PRIVATE common llama llava ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(llava-cli PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(llava PRIVATE cxx_std_11)

View file

@ -16,12 +16,19 @@
#include "clip.h"
#include "ggml.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#define CLIP_DEBUG
static std::string format(const char * fmt, ...) {
va_list ap;
va_list ap2;
@ -139,6 +146,27 @@ static std::string get_ftype(int ftype) {
}
}
//
// image data
//
// RGB uint8 image
struct clip_image_u8 {
int nx;
int ny;
std::vector<uint8_t> buf;
};
// RGB float32 image (NHWC)
// Memory layout: RGBRGBRGB...
struct clip_image_f32 {
int nx;
int ny;
std::vector<float> buf;
};
//
// clip layers
//
@ -196,39 +224,31 @@ struct clip_vision_model {
struct ggml_tensor * mm_2_b;
};
// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
struct clip_buffer {
uint8_t * data = NULL;
size_t size = 0;
void resize(size_t size) {
delete[] data;
data = new uint8_t[size];
this->size = size;
}
~clip_buffer() { delete[] data; }
};
struct clip_ctx {
bool has_text_encoder = false;
bool has_vision_encoder = false;
bool has_text_encoder = false;
bool has_vision_encoder = false;
bool has_llava_projector = false;
struct clip_vision_model vision_model;
float image_mean[3];
float image_std[3];
bool use_gelu = false;
int32_t ftype = 1;
struct ggml_context * ctx;
struct gguf_context * ctx_gguf;
struct ggml_context * ctx_data;
std::vector<uint8_t> buf_compute_meta;
// memory buffers to evaluate the model
clip_buffer buf_compute;
clip_buffer buf_alloc;
ggml_allocr * alloc = NULL;
ggml_backend_buffer_t params_buffer = NULL;
ggml_backend_buffer_t compute_buffer = NULL;
ggml_backend_t backend = NULL;
ggml_allocr * compute_alloc = NULL;
};
static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_image_f32_batch * imgs) {
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs) {
if (!ctx->has_vision_encoder) {
printf("This gguf file seems to have no vision encoder\n");
return nullptr;
@ -249,28 +269,24 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
//const int projection_dim = hparams.projection_dim;
const float eps = hparams.eps;
int batch_size = imgs->size;
if(ctx->has_llava_projector) {
if (ctx->has_llava_projector) {
GGML_ASSERT(batch_size == 1);
}
const auto & buf_compute = ctx->buf_compute;
struct ggml_init_params params = {
/*.mem_size =*/ buf_compute.size,
/*.mem_buffer =*/ buf_compute.data,
/*.no_alloc =*/ false,
/*.mem_size =*/ ctx->buf_compute_meta.size(),
/*.mem_buffer =*/ ctx->buf_compute_meta.data(),
/*.no_alloc =*/ true,
};
params.no_alloc = true;
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size, image_size, 3, batch_size);
ggml_allocr_alloc(ctx->alloc, inp_raw);
ggml_allocr_alloc(ctx->compute_alloc, inp_raw);
if (!ggml_allocr_is_measure(ctx->alloc)) {
float * data = (float *)ggml_get_data(inp_raw);
if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
float * data = (float *)malloc(ggml_nbytes(inp_raw));
for (size_t i = 0; i < imgs->size; i++) {
const int nx = imgs->data[i].nx;
@ -283,12 +299,14 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
for (int k = 0; k < 3; k++) {
for (int y = 0; y < ny; y++) {
for (int x = 0; x < nx; x++) {
data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].data[3 * (y * nx + x) + k];
data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k];
}
}
}
}
}
ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
free(data);
}
struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
@ -298,36 +316,39 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
// concat class_embeddings and patch_embeddings
struct ggml_tensor * embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
ggml_allocr_alloc(ctx->alloc, embeddings);
if (!ggml_allocr_is_measure(ctx->alloc)) {
ggml_set_zero(embeddings);
ggml_allocr_alloc(ctx->compute_alloc, embeddings);
if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
void* zero_mem = malloc(ggml_nbytes(embeddings));
memset(zero_mem, 0, ggml_nbytes(embeddings));
ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
free(zero_mem);
}
struct ggml_tensor * temp = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, 1, batch_size);
ggml_allocr_alloc(ctx->alloc, temp);
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
embeddings = ggml_acc(ctx0, embeddings, ggml_repeat(ctx0, model.class_embedding, temp), embeddings->nb[1],
embeddings->nb[2], embeddings->nb[3], 0);
embeddings =
ggml_acc(ctx0, embeddings, inp, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
embeddings = ggml_acc(ctx0, embeddings, inp,
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
ggml_allocr_alloc(ctx->alloc, positions);
if (!ggml_allocr_is_measure(ctx->alloc)) {
ggml_allocr_alloc(ctx->compute_alloc, positions);
if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
int* positions_data = (int*)malloc(ggml_nbytes(positions));
for (int i = 0; i < num_positions; i++) {
ggml_set_i32_1d(positions, i, i);
positions_data[i] = i;
}
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
free(positions_data);
}
embeddings =
ggml_add(ctx0, embeddings, ggml_repeat(ctx0, ggml_get_rows(ctx0, model.position_embeddings, positions), embeddings));
ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
// pre-layernorm
{
embeddings = ggml_norm(ctx0, embeddings, eps);
embeddings = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.pre_ln_w, embeddings), embeddings),
ggml_repeat(ctx0, model.pre_ln_b, embeddings));
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
}
// loop over layers
@ -340,15 +361,15 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
{
cur = ggml_norm(ctx0, cur, eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_1_w, cur), cur),
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
model.layers[il].ln_1_b);
}
// self-attention
{
struct ggml_tensor * Q =
ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].q_b, cur), ggml_mul_mat(ctx0, model.layers[il].q_w, cur));
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
@ -356,14 +377,14 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
struct ggml_tensor * K =
ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].k_b, cur), ggml_mul_mat(ctx0, model.layers[il].k_w, cur));
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
struct ggml_tensor * V =
ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].v_b, cur), ggml_mul_mat(ctx0, model.layers[il].v_w, cur));
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
@ -379,7 +400,7 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
}
// attention output
cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].o_b, cur), ggml_mul_mat(ctx0, model.layers[il].o_w, cur));
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
// re-add the layer input, e.g., residual
cur = ggml_add(ctx0, cur, embeddings);
@ -390,12 +411,11 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
{
cur = ggml_norm(ctx0, cur, eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_2_w, cur), cur),
ggml_repeat(ctx0, model.layers[il].ln_2_b, cur));
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
}
cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].ff_i_b, cur), cur);
cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
if (ctx->use_gelu) {
cur = ggml_gelu_inplace(ctx0, cur);
@ -404,7 +424,7 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
}
cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].ff_o_b, cur), cur);
cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
// residual 2
cur = ggml_add(ctx0, embeddings, cur);
@ -417,23 +437,26 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
ggml_allocr_alloc(ctx->alloc, patches);
if (!ggml_allocr_is_measure(ctx->alloc)) {
for (int i = 0; i < num_patches; ++i) {
ggml_set_i32_1d(patches, i, i+1);
ggml_allocr_alloc(ctx->compute_alloc, patches);
if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
int* patches_data = (int*)malloc(ggml_nbytes(patches));
for (int i = 0; i < num_patches; i++) {
patches_data[i] = i + 1;
}
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
free(patches_data);
}
embeddings = ggml_get_rows(ctx0, embeddings, patches);
// mm projection 0
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, ggml_repeat(ctx0, model.mm_0_b, embeddings), embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
embeddings = ggml_gelu(ctx0, embeddings);
embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
embeddings = ggml_add(ctx0, ggml_repeat(ctx0, model.mm_2_b, embeddings), embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
}
// build the graph
@ -446,7 +469,6 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
// read and create ggml_context containing the tensors and their data
struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
struct ggml_context * meta = NULL;
struct gguf_init_params params = {
@ -479,7 +501,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
printf("%s: ftype: %s\n", __func__, ftype_str.c_str());
printf("\n");
}
const int n_tensors = gguf_get_n_tensors(ctx);
// kv
if (verbosity >= 3) {
const int n_kv = gguf_get_n_kv(ctx);
@ -493,27 +515,38 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
}
// data
size_t ctx_size = 0;
size_t buffer_size = 0;
{
const int n_tensors = gguf_get_n_tensors(ctx);
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx, i);
const size_t offset = gguf_get_tensor_offset(ctx, i);
struct ggml_tensor * cur = ggml_get_tensor(meta, name);
ctx_size += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
size_t tensor_size = ggml_nbytes(cur);
size_t padded_size = ggml_nbytes_pad(cur);
ctx_size += padded_size;
buffer_size += tensor_size;
if (verbosity >= 3) {
printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, padded_size=%zu, offset=%zu\n", __func__, i,
ggml_n_dims(cur), cur->name, tensor_size, padded_size, offset);
printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu\n", __func__, i,
ggml_n_dims(cur), cur->name, tensor_size, offset);
}
}
}
buffer_size += n_tensors * 128 /* CLIP PADDING */;
clip_ctx * new_clip = new clip_ctx;
#ifdef GGML_USE_CUBLAS
new_clip->backend = ggml_backend_cuda_init(0);
printf("%s: CLIP using CUDA backend\n", __func__);
#endif
#ifdef GGML_USE_METAL
new_clip->backend = ggml_backend_metal_init();
printf("%s: CLIP using Metal backend\n", __func__);
#endif
if (!new_clip->backend) {
new_clip->backend = ggml_backend_cpu_init();
printf("%s: CLIP using CPU backend\n", __func__);
}
// model size and capabilities
{
@ -539,21 +572,24 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
printf("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
printf("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
printf("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
printf("%s: model size: %.2f MB\n", __func__, (ctx_size / 1024.0 / 1024.0));
printf("%s: model size: %.2f MB\n", __func__, buffer_size / 1024.0 / 1024.0);
printf("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
}
}
printf("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, buffer_size / (1024.0 * 1024.0), n_tensors);
// load tensors
{
std::vector<uint8_t> read_buf;
struct ggml_init_params params = {
/*.mem_size =*/ ctx_size,
/*.mem_size =*/ (n_tensors + 1) * ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ false,
/*.no_alloc =*/ true,
};
new_clip->ctx = ggml_init(params);
if (!new_clip->ctx) {
new_clip->ctx_data = ggml_init(params);
if (!new_clip->ctx_data) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
clip_free(new_clip);
return nullptr;
@ -566,13 +602,21 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
return nullptr;
}
const int n_tensors = gguf_get_n_tensors(ctx);
// add tensors to context
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx, i);
struct ggml_tensor * t = ggml_get_tensor(meta, name);
struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx, t);
struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx_data, t);
ggml_set_name(cur, name);
}
// alloc memory and offload data
new_clip->params_buffer = ggml_backend_alloc_buffer(new_clip->backend, buffer_size);
ggml_allocr* alloc = ggml_allocr_new_from_buffer(new_clip->params_buffer);
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx, i);
struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name);
ggml_allocr_alloc(alloc, cur);
const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
fin.seekg(offset, std::ios::beg);
if (!fin) {
@ -580,10 +624,18 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
clip_free(new_clip);
return nullptr;
}
fin.read(reinterpret_cast<char *>(cur->data), ggml_nbytes(t));
int num_bytes = ggml_nbytes(cur);
if (ggml_backend_buffer_is_host(new_clip->params_buffer)) {
// for the CPU and Metal backend, we can read directly into the tensor
fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
} else {
// read into a temporary buffer first, then copy to device memory
read_buf.resize(num_bytes);
fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
}
}
ggml_allocr_free(alloc);
fin.close();
}
@ -592,20 +644,20 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
// load vision model
auto & vision_model = new_clip->vision_model;
auto & hparams = vision_model.hparams;
hparams.hidden_size = get_u32(ctx, format(KEY_N_EMBD, "vision"));
hparams.n_head = get_u32(ctx, format(KEY_N_HEAD, "vision"));
hparams.hidden_size = get_u32(ctx, format(KEY_N_EMBD, "vision"));
hparams.n_head = get_u32(ctx, format(KEY_N_HEAD, "vision"));
hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision"));
hparams.n_layer = get_u32(ctx, format(KEY_N_BLOCK, "vision"));
hparams.image_size = get_u32(ctx, KEY_IMAGE_SIZE);
hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE);
hparams.n_layer = get_u32(ctx, format(KEY_N_BLOCK, "vision"));
hparams.image_size = get_u32(ctx, KEY_IMAGE_SIZE);
hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE);
hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision"));
hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision"));
hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision"));
int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN);
int idx_std = get_key_idx(ctx, KEY_IMAGE_STD);
int idx_std = get_key_idx(ctx, KEY_IMAGE_STD);
for (int i = 0; i < 3; ++i) {
new_clip->image_mean[i] = *((const float *)gguf_get_arr_data(ctx, idx_mean));
new_clip->image_std[i] = *((const float *)gguf_get_arr_data(ctx, idx_std));
new_clip->image_std[i] = *((const float *)gguf_get_arr_data(ctx, idx_std));
}
if (verbosity >= 2) {
@ -619,35 +671,35 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
printf("v_n_layer %d\n", hparams.n_layer);
}
vision_model.patch_embeddings = get_tensor(new_clip->ctx, TN_PATCH_EMBD);
vision_model.class_embedding = get_tensor(new_clip->ctx, TN_CLASS_EMBD);
vision_model.position_embeddings = get_tensor(new_clip->ctx, format(TN_POS_EMBD, "v"));
vision_model.pre_ln_w = get_tensor(new_clip->ctx, format(TN_LN_PRE, "v", "weight"));
vision_model.pre_ln_b = get_tensor(new_clip->ctx, format(TN_LN_PRE, "v", "bias"));
vision_model.mm_0_w = get_tensor(new_clip->ctx, format(TN_LLAVA_PROJ, 0, "weight"));
vision_model.mm_0_b = get_tensor(new_clip->ctx, format(TN_LLAVA_PROJ, 0, "bias"));
vision_model.mm_2_w = get_tensor(new_clip->ctx, format(TN_LLAVA_PROJ, 2, "weight"));
vision_model.mm_2_b = get_tensor(new_clip->ctx, format(TN_LLAVA_PROJ, 2, "bias"));
vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
vision_model.layers.resize(hparams.n_layer);
for (int il = 0; il < hparams.n_layer; ++il) {
auto & layer = vision_model.layers[il];
layer.k_w = get_tensor(new_clip->ctx, format(TN_ATTN_K, "v", il, "weight"));
layer.q_w = get_tensor(new_clip->ctx, format(TN_ATTN_Q, "v", il, "weight"));
layer.v_w = get_tensor(new_clip->ctx, format(TN_ATTN_V, "v", il, "weight"));
layer.o_w = get_tensor(new_clip->ctx, format(TN_ATTN_OUTPUT, "v", il, "weight"));
layer.ln_1_w = get_tensor(new_clip->ctx, format(TN_LN_1, "v", il, "weight"));
layer.ln_2_w = get_tensor(new_clip->ctx, format(TN_LN_2, "v", il, "weight"));
layer.ff_i_w = get_tensor(new_clip->ctx, format(TN_FFN_DOWN, "v", il, "weight"));
layer.ff_o_w = get_tensor(new_clip->ctx, format(TN_FFN_UP, "v", il, "weight"));
layer.k_b = get_tensor(new_clip->ctx, format(TN_ATTN_K, "v", il, "bias"));
layer.q_b = get_tensor(new_clip->ctx, format(TN_ATTN_Q, "v", il, "bias"));
layer.v_b = get_tensor(new_clip->ctx, format(TN_ATTN_V, "v", il, "bias"));
layer.o_b = get_tensor(new_clip->ctx, format(TN_ATTN_OUTPUT, "v", il, "bias"));
layer.ln_1_b = get_tensor(new_clip->ctx, format(TN_LN_1, "v", il, "bias"));
layer.ln_2_b = get_tensor(new_clip->ctx, format(TN_LN_2, "v", il, "bias"));
layer.ff_i_b = get_tensor(new_clip->ctx, format(TN_FFN_DOWN, "v", il, "bias"));
layer.ff_o_b = get_tensor(new_clip->ctx, format(TN_FFN_UP, "v", il, "bias"));
layer.k_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "weight"));
layer.q_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "weight"));
layer.v_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "weight"));
layer.o_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "weight"));
layer.ln_1_w = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "weight"));
layer.ln_2_w = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "weight"));
layer.ff_i_w = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "weight"));
layer.ff_o_w = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "weight"));
layer.k_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "bias"));
layer.q_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "bias"));
layer.v_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "bias"));
layer.o_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "bias"));
layer.ln_1_b = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "bias"));
layer.ln_2_b = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "bias"));
layer.ff_i_b = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "bias"));
layer.ff_o_b = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "bias"));
}
}
@ -655,45 +707,45 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
new_clip->ctx_gguf = ctx;
// measure mem requirement and allocate
// measure mem requirement and allocate
{
static const size_t tensor_alignment = 32;
new_clip->buf_compute.resize(ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead());
new_clip->alloc = ggml_allocr_new_measure(tensor_alignment);
new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
new_clip->compute_alloc = ggml_allocr_new_measure_from_backend(new_clip->backend);
clip_image_f32_batch batch;
batch.size = 1;
ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch);
size_t alloc_size = ggml_allocr_alloc_graph(new_clip->alloc, gf) + tensor_alignment;
ggml_allocr_free(new_clip->alloc);
new_clip->buf_alloc.resize(alloc_size);
new_clip->alloc = ggml_allocr_new(new_clip->buf_alloc.data, new_clip->buf_alloc.size, tensor_alignment);
size_t compute_memory_buffer_size = ggml_allocr_alloc_graph(new_clip->compute_alloc, gf);
ggml_allocr_free(new_clip->compute_alloc);
new_clip->compute_buffer = ggml_backend_alloc_buffer(new_clip->backend, compute_memory_buffer_size);
new_clip->compute_alloc = ggml_allocr_new_from_buffer(new_clip->compute_buffer);
printf("%s: total allocated memory: %.2f MB\n", __func__, (new_clip->buf_compute.size + alloc_size)/1024.0/1024.0);
printf("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
}
return new_clip;
}
clip_image_u8 * make_clip_image_u8() {
auto img = new clip_image_u8();
return img;
struct clip_image_u8 * clip_image_u8_init() {
return new clip_image_u8();
}
clip_image_f32 * make_clip_image_f32() { return new clip_image_f32(); }
void clip_image_u8_free(clip_image_u8 * img) { if (img->data) { delete[] img->data; } delete img; }
void clip_image_f32_free(clip_image_f32 * img) { if (img->data) { delete[] img->data; } delete img; }
struct clip_image_f32 * clip_image_f32_init() {
return new clip_image_f32();
}
void clip_image_u8_free (struct clip_image_u8 * img) { delete img; }
void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) {
img->nx = nx;
img->ny = ny;
img->size = nx * ny * 3;
img->data = new uint8_t[img->size]();
memcpy(img->data, data, img->size);
img->buf.resize(3 * nx * ny);
memcpy(img->buf.data(), data, img->buf.size());
}
bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
int nx, ny, nc;
auto data = stbi_load(fname, &nx, &ny, &nc, 3);
auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
if (!data) {
fprintf(stderr, "%s: failed to load image '%s'\n", __func__, fname);
return false;
@ -705,7 +757,7 @@ bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
int nx, ny, nc;
auto data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
if (!data) {
fprintf(stderr, "%s: failed to decode image bytes\n", __func__);
return false;
@ -717,7 +769,7 @@ bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length
// normalize: x = (x - mean) / std
// TODO: implement bicubic interpolation instead of linear.
bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32 * res, const bool pad2square) {
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32 * res, const bool pad2square) {
if (!ctx->has_vision_encoder) {
printf("This gguf file seems to have no vision encoder\n");
return false;
@ -726,18 +778,17 @@ bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip
// the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
// see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
clip_image_u8 * temp = make_clip_image_u8(); // we will keep the input image data here temporarily
clip_image_u8 * temp = clip_image_u8_init(); // we will keep the input image data here temporarily
if (pad2square && img->nx != img->ny) {
int longer_side = std::max(img->nx, img->ny);
temp->nx = longer_side;
temp->ny = longer_side;
temp->size = 3 * longer_side * longer_side;
temp->data = new uint8_t[temp->size]();
uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA
temp->buf.resize(3 * longer_side * longer_side);
const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA
// fill with background color
for (size_t i = 0; i < temp->size; i++) {
temp->data[i] = bc[i % 3];
for (size_t i = 0; i < temp->buf.size(); i++) {
temp->buf[i] = bc[i % 3];
}
// copy from the input image
@ -745,17 +796,16 @@ bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip
for (int x = 0; x < img->nx; x++) {
const int i = 3 * (y * img->nx + x);
const int j = 3 * (y * temp->nx + x);
temp->data[j] = img->data[i];
temp->data[j+1] = img->data[i+1];
temp->data[j+2] = img->data[i+2];
temp->buf[j] = img->buf[i];
temp->buf[j+1] = img->buf[i+1];
temp->buf[j+2] = img->buf[i+2];
}
}
} else {
temp->nx = img->nx;
temp->ny = img->ny;
temp->size = img->size;
temp->data = new uint8_t[temp->size]();
memcpy(&temp->data[0], &img->data[0], temp->size); // copy
temp->nx = img->nx;
temp->ny = img->ny;
temp->buf.resize(img->buf.size());
memcpy(temp->buf.data(), img->buf.data(), temp->buf.size());
}
const int nx = temp->nx;
@ -766,8 +816,7 @@ bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip
res->nx = nx2;
res->ny = ny2;
res->size = 3 * nx2 * ny2;
res->data = new float[res->size]();
res->buf.resize(3 * nx2 * ny2);
const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size;
@ -798,10 +847,10 @@ bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip
const int j10 = 3 * (y1 * nx + x0) + c;
const int j11 = 3 * (y1 * nx + x1) + c;
const float v00 = temp->data[j00];
const float v01 = temp->data[j01];
const float v10 = temp->data[j10];
const float v11 = temp->data[j11];
const float v00 = temp->buf[j00];
const float v01 = temp->buf[j01];
const float v10 = temp->buf[j10];
const float v11 = temp->buf[j11];
const float v0 = v00 * (1.0f - dx) + v01 * dx;
const float v1 = v10 * (1.0f - dx) + v11 * dx;
@ -812,7 +861,7 @@ bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip
const int i = 3 * (y * nx3 + x) + c;
res->data[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
}
}
}
@ -822,12 +871,13 @@ bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip
}
void clip_free(clip_ctx * ctx) {
ggml_free(ctx->ctx);
ggml_free(ctx->ctx_data);
gguf_free(ctx->ctx_gguf);
delete ctx;
}
bool clip_image_encode(const clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
if (!ctx->has_vision_encoder) {
printf("This gguf file seems to have no vision encoder\n");
return false;
@ -839,8 +889,7 @@ bool clip_image_encode(const clip_ctx * ctx, const int n_threads, clip_image_f32
return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
}
bool clip_image_batch_encode(const clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
if (!ctx->has_vision_encoder) {
printf("This gguf file seems to have no vision encoder\n");
return false;
@ -852,29 +901,29 @@ bool clip_image_batch_encode(const clip_ctx * ctx, const int n_threads, const cl
}
// reset alloc buffer to clean the memory from previous invocations
ggml_allocr_reset(ctx->alloc);
ggml_allocr_reset(ctx->compute_alloc);
// build the inference graph
ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
ggml_allocr_alloc_graph(ctx->alloc, gf);
ggml_allocr_alloc_graph(ctx->compute_alloc, gf);
struct ggml_cplan plan = ggml_graph_plan(gf, n_threads);
if (plan.work_size > 0) {
plan.work_data = (uint8_t *)malloc(plan.work_size);
if (ggml_backend_is_cpu(ctx->backend)) {
ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
}
ggml_graph_compute(gf, &plan);
#ifdef GGML_USE_METAL
if (ggml_backend_is_metal(ctx->backend)) {
ggml_backend_metal_set_n_cb(ctx->backend, n_threads);
}
#endif
ggml_backend_graph_compute(ctx->backend, gf);
// the last node is the embedding tensor
struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 1];
struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 1];
// copy the embeddings to the location passed by the user
memcpy(vec, ggml_get_data_f32(embeddings), ggml_nbytes(embeddings));
if (plan.work_size > 0) {
free(plan.work_data);
}
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
return true;
}
@ -883,31 +932,32 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
ggml_type type = GGML_TYPE_Q4_1;
switch (itype) {
case 2:
type = GGML_TYPE_Q4_0;
break;
case 3:
type = GGML_TYPE_Q4_1;
break;
case 6:
type = GGML_TYPE_Q5_0;
break;
case 7:
type = GGML_TYPE_Q5_1;
break;
case 8:
type = GGML_TYPE_Q8_0;
break;
default:
fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype);
return false;
case 2:
type = GGML_TYPE_Q4_0;
break;
case 3:
type = GGML_TYPE_Q4_1;
break;
case 6:
type = GGML_TYPE_Q5_0;
break;
case 7:
type = GGML_TYPE_Q5_1;
break;
case 8:
type = GGML_TYPE_Q8_0;
break;
default:
fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype);
return false;
};
auto ctx_clip = clip_model_load(fname_inp, 2);
const auto & ctx_src = ctx_clip->ctx_gguf;
const auto & ctx_data = ctx_clip->ctx;
auto * ctx_clip = clip_model_load(fname_inp, 2);
auto ctx_out = gguf_init_empty();
const auto & ctx_src = ctx_clip->ctx_gguf;
const auto & ctx_data = ctx_clip->ctx_data;
auto * ctx_out = gguf_init_empty();
gguf_set_kv(ctx_out, ctx_src);
gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
gguf_set_val_u32(ctx_out, "general.file_type", itype);
@ -1045,8 +1095,8 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
gguf_free(ctx_out);
{
printf("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
printf("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
printf("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
printf("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
int64_t sum_all = 0;
for (size_t i = 0; i < hist_all.size(); ++i) {

View file

@ -35,31 +35,14 @@ struct clip_vision_hparams {
float eps;
};
/** load mmproj model */
CLIP_API struct clip_ctx * clip_model_load(const char * fname, const int verbosity);
/** free mmproj model */
CLIP_API struct clip_ctx * clip_model_load(const char * fname, int verbosity);
CLIP_API void clip_free(struct clip_ctx * ctx);
size_t clip_embd_nbytes(const struct clip_ctx * ctx);
int clip_n_patches(const struct clip_ctx * ctx);
int clip_n_mmproj_embd(const struct clip_ctx * ctx);
CLIP_API size_t clip_embd_nbytes(const struct clip_ctx * ctx);
// RGB uint8 image
struct clip_image_u8 {
int nx;
int ny;
uint8_t * data = NULL;
size_t size;
};
// RGB float32 image (NHWC)
// Memory layout: RGBRGBRGB...
struct clip_image_f32 {
int nx;
int ny;
float * data = NULL;
size_t size;
};
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx);
struct clip_image_u8_batch {
struct clip_image_u8 * data;
@ -71,21 +54,22 @@ struct clip_image_f32_batch {
size_t size;
};
struct clip_image_u8 * make_clip_image_u8();
struct clip_image_f32 * make_clip_image_f32();
CLIP_API void clip_image_u8_free(clip_image_u8 * img);
CLIP_API void clip_image_f32_free(clip_image_f32 * img);
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
CLIP_API struct clip_image_f32 * clip_image_f32_init();
CLIP_API void clip_image_u8_free (struct clip_image_u8 * img);
CLIP_API void clip_image_f32_free(struct clip_image_f32 * img);
CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
/** interpret bytes as an image file with length bytes_length, and use the result to populate img */
CLIP_API bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img);
bool clip_image_preprocess(const struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32 * res, const bool pad2square);
bool clip_image_encode(const struct clip_ctx * ctx, const int n_threads, struct clip_image_f32 * img, float * vec);
CLIP_API bool clip_image_preprocess (struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32 * res, bool pad2square);
CLIP_API bool clip_image_encode (struct clip_ctx * ctx, int n_threads, struct clip_image_f32 * img, float * vec);
CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, const struct clip_image_f32_batch * imgs, float * vec);
bool clip_image_batch_encode(const struct clip_ctx * ctx, const int n_threads, const struct clip_image_f32_batch * imgs,
float * vec);
bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype);
CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype);
#ifdef __cplusplus
}

View file

@ -39,73 +39,11 @@ static bool eval_string(struct llama_context * ctx_llama, const char* str, int n
return true;
}
// TODO: use common/sampling.h
static llama_token sample_id(llama_context * ctx_llama, gpt_params & params) {
auto & sparams = params.sparams;
// out of user input, sample next token
const float temp = sparams.temp;
const int32_t top_k = sparams.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx_llama)) : sparams.top_k;
const float top_p = sparams.top_p;
const float tfs_z = sparams.tfs_z;
const float typical_p = sparams.typical_p;
// const int32_t repeat_last_n = sparams.repeat_last_n < 0 ? n_ctx : sparams.repeat_last_n;
// const float repeat_penalty = sparams.repeat_penalty;
// const float alpha_presence = sparams.presence_penalty;
// const float alpha_frequency = sparams.frequency_penalty;
const int mirostat = sparams.mirostat;
const float mirostat_tau = sparams.mirostat_tau;
const float mirostat_eta = sparams.mirostat_eta;
// const bool penalize_nl = sparams.penalize_nl;
llama_token id = 0;
{
auto logits = llama_get_logits(ctx_llama);
auto n_vocab = llama_n_vocab(llama_get_model(ctx_llama));
// Apply params.logit_bias map
for (auto it = sparams.logit_bias.begin(); it != sparams.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
if (temp <= 0) {
// Greedy sampling
id = llama_sample_token_greedy(ctx_llama, &candidates_p);
} else {
if (mirostat == 1) {
static float mirostat_mu = 2.0f * mirostat_tau;
const int mirostat_m = 100;
llama_sample_temp(ctx_llama, &candidates_p, temp);
id = llama_sample_token_mirostat(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
} else if (mirostat == 2) {
static float mirostat_mu = 2.0f * mirostat_tau;
llama_sample_temp(ctx_llama, &candidates_p, temp);
id = llama_sample_token_mirostat_v2(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
} else {
// Temperature sampling
llama_sample_top_k(ctx_llama, &candidates_p, top_k, 1);
llama_sample_tail_free(ctx_llama, &candidates_p, tfs_z, 1);
llama_sample_typical(ctx_llama, &candidates_p, typical_p, 1);
llama_sample_top_p(ctx_llama, &candidates_p, top_p, 1);
llama_sample_temp(ctx_llama, &candidates_p, temp);
id = llama_sample_token(ctx_llama, &candidates_p);
}
}
}
return id;
}
static const char * sample(struct llama_context * ctx_llama, gpt_params & params, int * n_past) {
int id = sample_id(ctx_llama, params);
static const char * sample(struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_llama,
int * n_past) {
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
static std::string ret;
if (id == llama_token_eos(llama_get_model(ctx_llama))) {
ret = "</s>";
@ -174,8 +112,8 @@ struct llava_context {
};
static void show_additional_info(int /*argc*/, char ** argv) {
printf("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
printf(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
fprintf(stderr, "\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
fprintf(stderr, " note: a lower temperature value like 0.1 is recommended for better quality.\n");
}
static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params) {
@ -185,7 +123,7 @@ static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_para
auto prompt = params->prompt;
if (prompt_contains_image(prompt)) {
if (!params->image.empty()) {
printf("using base64 encoded image instead of command line image path\n");
fprintf(stderr, "using base64 encoded image instead of command line image path\n");
}
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->n_threads, prompt);
if (!embed) {
@ -217,16 +155,19 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
// generate the response
printf("\n");
fprintf(stderr, "\n");
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
for (int i = 0; i < max_tgt_len; i++) {
const char * tmp = sample(ctx_llava->ctx_llama, *params, &n_past);
const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
if (strcmp(tmp, "</s>") == 0) break;
printf("%s", tmp);
fflush(stdout);
}
llama_sampling_free(ctx_sampling);
printf("\n");
}

View file

@ -10,7 +10,7 @@
#include "base64.hpp"
static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
clip_image_f32 * img_res = make_clip_image_f32();
clip_image_f32 * img_res = clip_image_f32_init();
if (!clip_image_preprocess(ctx_clip, img, img_res, /*pad2square =*/ true)) {
fprintf(stderr, "%s: unable to preprocess image\n", __func__);
clip_image_f32_free(img_res);
@ -86,7 +86,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
}
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
clip_image_u8 * img = make_clip_image_u8();
clip_image_u8 * img = clip_image_u8_init();
if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
clip_image_u8_free(img);
fprintf(stderr, "%s: can't load image from bytes, is it a valid image?", __func__);

View file

@ -7,28 +7,13 @@ find_package(Llama 0.0.1 REQUIRED)
# Bake common functionality in with target. Because applications
# using the relocatable Llama package should be outside of the
# source tree, main-cmake-pkg pretends the dependencies are built-in.
set(_common_path "${CMAKE_CURRENT_LIST_DIR}/../../common")
add_library(common OBJECT
${_common_path}/common.h
${_common_path}/common.cpp
${_common_path}/console.h
${_common_path}/console.cpp
${_common_path}/grammar-parser.h
${_common_path}/grammar-parser.cpp
${_common_path}/sampling.h
${_common_path}/sampling.cpp
)
# WARNING: because build-info.h is auto-generated, it will only
# be available after the user has built the llama.cpp sources.
#
configure_file(${_common_path}/../build-info.h
${CMAKE_CURRENT_BINARY_DIR}/build-info.h
COPYONLY)
target_include_directories(common PUBLIC ${LLAMA_INCLUDE_DIR}
${CMAKE_CURRENT_BINARY_DIR})
add_library(common OBJECT)
file(GLOB _common_files
"${_common_path}/*.h"
"${_common_path}/*.cpp"
)
target_sources(common PRIVATE ${_common_files})
# If the common project was part of "main-cmake-pkg" the transient
# defines would automatically be attached. Because the common func-

View file

@ -6,7 +6,7 @@ install(TARGETS ${TARGET} RUNTIME)
target_compile_definitions(${TARGET} PRIVATE
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
)
target_link_libraries(${TARGET} PRIVATE common llama llava ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
if (WIN32)
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
endif()

View file

@ -166,7 +166,13 @@ node index.js
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token (default: 0)
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `prompt`. You can determine the place of the image in the prompt as in the following: `USER:[img-12]Describe the image in detail.\nASSISTANT:` In this case, `[img-12]` will be replaced by the embeddings of the image id 12 in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 12}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `prompt`. You can determine the place of the image in the prompt as in the following: `USER:[img-12]Describe the image in detail.\nASSISTANT:`. In this case, `[img-12]` will be replaced by the embeddings of the image with id `12` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 12}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
`slot_id`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot (default: -1)
`cache_prompt`: Save the prompt and generation for avoid reprocess entire prompt if a part of this isn't change (default: false)
`system_prompt`: Change the system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime)
*Result JSON:*
@ -198,12 +204,6 @@ node index.js
`truncated`: Boolean indicating if the context size was exceeded during generation, i.e. the number of tokens provided in the prompt (`tokens_evaluated`) plus tokens generated (`tokens predicted`) exceeded the context size (`n_ctx`)
`slot_id`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot (default: -1)
`cache_prompt`: Save the prompt and generation for avoid reprocess entire prompt if a part of this isn't change (default: false)
`system_prompt`: Change the system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime)
- **POST** `/tokenize`: Tokenize a given text.
*Options:*
@ -224,6 +224,8 @@ node index.js
`content`: Set the text to process.
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `content`. You can determine the place of the image in the content as in the following: `Image: [img-21].\nCaption: This is a picture of a house`. In this case, `[img-21]` will be replaced by the embeddings of the image with id `21` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 21}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
- **POST** `/infill`: For code infilling. Takes a prefix and a suffix and returns the predicted completion as stream.
*Options:*

View file

@ -74,355 +74,376 @@ unsigned char completion_js[] = {
0x6f, 0x6e, 0x2f, 0x6a, 0x73, 0x6f, 0x6e, 0x27, 0x2c, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x27, 0x41, 0x63, 0x63, 0x65, 0x70, 0x74, 0x27,
0x3a, 0x20, 0x27, 0x74, 0x65, 0x78, 0x74, 0x2f, 0x65, 0x76, 0x65, 0x6e,
0x74, 0x2d, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x27, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x7d, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x73, 0x69, 0x67,
0x6e, 0x61, 0x6c, 0x3a, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c,
0x6c, 0x65, 0x72, 0x2e, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x0a,
0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e,
0x73, 0x74, 0x20, 0x72, 0x65, 0x61, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20,
0x72, 0x65, 0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65, 0x2e, 0x62, 0x6f, 0x64,
0x79, 0x2e, 0x67, 0x65, 0x74, 0x52, 0x65, 0x61, 0x64, 0x65, 0x72, 0x28,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x64,
0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77,
0x20, 0x54, 0x65, 0x78, 0x74, 0x44, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72,
0x28, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63,
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b,
0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f,
0x76, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f,
0x20, 0x42, 0x75, 0x66, 0x66, 0x65, 0x72, 0x20, 0x66, 0x6f, 0x72, 0x20,
0x70, 0x61, 0x72, 0x74, 0x69, 0x61, 0x6c, 0x6c, 0x79, 0x20, 0x72, 0x65,
0x61, 0x64, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x0a, 0x0a, 0x20, 0x20,
0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65,
0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x74, 0x72, 0x75,
0x65, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x77, 0x68, 0x69, 0x6c,
0x65, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72,
0x65, 0x73, 0x75, 0x6c, 0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69,
0x74, 0x20, 0x72, 0x65, 0x61, 0x64, 0x65, 0x72, 0x2e, 0x72, 0x65, 0x61,
0x64, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69,
0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x6f,
0x6e, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x2f, 0x2f, 0x20, 0x41, 0x64, 0x64, 0x20, 0x61, 0x6e, 0x79, 0x20, 0x6c,
0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x64, 0x61, 0x74, 0x61,
0x20, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x75, 0x72, 0x72,
0x65, 0x6e, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66,
0x20, 0x64, 0x61, 0x74, 0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x3d,
0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x2b, 0x20,
0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, 0x2e, 0x64, 0x65, 0x63, 0x6f,
0x64, 0x65, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x76, 0x61,
0x6c, 0x75, 0x65, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x2f, 0x2f, 0x20, 0x43, 0x68, 0x65, 0x63, 0x6b, 0x20, 0x69, 0x66,
0x20, 0x74, 0x68, 0x65, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x63, 0x68,
0x61, 0x72, 0x61, 0x63, 0x74, 0x65, 0x72, 0x20, 0x69, 0x73, 0x20, 0x61,
0x20, 0x6c, 0x69, 0x6e, 0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x0a,
0x74, 0x2d, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x27, 0x2c, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x2e, 0x2e, 0x28, 0x70, 0x61, 0x72,
0x61, 0x6d, 0x73, 0x2e, 0x61, 0x70, 0x69, 0x5f, 0x6b, 0x65, 0x79, 0x20,
0x3f, 0x20, 0x7b, 0x27, 0x41, 0x75, 0x74, 0x68, 0x6f, 0x72, 0x69, 0x7a,
0x61, 0x74, 0x69, 0x6f, 0x6e, 0x27, 0x3a, 0x20, 0x60, 0x42, 0x65, 0x61,
0x72, 0x65, 0x72, 0x20, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73,
0x2e, 0x61, 0x70, 0x69, 0x5f, 0x6b, 0x65, 0x79, 0x7d, 0x60, 0x7d, 0x20,
0x3a, 0x20, 0x7b, 0x7d, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x2c,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x3a,
0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e,
0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x0a, 0x20, 0x20, 0x7d, 0x29,
0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72,
0x65, 0x61, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x72, 0x65, 0x73, 0x70,
0x6f, 0x6e, 0x73, 0x65, 0x2e, 0x62, 0x6f, 0x64, 0x79, 0x2e, 0x67, 0x65,
0x74, 0x52, 0x65, 0x61, 0x64, 0x65, 0x72, 0x28, 0x29, 0x3b, 0x0a, 0x20,
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x64, 0x65, 0x63, 0x6f, 0x64,
0x65, 0x72, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x54, 0x65, 0x78,
0x74, 0x44, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, 0x28, 0x29, 0x3b, 0x0a,
0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65,
0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x6c,
0x65, 0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20,
0x3d, 0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f, 0x20, 0x42, 0x75, 0x66,
0x66, 0x65, 0x72, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x70, 0x61, 0x72, 0x74,
0x69, 0x61, 0x6c, 0x6c, 0x79, 0x20, 0x72, 0x65, 0x61, 0x64, 0x20, 0x6c,
0x69, 0x6e, 0x65, 0x73, 0x0a, 0x0a, 0x20, 0x20, 0x74, 0x72, 0x79, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f,
0x6e, 0x74, 0x20, 0x3d, 0x20, 0x74, 0x72, 0x75, 0x65, 0x3b, 0x0a, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x77, 0x68, 0x69, 0x6c, 0x65, 0x20, 0x28, 0x63,
0x6f, 0x6e, 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c,
0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x72, 0x65,
0x61, 0x64, 0x65, 0x72, 0x2e, 0x72, 0x65, 0x61, 0x64, 0x28, 0x29, 0x3b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72,
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x6f, 0x6e, 0x65, 0x29, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x72,
0x65, 0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x41,
0x64, 0x64, 0x20, 0x61, 0x6e, 0x79, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f,
0x76, 0x65, 0x72, 0x20, 0x64, 0x61, 0x74, 0x61, 0x20, 0x74, 0x6f, 0x20,
0x74, 0x68, 0x65, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x20,
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x64, 0x61, 0x74,
0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73,
0x74, 0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x3d, 0x20, 0x6c, 0x65, 0x66,
0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x2b, 0x20, 0x64, 0x65, 0x63, 0x6f,
0x64, 0x65, 0x72, 0x2e, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x28, 0x72,
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29,
0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20,
0x43, 0x68, 0x65, 0x63, 0x6b, 0x20, 0x69, 0x66, 0x20, 0x74, 0x68, 0x65,
0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x63, 0x68, 0x61, 0x72, 0x61, 0x63,
0x74, 0x65, 0x72, 0x20, 0x69, 0x73, 0x20, 0x61, 0x20, 0x6c, 0x69, 0x6e,
0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x6e, 0x64, 0x73,
0x57, 0x69, 0x74, 0x68, 0x4c, 0x69, 0x6e, 0x65, 0x42, 0x72, 0x65, 0x61,
0x6b, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e, 0x65, 0x6e, 0x64,
0x73, 0x57, 0x69, 0x74, 0x68, 0x28, 0x27, 0x5c, 0x6e, 0x27, 0x29, 0x3b,
0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x53,
0x70, 0x6c, 0x69, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x74, 0x65, 0x78,
0x74, 0x20, 0x69, 0x6e, 0x74, 0x6f, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x6c,
0x69, 0x6e, 0x65, 0x73, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e,
0x73, 0x70, 0x6c, 0x69, 0x74, 0x28, 0x27, 0x5c, 0x6e, 0x27, 0x29, 0x3b,
0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x49,
0x66, 0x20, 0x74, 0x68, 0x65, 0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x64,
0x6f, 0x65, 0x73, 0x6e, 0x27, 0x74, 0x20, 0x65, 0x6e, 0x64, 0x20, 0x77,
0x69, 0x74, 0x68, 0x20, 0x61, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x20, 0x62,
0x72, 0x65, 0x61, 0x6b, 0x2c, 0x20, 0x74, 0x68, 0x65, 0x6e, 0x20, 0x74,
0x68, 0x65, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x6c, 0x69, 0x6e, 0x65,
0x20, 0x69, 0x73, 0x20, 0x69, 0x6e, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65,
0x74, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20,
0x53, 0x74, 0x6f, 0x72, 0x65, 0x20, 0x69, 0x74, 0x20, 0x69, 0x6e, 0x20,
0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x74, 0x6f, 0x20,
0x62, 0x65, 0x20, 0x61, 0x64, 0x64, 0x65, 0x64, 0x20, 0x74, 0x6f, 0x20,
0x74, 0x68, 0x65, 0x20, 0x6e, 0x65, 0x78, 0x74, 0x20, 0x63, 0x68, 0x75,
0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x64, 0x61, 0x74, 0x61, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x65, 0x6e,
0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x4c, 0x69, 0x6e, 0x65, 0x42, 0x72,
0x65, 0x61, 0x6b, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20,
0x3d, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x2e, 0x70, 0x6f, 0x70, 0x28,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x65,
0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x3d,
0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f, 0x20, 0x52, 0x65, 0x73, 0x65,
0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x69,
0x66, 0x20, 0x77, 0x65, 0x20, 0x68, 0x61, 0x76, 0x65, 0x20, 0x61, 0x20,
0x6c, 0x69, 0x6e, 0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x20, 0x61,
0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x65, 0x6e, 0x64, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x2f, 0x2f, 0x20, 0x50, 0x61, 0x72, 0x73, 0x65, 0x20, 0x61, 0x6c,
0x6c, 0x20, 0x73, 0x73, 0x65, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x73,
0x20, 0x61, 0x6e, 0x64, 0x20, 0x61, 0x64, 0x64, 0x20, 0x74, 0x68, 0x65,
0x6d, 0x20, 0x74, 0x6f, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
0x65, 0x6e, 0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x4c, 0x69, 0x6e, 0x65,
0x42, 0x72, 0x65, 0x61, 0x6b, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x78, 0x74,
0x2e, 0x65, 0x6e, 0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x28, 0x27, 0x5c,
0x6e, 0x27, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x2f, 0x2f, 0x20, 0x53, 0x70, 0x6c, 0x69, 0x74, 0x20, 0x74, 0x68, 0x65,
0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x69, 0x6e, 0x74, 0x6f, 0x20, 0x6c,
0x69, 0x6e, 0x65, 0x73, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c,
0x65, 0x74, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x20, 0x3d, 0x20, 0x74,
0x65, 0x78, 0x74, 0x2e, 0x73, 0x70, 0x6c, 0x69, 0x74, 0x28, 0x27, 0x5c,
0x6e, 0x27, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x2f, 0x2f, 0x20, 0x49, 0x66, 0x20, 0x74, 0x68, 0x65, 0x20, 0x74, 0x65,
0x78, 0x74, 0x20, 0x64, 0x6f, 0x65, 0x73, 0x6e, 0x27, 0x74, 0x20, 0x65,
0x6e, 0x64, 0x20, 0x77, 0x69, 0x74, 0x68, 0x20, 0x61, 0x20, 0x6c, 0x69,
0x6e, 0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x2c, 0x20, 0x74, 0x68,
0x65, 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20,
0x6c, 0x69, 0x6e, 0x65, 0x20, 0x69, 0x73, 0x20, 0x69, 0x6e, 0x63, 0x6f,
0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x2f, 0x2f, 0x20, 0x53, 0x74, 0x6f, 0x72, 0x65, 0x20, 0x69, 0x74,
0x20, 0x69, 0x6e, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72,
0x20, 0x74, 0x6f, 0x20, 0x62, 0x65, 0x20, 0x61, 0x64, 0x64, 0x65, 0x64,
0x20, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6e, 0x65, 0x78, 0x74,
0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x64, 0x61,
0x74, 0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20,
0x28, 0x21, 0x65, 0x6e, 0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x4c, 0x69,
0x6e, 0x65, 0x42, 0x72, 0x65, 0x61, 0x6b, 0x29, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f,
0x76, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x2e,
0x70, 0x6f, 0x70, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76,
0x65, 0x72, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f, 0x20,
0x52, 0x65, 0x73, 0x65, 0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76,
0x65, 0x72, 0x20, 0x69, 0x66, 0x20, 0x77, 0x65, 0x20, 0x68, 0x61, 0x76,
0x65, 0x20, 0x61, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x20, 0x62, 0x72, 0x65,
0x61, 0x6b, 0x20, 0x61, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x65, 0x6e,
0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x50, 0x61, 0x72, 0x73,
0x65, 0x20, 0x61, 0x6c, 0x6c, 0x20, 0x73, 0x73, 0x65, 0x20, 0x65, 0x76,
0x65, 0x6e, 0x74, 0x73, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x61, 0x64, 0x64,
0x20, 0x74, 0x68, 0x65, 0x6d, 0x20, 0x74, 0x6f, 0x20, 0x72, 0x65, 0x73,
0x75, 0x6c, 0x74, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x67, 0x65, 0x78, 0x20, 0x3d, 0x20,
0x2f, 0x5e, 0x28, 0x5c, 0x53, 0x2b, 0x29, 0x3a, 0x5c, 0x73, 0x28, 0x2e,
0x2a, 0x29, 0x24, 0x2f, 0x67, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74,
0x20, 0x6c, 0x69, 0x6e, 0x65, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x69, 0x6e,
0x65, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x61, 0x74, 0x63,
0x68, 0x20, 0x3d, 0x20, 0x72, 0x65, 0x67, 0x65, 0x78, 0x2e, 0x65, 0x78,
0x65, 0x63, 0x28, 0x6c, 0x69, 0x6e, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x6d, 0x61,
0x74, 0x63, 0x68, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x5b,
0x6d, 0x61, 0x74, 0x63, 0x68, 0x5b, 0x31, 0x5d, 0x5d, 0x20, 0x3d, 0x20,
0x6d, 0x61, 0x74, 0x63, 0x68, 0x5b, 0x32, 0x5d, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x69,
0x6e, 0x63, 0x65, 0x20, 0x77, 0x65, 0x20, 0x6b, 0x6e, 0x6f, 0x77, 0x20,
0x74, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
0x61, 0x2e, 0x63, 0x70, 0x70, 0x2c, 0x20, 0x6c, 0x65, 0x74, 0x27, 0x73,
0x20, 0x6a, 0x75, 0x73, 0x74, 0x20, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65,
0x20, 0x74, 0x68, 0x65, 0x20, 0x6a, 0x73, 0x6f, 0x6e, 0x20, 0x69, 0x6e,
0x20, 0x64, 0x61, 0x74, 0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75,
0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72,
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x3d,
0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28,
0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29,
0x72, 0x65, 0x67, 0x65, 0x78, 0x20, 0x3d, 0x20, 0x2f, 0x5e, 0x28, 0x5c,
0x53, 0x2b, 0x29, 0x3a, 0x5c, 0x73, 0x28, 0x2e, 0x2a, 0x29, 0x24, 0x2f,
0x67, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f,
0x72, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x69, 0x6e,
0x65, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x29, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
0x6e, 0x73, 0x74, 0x20, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x20, 0x3d, 0x20,
0x72, 0x65, 0x67, 0x65, 0x78, 0x2e, 0x65, 0x78, 0x65, 0x63, 0x28, 0x6c,
0x69, 0x6e, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x29,
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x5b, 0x6d, 0x61, 0x74, 0x63,
0x68, 0x5b, 0x31, 0x5d, 0x5d, 0x20, 0x3d, 0x20, 0x6d, 0x61, 0x74, 0x63,
0x68, 0x5b, 0x32, 0x5d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x69, 0x6e, 0x63, 0x65, 0x20,
0x77, 0x65, 0x20, 0x6b, 0x6e, 0x6f, 0x77, 0x20, 0x74, 0x68, 0x69, 0x73,
0x20, 0x69, 0x73, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70,
0x70, 0x2c, 0x20, 0x6c, 0x65, 0x74, 0x27, 0x73, 0x20, 0x6a, 0x75, 0x73,
0x74, 0x20, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x20, 0x74, 0x68, 0x65,
0x20, 0x6a, 0x73, 0x6f, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x64, 0x61, 0x74,
0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64,
0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c,
0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x3d, 0x20, 0x4a, 0x53, 0x4f,
0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28, 0x72, 0x65, 0x73, 0x75,
0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x3b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x72, 0x65, 0x73,
0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e,
0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x79, 0x69,
0x65, 0x6c, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x79, 0x69, 0x65, 0x6c, 0x64, 0x20, 0x72, 0x65,
0x73, 0x75, 0x6c, 0x74, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x69, 0x66,
0x20, 0x77, 0x65, 0x20, 0x67, 0x6f, 0x74, 0x20, 0x61, 0x20, 0x73, 0x74,
0x6f, 0x70, 0x20, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x20, 0x66, 0x72, 0x6f,
0x6d, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2c, 0x20, 0x77, 0x65,
0x20, 0x77, 0x69, 0x6c, 0x6c, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x20,
0x68, 0x65, 0x72, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73,
0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x73, 0x74, 0x6f,
0x70, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72,
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67,
0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65,
0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e,
0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20,
0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e,
0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73,
0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x66, 0x61,
0x6c, 0x73, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b,
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d,
0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61,
0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f,
0x2f, 0x20, 0x79, 0x69, 0x65, 0x6c, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x79, 0x69, 0x65, 0x6c,
0x64, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x3b, 0x0a, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f,
0x2f, 0x20, 0x69, 0x66, 0x20, 0x77, 0x65, 0x20, 0x67, 0x6f, 0x74, 0x20,
0x61, 0x20, 0x73, 0x74, 0x6f, 0x70, 0x20, 0x74, 0x6f, 0x6b, 0x65, 0x6e,
0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72,
0x2c, 0x20, 0x77, 0x65, 0x20, 0x77, 0x69, 0x6c, 0x6c, 0x20, 0x62, 0x72,
0x65, 0x61, 0x6b, 0x20, 0x68, 0x65, 0x72, 0x65, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20,
0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61,
0x2e, 0x73, 0x74, 0x6f, 0x70, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69,
0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61,
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74,
0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65,
0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x3d,
0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28,
0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x65,
0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e,
0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x3a, 0x20, 0x24,
0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f,
0x72, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x7d, 0x60, 0x29,
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x20,
0x28, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66,
0x20, 0x28, 0x65, 0x2e, 0x6e, 0x61, 0x6d, 0x65, 0x20, 0x21, 0x3d, 0x3d,
0x20, 0x27, 0x41, 0x62, 0x6f, 0x72, 0x74, 0x45, 0x72, 0x72, 0x6f, 0x72,
0x27, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63,
0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72,
0x28, 0x22, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x20, 0x65, 0x72, 0x72, 0x6f,
0x72, 0x3a, 0x20, 0x22, 0x2c, 0x20, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x72, 0x6f,
0x77, 0x20, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x66,
0x69, 0x6e, 0x61, 0x6c, 0x6c, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e,
0x61, 0x62, 0x6f, 0x72, 0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d,
0x0a, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x63,
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f,
0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
0x2c, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x61, 0x6e, 0x20,
0x65, 0x76, 0x65, 0x6e, 0x74, 0x20, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74,
0x20, 0x74, 0x68, 0x61, 0x74, 0x20, 0x79, 0x6f, 0x75, 0x20, 0x63, 0x61,
0x6e, 0x20, 0x73, 0x75, 0x62, 0x73, 0x63, 0x72, 0x69, 0x62, 0x65, 0x20,
0x74, 0x6f, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61,
0x6d, 0x70, 0x6c, 0x65, 0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20,
0x20, 0x20, 0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x20,
0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61,
0x72, 0x67, 0x65, 0x74, 0x20, 0x7d, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20,
0x27, 0x2f, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e,
0x2e, 0x6a, 0x73, 0x27, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20,
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x6e,
0x20, 0x3d, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e,
0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x28, 0x70, 0x72, 0x6f, 0x6d,
0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
0x6e, 0x6e, 0x2e, 0x61, 0x64, 0x64, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x4c,
0x69, 0x73, 0x74, 0x65, 0x6e, 0x65, 0x72, 0x28, 0x22, 0x6d, 0x65, 0x73,
0x73, 0x61, 0x67, 0x65, 0x22, 0x2c, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e,
0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74,
0x2e, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b,
0x2e, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x2e, 0x63, 0x6f, 0x6e, 0x74,
0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x7d,
0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20,
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45,
0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x3d,
0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61,
0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63,
0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20,
0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74,
0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45, 0x76, 0x65, 0x6e, 0x74,
0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20,
0x28, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e,
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63,
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61,
0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68,
0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72,
0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x29,
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66,
0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61,
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x63,
0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f,
0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67,
0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45,
0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73,
0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x6d, 0x65,
0x73, 0x73, 0x61, 0x67, 0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65,
0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e,
0x64, 0x61, 0x74, 0x61, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61,
0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f,
0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61,
0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67,
0x73, 0x20, 0x3d, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64,
0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69,
0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x20,
0x3d, 0x20, 0x66, 0x61, 0x6c, 0x73, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62,
0x72, 0x65, 0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x20,
0x63, 0x61, 0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x29, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x65, 0x2e, 0x6e, 0x61,
0x6d, 0x65, 0x20, 0x21, 0x3d, 0x3d, 0x20, 0x27, 0x41, 0x62, 0x6f, 0x72,
0x74, 0x45, 0x72, 0x72, 0x6f, 0x72, 0x27, 0x29, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65,
0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x22, 0x6c, 0x6c, 0x61, 0x6d,
0x61, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x3a, 0x20, 0x22, 0x2c, 0x20,
0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x65, 0x3b, 0x0a, 0x20,
0x20, 0x7d, 0x0a, 0x20, 0x20, 0x66, 0x69, 0x6e, 0x61, 0x6c, 0x6c, 0x79,
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72,
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x61, 0x62, 0x6f, 0x72, 0x74, 0x28,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x72, 0x65,
0x74, 0x75, 0x72, 0x6e, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c,
0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65, 0x74, 0x75,
0x72, 0x6e, 0x20, 0x61, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x20,
0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x74, 0x68, 0x61, 0x74, 0x20,
0x79, 0x6f, 0x75, 0x20, 0x63, 0x61, 0x6e, 0x20, 0x73, 0x75, 0x62, 0x63,
0x72, 0x69, 0x62, 0x65, 0x20, 0x74, 0x6f, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f,
0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x3a, 0x0a, 0x2f,
0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x69, 0x6d, 0x70, 0x6f,
0x72, 0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76,
0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x7d, 0x20,
0x66, 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x63, 0x6f, 0x6d, 0x70, 0x6c,
0x65, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x6a, 0x73, 0x27, 0x0a, 0x2f, 0x2f,
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x20, 0x3d, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74,
0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20,
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x2e, 0x61, 0x64, 0x64, 0x45,
0x76, 0x65, 0x6e, 0x74, 0x4c, 0x69, 0x73, 0x74, 0x65, 0x6e, 0x65, 0x72,
0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x22, 0x2c, 0x20,
0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b,
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63,
0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28,
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c,
0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76,
0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69,
0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28,
0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76,
0x65, 0x6e, 0x74, 0x28, 0x22, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74,
0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73,
0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a,
0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e,
0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73,
0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b,
0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67,
0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74,
0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65,
0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f,
0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x74, 0x69, 0x6d, 0x69,
0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61,
0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61,
0x74, 0x61, 0x2e, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x7d,
0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76,
0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69,
0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28,
0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76,
0x65, 0x6e, 0x74, 0x28, 0x22, 0x64, 0x6f, 0x6e, 0x65, 0x22, 0x2c, 0x20,
0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x7b, 0x20,
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x7d, 0x20, 0x7d, 0x29,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x29, 0x28, 0x29, 0x3b, 0x0a, 0x20,
0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e,
0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x3b, 0x0a, 0x7d, 0x0a, 0x0a,
0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
0x61, 0x2c, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x61, 0x20,
0x70, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x20, 0x74, 0x68, 0x61, 0x74,
0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, 0x65, 0x73, 0x20, 0x74, 0x6f,
0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74,
0x65, 0x64, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e, 0x20, 0x54, 0x68, 0x69,
0x73, 0x20, 0x64, 0x6f, 0x65, 0x73, 0x20, 0x6e, 0x6f, 0x74, 0x20, 0x73,
0x75, 0x70, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x73, 0x74, 0x72, 0x65, 0x61,
0x6d, 0x69, 0x6e, 0x67, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45,
0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f,
0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50,
0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70,
0x74, 0x29, 0x2e, 0x74, 0x68, 0x65, 0x6e, 0x28, 0x28, 0x63, 0x6f, 0x6e,
0x74, 0x65, 0x6e, 0x74, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x2f,
0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75,
0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63,
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20,
0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20,
0x20, 0x20, 0x20, 0x20, 0x6f, 0x72, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f,
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63,
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61,
0x69, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d,
0x69, 0x73, 0x65, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a,
0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d,
0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x6f,
0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78,
0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c,
0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72,
0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70,
0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20,
0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d,
0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54,
0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20,
0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x28,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x28, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20,
0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x20,
0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70,
0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x2c, 0x20,
0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29,
0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75,
0x72, 0x6e, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x50, 0x72, 0x6f, 0x6d, 0x69,
0x73, 0x65, 0x28, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x72, 0x65,
0x73, 0x6f, 0x6c, 0x76, 0x65, 0x2c, 0x20, 0x72, 0x65, 0x6a, 0x65, 0x63,
0x74, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20,
0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f,
0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x72,
0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f,
0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e,
0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20,
0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74,
0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f,
0x6e, 0x66, 0x69, 0x67, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b,
0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61,
0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e,
0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70,
0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65,
0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e,
0x74, 0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x22, 0x2c,
0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63,
0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x7d, 0x29,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75,
0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65,
0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69,
0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67,
0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45,
0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73,
0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x67, 0x65,
0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74,
0x74, 0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65,
0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e,
0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74,
0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73,
0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28,
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74,
0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54,
0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74,
0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20,
0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28,
0x22, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b,
0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75,
0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69, 0x6d, 0x69,
0x6e, 0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67,
0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45,
0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73,
0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x64, 0x6f,
0x6e, 0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69,
0x6c, 0x3a, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
0x20, 0x7d, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x29,
0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e,
0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74,
0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c,
0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65, 0x74, 0x75,
0x72, 0x6e, 0x20, 0x61, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65,
0x20, 0x74, 0x68, 0x61, 0x74, 0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76,
0x65, 0x73, 0x20, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f,
0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x64, 0x20, 0x74, 0x65, 0x78, 0x74,
0x2e, 0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x64, 0x6f, 0x65, 0x73, 0x20,
0x6e, 0x6f, 0x74, 0x20, 0x73, 0x75, 0x70, 0x70, 0x6f, 0x72, 0x74, 0x20,
0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x69, 0x6e, 0x67, 0x0a, 0x2f, 0x2f,
0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x3a,
0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c,
0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28,
0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x2e, 0x74, 0x68, 0x65, 0x6e,
0x28, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x20, 0x3d,
0x3e, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72,
0x69, 0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29,
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f,
0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6f, 0x72, 0x0a,
0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20,
0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x70, 0x72, 0x6f,
0x6d, 0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20,
0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69,
0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a,
0x2f, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f,
0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f,
0x6d, 0x69, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d,
0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d,
0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20,
0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e, 0x65, 0x77, 0x20,
0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x61, 0x73, 0x79, 0x6e,
0x63, 0x20, 0x28, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, 0x65, 0x2c, 0x20,
0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e,
0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74,
0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e,
0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70,
0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d,
0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x29, 0x29, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75,
0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74,
0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c,
0x76, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x3b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68,
0x20, 0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x28,
0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x7d, 0x3b, 0x0a, 0x0a,
0x2f, 0x2a, 0x2a, 0x0a, 0x20, 0x2a, 0x20, 0x28, 0x64, 0x65, 0x70, 0x72,
0x65, 0x63, 0x61, 0x74, 0x65, 0x64, 0x29, 0x0a, 0x20, 0x2a, 0x2f, 0x0a,
0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65,
0x74, 0x65, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28,
0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x74,
0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2c, 0x20, 0x63, 0x61, 0x6c, 0x6c,
0x62, 0x61, 0x63, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28,
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20,
0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x61, 0x72,
0x61, 0x6d, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20,
0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x7b, 0x20, 0x63, 0x6f,
0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x7d, 0x29, 0x29,
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62,
0x61, 0x63, 0x6b, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x3b, 0x0a,
0x20, 0x20, 0x7d, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x47, 0x65,
0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6d, 0x6f, 0x64, 0x65, 0x6c, 0x20,
0x69, 0x6e, 0x66, 0x6f, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x74, 0x68,
0x65, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2e, 0x20, 0x54, 0x68,
0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x75, 0x73, 0x65, 0x66, 0x75, 0x6c,
0x20, 0x66, 0x6f, 0x72, 0x20, 0x67, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67,
0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74,
0x20, 0x77, 0x69, 0x6e, 0x64, 0x6f, 0x77, 0x20, 0x61, 0x6e, 0x64, 0x20,
0x73, 0x6f, 0x20, 0x6f, 0x6e, 0x2e, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, 0x65, 0x28, 0x63, 0x6f,
0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x72, 0x72,
0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x28, 0x65, 0x72, 0x72, 0x6f, 0x72,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d,
0x29, 0x3b, 0x0a, 0x7d, 0x3b, 0x0a, 0x0a, 0x2f, 0x2a, 0x2a, 0x0a, 0x20,
0x2a, 0x20, 0x28, 0x64, 0x65, 0x70, 0x72, 0x65, 0x63, 0x61, 0x74, 0x65,
0x64, 0x29, 0x0a, 0x20, 0x2a, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72,
0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
0x61, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x49, 0x6e, 0x66, 0x6f, 0x20, 0x3d,
0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e,
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x67, 0x65,
0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74,
0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f,
0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x61,
0x77, 0x61, 0x69, 0x74, 0x20, 0x66, 0x65, 0x74, 0x63, 0x68, 0x28, 0x22,
0x2f, 0x6d, 0x6f, 0x64, 0x65, 0x6c, 0x2e, 0x6a, 0x73, 0x6f, 0x6e, 0x22,
0x29, 0x2e, 0x74, 0x68, 0x65, 0x6e, 0x28, 0x72, 0x20, 0x3d, 0x3e, 0x20,
0x72, 0x2e, 0x6a, 0x73, 0x6f, 0x6e, 0x28, 0x29, 0x29, 0x3b, 0x0a, 0x20,
0x20, 0x7d, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20,
0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73,
0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x7d, 0x0a
0x61, 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x20, 0x3d, 0x20,
0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d,
0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65,
0x72, 0x2c, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x29,
0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20,
0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74,
0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c,
0x61, 0x6d, 0x61, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x70,
0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d,
0x73, 0x2c, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c,
0x6c, 0x65, 0x72, 0x20, 0x7d, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x28, 0x63,
0x68, 0x75, 0x6e, 0x6b, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x7d,
0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x47, 0x65, 0x74, 0x20, 0x74, 0x68, 0x65,
0x20, 0x6d, 0x6f, 0x64, 0x65, 0x6c, 0x20, 0x69, 0x6e, 0x66, 0x6f, 0x20,
0x66, 0x72, 0x6f, 0x6d, 0x20, 0x74, 0x68, 0x65, 0x20, 0x73, 0x65, 0x72,
0x76, 0x65, 0x72, 0x2e, 0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73,
0x20, 0x75, 0x73, 0x65, 0x66, 0x75, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x20,
0x67, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x20, 0x74, 0x68, 0x65, 0x20,
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, 0x20, 0x77, 0x69, 0x6e, 0x64,
0x6f, 0x77, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x73, 0x6f, 0x20, 0x6f, 0x6e,
0x2e, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e,
0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x4d, 0x6f, 0x64, 0x65,
0x6c, 0x49, 0x6e, 0x66, 0x6f, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e,
0x63, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x69, 0x66, 0x20, 0x28, 0x21, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74,
0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73,
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x67, 0x65, 0x6e, 0x65,
0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69,
0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20,
0x66, 0x65, 0x74, 0x63, 0x68, 0x28, 0x22, 0x2f, 0x6d, 0x6f, 0x64, 0x65,
0x6c, 0x2e, 0x6a, 0x73, 0x6f, 0x6e, 0x22, 0x29, 0x2e, 0x74, 0x68, 0x65,
0x6e, 0x28, 0x72, 0x20, 0x3d, 0x3e, 0x20, 0x72, 0x2e, 0x6a, 0x73, 0x6f,
0x6e, 0x28, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72,
0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e,
0x67, 0x73, 0x3b, 0x0a, 0x7d, 0x0a
};
unsigned int completion_js_len = 5099;
unsigned int completion_js_len = 5346;

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -95,6 +95,15 @@ export async function* llama(prompt, params = {}, config = {}) {
break;
}
}
if (result.error) {
result.error = JSON.parse(result.error);
if (result.error.content.includes('slot unavailable')) {
// Throw an error to be caught by upstream callers
throw new Error('slot unavailable');
} else {
console.error(`llama.cpp error: ${result.error.content}`);
}
}
if (result.error) {
result.error = JSON.parse(result.error);
console.error(`llama.cpp error: ${result.error.content}`);

View file

@ -427,7 +427,7 @@
}
if (data.timings) {
llamaStats.value = data.timings;
llamaStats.value = data;
}
}
@ -880,7 +880,7 @@
}
return html`
<span>
${llamaStats.value.predicted_per_token_ms.toFixed()}ms per token, ${llamaStats.value.predicted_per_second.toFixed(2)} tokens per second
${llamaStats.value.tokens_predicted} predicted, ${llamaStats.value.tokens_cached} cached, ${llamaStats.value.timings.predicted_per_token_ms.toFixed()}ms per token, ${llamaStats.value.timings.predicted_per_second.toFixed(2)} tokens per second
</span>
`
}

View file

@ -25,6 +25,7 @@
#include <thread>
#include <mutex>
#include <chrono>
#include <condition_variable>
#ifndef SERVER_VERBOSE
#define SERVER_VERBOSE 1
@ -81,7 +82,7 @@ static inline bool is_base64(uint8_t c)
return (isalnum(c) || (c == '+') || (c == '/'));
}
static std::vector<uint8_t> base64_decode(std::string const &encoded_string)
static std::vector<uint8_t> base64_decode(const std::string & encoded_string)
{
int i = 0;
int j = 0;
@ -208,10 +209,10 @@ struct slot_image
int32_t id;
bool request_encode_image = false;
float* image_embedding = nullptr;
float * image_embedding = nullptr;
int32_t image_tokens = 0;
clip_image_u8 img_data;
clip_image_u8 * img_data;
std::string prefix_prompt; // before of this image
};
@ -433,15 +434,16 @@ struct llama_client_slot
generated_token_probs.clear();
for (slot_image &img : images)
for (slot_image & img : images)
{
free(img.image_embedding);
delete[] img.img_data.data;
if (img.img_data) {
clip_image_u8_free(img.img_data);
}
img.prefix_prompt = "";
}
images.clear();
// llama_set_rng_seed(ctx, params.seed); in batched the seed matter???????
}
bool has_budget(gpt_params &global_params) {
@ -542,7 +544,9 @@ struct llama_server_context
std::vector<task_result> queue_results;
std::vector<task_multi> queue_multitasks;
std::mutex mutex_tasks; // also guards id_gen, and queue_multitasks
std::condition_variable condition_tasks;
std::mutex mutex_results;
std::condition_variable condition_results;
~llama_server_context()
{
@ -849,24 +853,17 @@ struct llama_server_context
{
for (const auto &img : *images_data)
{
std::string data_b64 = img["data"].get<std::string>();
const std::vector<uint8_t> image_buffer = base64_decode(img["data"].get<std::string>());
slot_image img_sl;
img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size();
int width, height, channels;
std::vector<uint8_t> image_buffer = base64_decode(data_b64);
data_b64.clear();
auto data = stbi_load_from_memory(image_buffer.data(), image_buffer.size(), &width, &height, &channels, 3);
if (!data) {
img_sl.img_data = clip_image_u8_init();
if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
{
LOG_TEE("slot %i - failed to load image [id: %i]\n", slot->id, img_sl.id);
return false;
}
LOG_TEE("slot %i - image loaded [id: %i] resolution (%i x %i)\n", slot->id, img_sl.id, width, height);
img_sl.img_data.nx = width;
img_sl.img_data.ny = height;
img_sl.img_data.size = width * height * 3;
img_sl.img_data.data = new uint8_t[width * height * 3]();
memcpy(img_sl.img_data.data, data, width * height * 3);
stbi_image_free(data);
LOG_TEE("slot %i - loaded image\n", slot->id);
img_sl.request_encode_image = true;
slot->images.push_back(img_sl);
}
@ -921,6 +918,7 @@ struct llama_server_context
llama_sampling_free(slot->ctx_sampling);
}
slot->ctx_sampling = llama_sampling_init(slot->sparams);
llama_set_rng_seed(ctx, slot->params.seed);
slot->command = LOAD_PROMPT;
all_slots_are_idle = false;
@ -1140,8 +1138,8 @@ struct llama_server_context
{
continue;
}
clip_image_f32 img_res;
if (!clip_image_preprocess(clp_ctx, &img.img_data, &img_res, /*pad2square =*/ true))
clip_image_f32 * img_res = clip_image_f32_init();
if (!clip_image_preprocess(clp_ctx, img.img_data, img_res, /*pad2square =*/ true))
{
LOG_TEE("Error processing the given image");
clip_free(clp_ctx);
@ -1156,11 +1154,12 @@ struct llama_server_context
return false;
}
LOG_TEE("slot %i - encoding image [id: %i]\n", slot.id, img.id);
if (!clip_image_encode(clp_ctx, params.n_threads, &img_res, img.image_embedding))
if (!clip_image_encode(clp_ctx, params.n_threads, img_res, img.image_embedding))
{
LOG_TEE("Unable to encode image\n");
return false;
}
clip_image_f32_free(img_res);
img.request_encode_image = false;
}
@ -1169,7 +1168,7 @@ struct llama_server_context
void send_error(task_server& task, std::string error)
{
std::lock_guard<std::mutex> lock(mutex_results);
std::unique_lock<std::mutex> lock(mutex_results);
task_result res;
res.id = task.id;
res.multitask_id = task.multitask_id;
@ -1177,6 +1176,7 @@ struct llama_server_context
res.error = true;
res.result_json = { { "content", error } };
queue_results.push_back(res);
condition_results.notify_all();
}
void add_multi_task(int id, std::vector<int>& sub_ids)
@ -1186,6 +1186,7 @@ struct llama_server_context
multi.id = id;
std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
queue_multitasks.push_back(multi);
condition_tasks.notify_one();
}
void update_multi_task(int multitask_id, int subtask_id, task_result& result)
@ -1197,6 +1198,7 @@ struct llama_server_context
{
multitask.subtasks_remaining.erase(subtask_id);
multitask.results.push_back(result);
condition_tasks.notify_one();
}
}
}
@ -1215,7 +1217,7 @@ struct llama_server_context
{"n_ctx", slot.n_ctx},
{"model", params.model_alias},
{"seed", slot.params.seed},
{"temp", slot.sparams.temp},
{"temperature", slot.sparams.temp},
{"top_k", slot.sparams.top_k},
{"top_p", slot.sparams.top_p},
{"min_p", slot.sparams.min_p},
@ -1244,7 +1246,7 @@ struct llama_server_context
void send_partial_response(llama_client_slot &slot, completion_token_output tkn)
{
std::lock_guard<std::mutex> lock(mutex_results);
std::unique_lock<std::mutex> lock(mutex_results);
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
@ -1263,7 +1265,7 @@ struct llama_server_context
{
std::vector<completion_token_output> probs_output = {};
const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size());
size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size());
size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size());
if (probs_pos < probs_stop_pos)
{
@ -1280,11 +1282,12 @@ struct llama_server_context
}
queue_results.push_back(res);
condition_results.notify_all();
}
void send_final_response(llama_client_slot &slot)
{
std::lock_guard<std::mutex> lock(mutex_results);
std::unique_lock<std::mutex> lock(mutex_results);
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
@ -1322,7 +1325,7 @@ struct llama_server_context
{
probs = std::vector<completion_token_output>(
slot.generated_token_probs.begin(),
slot.generated_token_probs.begin() + slot.sent_token_probs_index);
slot.generated_token_probs.end());
}
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs);
}
@ -1340,11 +1343,12 @@ struct llama_server_context
}
queue_results.push_back(res);
condition_results.notify_all();
}
void send_embedding(llama_client_slot &slot)
{
std::lock_guard<std::mutex> lock(mutex_results);
std::unique_lock<std::mutex> lock(mutex_results);
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
@ -1372,6 +1376,7 @@ struct llama_server_context
};
}
queue_results.push_back(res);
condition_results.notify_all();
}
int request_completion(json data, bool infill, bool embedding, int multitask_id)
@ -1395,6 +1400,7 @@ struct llama_server_context
// otherwise, it's a single-prompt task, we actually queue it
queue_tasks.push_back(task);
condition_tasks.notify_one();
return task.id;
}
@ -1402,13 +1408,10 @@ struct llama_server_context
{
while (true)
{
std::this_thread::sleep_for(std::chrono::microseconds(5));
std::lock_guard<std::mutex> lock(mutex_results);
if (queue_results.empty())
{
continue;
}
std::unique_lock<std::mutex> lock(mutex_results);
condition_results.wait(lock, [&]{
return !queue_results.empty();
});
for (int i = 0; i < (int) queue_results.size(); i++)
{
@ -1504,12 +1507,13 @@ struct llama_server_context
void request_cancel(int task_id)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
std::unique_lock<std::mutex> lock(mutex_tasks);
task_server task;
task.id = id_gen++;
task.type = CANCEL_TASK;
task.target_id = task_id;
queue_tasks.push_back(task);
condition_tasks.notify_one();
}
int split_multiprompt_task(task_server& multiprompt_task)
@ -1535,7 +1539,7 @@ struct llama_server_context
void process_tasks()
{
std::lock_guard<std::mutex> lock(mutex_tasks);
std::unique_lock<std::mutex> lock(mutex_tasks);
while (!queue_tasks.empty())
{
task_server task = queue_tasks.front();
@ -1607,6 +1611,7 @@ struct llama_server_context
std::lock_guard<std::mutex> lock(mutex_results);
queue_results.push_back(aggregate_result);
condition_results.notify_all();
queue_iterator = queue_multitasks.erase(queue_iterator);
}
@ -1637,8 +1642,10 @@ struct llama_server_context
LOG_TEE("all slots are idle and system prompt is empty, clear the KV cache\n");
kv_cache_clear();
}
// avoid 100% usage of cpu all time
std::this_thread::sleep_for(std::chrono::milliseconds(5));
std::unique_lock<std::mutex> lock(mutex_tasks);
condition_tasks.wait(lock, [&]{
return !queue_tasks.empty();
});
}
for (llama_client_slot &slot : slots)
@ -2009,6 +2016,10 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
printf(" --log-disable disables logging to a file.\n");
printf("\n");
printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
printf("\n");
}
static void server_params_parse(int argc, char **argv, server_params &sparams,
@ -2372,6 +2383,49 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
log_set_target(stdout);
LOG_INFO("logging to file is disabled.", {});
}
else if (arg == "--override-kv")
{
if (++i >= argc) {
invalid_param = true;
break;
}
char * sep = strchr(argv[i], '=');
if (sep == nullptr || sep - argv[i] >= 128) {
fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
invalid_param = true;
break;
}
struct llama_model_kv_override kvo;
std::strncpy(kvo.key, argv[i], sep - argv[i]);
kvo.key[sep - argv[i]] = 0;
sep++;
if (strncmp(sep, "int:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_INT;
kvo.int_value = std::atol(sep);
} else if (strncmp(sep, "float:", 6) == 0) {
sep += 6;
kvo.tag = LLAMA_KV_OVERRIDE_FLOAT;
kvo.float_value = std::atof(sep);
} else if (strncmp(sep, "bool:", 5) == 0) {
sep += 5;
kvo.tag = LLAMA_KV_OVERRIDE_BOOL;
if (std::strcmp(sep, "true") == 0) {
kvo.bool_value = true;
} else if (std::strcmp(sep, "false") == 0) {
kvo.bool_value = false;
} else {
fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
invalid_param = true;
break;
}
} else {
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
invalid_param = true;
break;
}
params.kv_overrides.push_back(kvo);
}
else
{
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
@ -2379,6 +2433,10 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
exit(1);
}
}
if (!params.kv_overrides.empty()) {
params.kv_overrides.emplace_back(llama_model_kv_override());
params.kv_overrides.back().key[0] = 0;
}
if (invalid_param)
{
@ -2437,26 +2495,33 @@ json oaicompat_completion_params_parse(
llama_params["__oaicompat"] = true;
// Map OpenAI parameters to llama.cpp parameters
//
// For parameters that are defined by the OpenAI documentation (e.g.
// temperature), we explicitly specify OpenAI's intended default; we
// need to do that because sometimes OpenAI disagrees with llama.cpp
//
// https://platform.openai.com/docs/api-reference/chat/create
llama_sampling_params default_sparams;
llama_params["model"] = json_value(body, "model", std::string("uknown"));
llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
llama_params["temperature"] = json_value(body, "temperature", 0.8);
llama_params["top_k"] = json_value(body, "top_k", 40);
llama_params["top_p"] = json_value(body, "top_p", 0.95);
llama_params["temperature"] = json_value(body, "temperature", 0.0);
llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
llama_params["top_p"] = json_value(body, "top_p", 1.0);
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
llama_params["seed"] = json_value(body, "seed", 0);
llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
llama_params["stream"] = json_value(body, "stream", false);
llama_params["mirostat"] = json_value(body, "mirostat", false);
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", 0.0);
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", 0.0);
llama_params["penalize_nl"] = json_value(body, "penalize_nl", false);
llama_params["typical_p"] = json_value(body, "typical_p", 0.0);
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", 0);
llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat);
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
llama_params["tfs_z"] = json_value(body, "tfs_z", 0.0);
llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
if (body.count("grammar") != 0) {
llama_params["grammar"] = json_value(body, "grammar", json::object());
@ -3070,7 +3135,17 @@ int main(int argc, char **argv)
{
prompt = "";
}
const int task_id = llama.request_completion({ {"prompt", prompt}, { "n_predict", 0} }, false, true, -1);
json image_data;
if (body.count("image_data") != 0) {
image_data = body["image_data"];
}
else
{
image_data = "";
}
const int task_id = llama.request_completion({ {"prompt", prompt}, { "n_predict", 0}, {"image_data", image_data} }, false, true, -1);
task_result result = llama.next_result(task_id);
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
});

55
flake.lock generated
View file

@ -1,30 +1,30 @@
{
"nodes": {
"flake-utils": {
"flake-parts": {
"inputs": {
"systems": "systems"
"nixpkgs-lib": "nixpkgs-lib"
},
"locked": {
"lastModified": 1694529238,
"narHash": "sha256-zsNZZGTGnMOf9YpHKJqMSsa0dXbfmxeoJ7xHlrt+xmY=",
"owner": "numtide",
"repo": "flake-utils",
"rev": "ff7b65b44d01cf9ba6a71320833626af21126384",
"lastModified": 1701473968,
"narHash": "sha256-YcVE5emp1qQ8ieHUnxt1wCZCC3ZfAS+SRRWZ2TMda7E=",
"owner": "hercules-ci",
"repo": "flake-parts",
"rev": "34fed993f1674c8d06d58b37ce1e0fe5eebcb9f5",
"type": "github"
},
"original": {
"owner": "numtide",
"repo": "flake-utils",
"owner": "hercules-ci",
"repo": "flake-parts",
"type": "github"
}
},
"nixpkgs": {
"locked": {
"lastModified": 1698318101,
"narHash": "sha256-gUihHt3yPD7bVqg+k/UVHgngyaJ3DMEBchbymBMvK1E=",
"lastModified": 1703637592,
"narHash": "sha256-8MXjxU0RfFfzl57Zy3OfXCITS0qWDNLzlBAdwxGZwfY=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "63678e9f3d3afecfeafa0acead6239cdb447574c",
"rev": "cfc3698c31b1fb9cdcf10f36c9643460264d0ca8",
"type": "github"
},
"original": {
@ -34,26 +34,29 @@
"type": "github"
}
},
"root": {
"inputs": {
"flake-utils": "flake-utils",
"nixpkgs": "nixpkgs"
}
},
"systems": {
"nixpkgs-lib": {
"locked": {
"lastModified": 1681028828,
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
"owner": "nix-systems",
"repo": "default",
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
"dir": "lib",
"lastModified": 1701253981,
"narHash": "sha256-ztaDIyZ7HrTAfEEUt9AtTDNoCYxUdSd6NrRHaYOIxtk=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "e92039b55bcd58469325ded85d4f58dd5a4eaf58",
"type": "github"
},
"original": {
"owner": "nix-systems",
"repo": "default",
"dir": "lib",
"owner": "NixOS",
"ref": "nixos-unstable",
"repo": "nixpkgs",
"type": "github"
}
},
"root": {
"inputs": {
"flake-parts": "flake-parts",
"nixpkgs": "nixpkgs"
}
}
},
"root": "root",

271
flake.nix
View file

@ -1,139 +1,144 @@
{
description = "Port of Facebook's LLaMA model in C/C++";
inputs = {
nixpkgs.url = "github:NixOS/nixpkgs/nixos-unstable";
flake-utils.url = "github:numtide/flake-utils";
flake-parts.url = "github:hercules-ci/flake-parts";
};
outputs = { self, nixpkgs, flake-utils }:
flake-utils.lib.eachDefaultSystem (system:
let
name = "llama.cpp";
src = ./.;
meta.mainProgram = "llama";
inherit (pkgs.stdenv) isAarch32 isAarch64 isDarwin;
buildInputs = with pkgs; [ openmpi ];
osSpecific = with pkgs; buildInputs ++ (
if isAarch64 && isDarwin then
with pkgs.darwin.apple_sdk_11_0.frameworks; [
Accelerate
MetalKit
]
else if isAarch32 && isDarwin then
with pkgs.darwin.apple_sdk.frameworks; [
Accelerate
CoreGraphics
CoreVideo
]
else if isDarwin then
with pkgs.darwin.apple_sdk.frameworks; [
Accelerate
CoreGraphics
CoreVideo
]
else
with pkgs; [ openblas ]
);
pkgs = import nixpkgs { inherit system; };
nativeBuildInputs = with pkgs; [ cmake ninja pkg-config ];
cudatoolkit_joined = with pkgs; symlinkJoin {
# HACK(Green-Sky): nix currently has issues with cmake findcudatoolkit
# see https://github.com/NixOS/nixpkgs/issues/224291
# copied from jaxlib
name = "${cudaPackages.cudatoolkit.name}-merged";
paths = [
cudaPackages.cudatoolkit.lib
cudaPackages.cudatoolkit.out
] ++ lib.optionals (lib.versionOlder cudaPackages.cudatoolkit.version "11") [
# for some reason some of the required libs are in the targets/x86_64-linux
# directory; not sure why but this works around it
"${cudaPackages.cudatoolkit}/targets/${system}"
];
};
llama-python =
pkgs.python3.withPackages (ps: with ps; [ numpy sentencepiece ]);
# TODO(Green-Sky): find a better way to opt-into the heavy ml python runtime
llama-python-extra =
pkgs.python3.withPackages (ps: with ps; [ numpy sentencepiece torchWithoutCuda transformers ]);
postPatch = ''
substituteInPlace ./ggml-metal.m \
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
substituteInPlace ./*.py --replace '/usr/bin/env python' '${llama-python}/bin/python'
'';
postInstall = ''
mv $out/bin/main $out/bin/llama
mv $out/bin/server $out/bin/llama-server
mkdir -p $out/include
cp ${src}/llama.h $out/include/
'';
cmakeFlags = [ "-DLLAMA_NATIVE=OFF" "-DLLAMA_BUILD_SERVER=ON" "-DBUILD_SHARED_LIBS=ON" "-DCMAKE_SKIP_BUILD_RPATH=ON" ];
in
# Optional binary cache
nixConfig = {
extra-substituters = [
# Populated by the CI in ggerganov/llama.cpp
"https://llama-cpp.cachix.org"
# A development cache for nixpkgs imported with `config.cudaSupport = true`.
# Populated by https://hercules-ci.com/github/SomeoneSerge/nixpkgs-cuda-ci.
# This lets one skip building e.g. the CUDA-enabled openmpi.
# TODO: Replace once nix-community obtains an official one.
"https://cuda-maintainers.cachix.org"
];
# Verify these are the same keys as published on
# - https://app.cachix.org/cache/llama-cpp
# - https://app.cachix.org/cache/cuda-maintainers
extra-trusted-public-keys = [
"llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc="
"cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E="
];
};
# For inspection, use `nix flake show github:ggerganov/llama.cpp` or the nix repl:
#
# ```bash
# nix repl
# nix-repl> :lf github:ggerganov/llama.cpp
# Added 13 variables.
# nix-repl> outputs.apps.x86_64-linux.quantize
# { program = "/nix/store/00000000000000000000000000000000-llama.cpp/bin/quantize"; type = "app"; }
# ```
outputs =
{ self, flake-parts, ... }@inputs:
let
# We could include the git revisions in the package names but those would
# needlessly trigger rebuilds:
# llamaVersion = self.dirtyShortRev or self.shortRev;
# Nix already uses cryptographic hashes for versioning, so we'll just fix
# the fake semver for now:
llamaVersion = "0.0.0";
in
flake-parts.lib.mkFlake { inherit inputs; }
{
packages.default = pkgs.stdenv.mkDerivation {
inherit name src meta postPatch nativeBuildInputs postInstall;
buildInputs = osSpecific;
cmakeFlags = cmakeFlags
++ (if isAarch64 && isDarwin then [
"-DCMAKE_C_FLAGS=-D__ARM_FEATURE_DOTPROD=1"
"-DLLAMA_METAL=ON"
] else [
"-DLLAMA_BLAS=ON"
"-DLLAMA_BLAS_VENDOR=OpenBLAS"
]);
};
packages.opencl = pkgs.stdenv.mkDerivation {
inherit name src meta postPatch nativeBuildInputs postInstall;
buildInputs = with pkgs; buildInputs ++ [ clblast ];
cmakeFlags = cmakeFlags ++ [
"-DLLAMA_CLBLAST=ON"
];
};
packages.cuda = pkgs.stdenv.mkDerivation {
inherit name src meta postPatch nativeBuildInputs postInstall;
buildInputs = with pkgs; buildInputs ++ [ cudatoolkit_joined ];
cmakeFlags = cmakeFlags ++ [
"-DLLAMA_CUBLAS=ON"
];
};
packages.rocm = pkgs.stdenv.mkDerivation {
inherit name src meta postPatch nativeBuildInputs postInstall;
buildInputs = with pkgs.rocmPackages; buildInputs ++ [ clr hipblas rocblas ];
cmakeFlags = cmakeFlags ++ [
"-DLLAMA_HIPBLAS=1"
"-DCMAKE_C_COMPILER=hipcc"
"-DCMAKE_CXX_COMPILER=hipcc"
# Build all targets supported by rocBLAS. When updating search for TARGET_LIST_ROCM
# in github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/CMakeLists.txt
# and select the line that matches the current nixpkgs version of rocBLAS.
"-DAMDGPU_TARGETS=gfx803;gfx900;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102"
];
};
apps.llama-server = {
type = "app";
program = "${self.packages.${system}.default}/bin/llama-server";
};
apps.llama-embedding = {
type = "app";
program = "${self.packages.${system}.default}/bin/embedding";
};
apps.llama = {
type = "app";
program = "${self.packages.${system}.default}/bin/llama";
};
apps.quantize = {
type = "app";
program = "${self.packages.${system}.default}/bin/quantize";
};
apps.train-text-from-scratch = {
type = "app";
program = "${self.packages.${system}.default}/bin/train-text-from-scratch";
};
apps.default = self.apps.${system}.llama;
devShells.default = pkgs.mkShell {
buildInputs = [ llama-python ];
packages = nativeBuildInputs ++ osSpecific;
};
devShells.extra = pkgs.mkShell {
buildInputs = [ llama-python-extra ];
packages = nativeBuildInputs ++ osSpecific;
};
});
imports = [
.devops/nix/nixpkgs-instances.nix
.devops/nix/apps.nix
.devops/nix/devshells.nix
.devops/nix/jetson-support.nix
];
# An overlay can be used to have a more granular control over llama-cpp's
# dependencies and configuration, than that offered by the `.override`
# mechanism. Cf. https://nixos.org/manual/nixpkgs/stable/#chap-overlays.
#
# E.g. in a flake:
# ```
# { nixpkgs, llama-cpp, ... }:
# let pkgs = import nixpkgs {
# overlays = [ (llama-cpp.overlays.default) ];
# system = "aarch64-linux";
# config.allowUnfree = true;
# config.cudaSupport = true;
# config.cudaCapabilities = [ "7.2" ];
# config.cudaEnableForwardCompat = false;
# }; in {
# packages.aarch64-linux.llamaJetsonXavier = pkgs.llamaPackages.llama-cpp;
# }
# ```
#
# Cf. https://nixos.org/manual/nix/unstable/command-ref/new-cli/nix3-flake.html?highlight=flake#flake-format
flake.overlays.default =
(final: prev: {
llamaPackages = final.callPackage .devops/nix/scope.nix { inherit llamaVersion; };
inherit (final.llamaPackages) llama-cpp;
});
systems = [
"aarch64-darwin"
"aarch64-linux"
"x86_64-darwin" # x86_64-darwin isn't tested (and likely isn't relevant)
"x86_64-linux"
];
perSystem =
{
config,
lib,
system,
pkgs,
pkgsCuda,
pkgsRocm,
...
}:
{
# Unlike `.#packages`, legacyPackages may contain values of
# arbitrary types (including nested attrsets) and may even throw
# exceptions. This attribute isn't recursed into by `nix flake
# show` either.
#
# You can add arbitrary scripts to `.devops/nix/scope.nix` and
# access them as `nix build .#llamaPackages.${scriptName}` using
# the same path you would with an overlay.
legacyPackages = {
llamaPackages = pkgs.callPackage .devops/nix/scope.nix { inherit llamaVersion; };
llamaPackagesCuda = pkgsCuda.callPackage .devops/nix/scope.nix { inherit llamaVersion; };
llamaPackagesRocm = pkgsRocm.callPackage .devops/nix/scope.nix { inherit llamaVersion; };
};
# We don't use the overlay here so as to avoid making too many instances of nixpkgs,
# cf. https://zimbatm.com/notes/1000-instances-of-nixpkgs
packages =
{
default = config.legacyPackages.llamaPackages.llama-cpp;
}
// lib.optionalAttrs pkgs.stdenv.isLinux {
opencl = config.packages.default.override { useOpenCL = true; };
cuda = config.legacyPackages.llamaPackagesCuda.llama-cpp;
mpi-cpu = config.packages.default.override { useMpi = true; };
mpi-cuda = config.packages.default.override { useMpi = true; };
}
// lib.optionalAttrs (system == "x86_64-linux") {
rocm = config.legacyPackages.llamaPackagesRocm.llama-cpp;
};
# Packages exposed in `.#checks` will be built by the CI and by
# `nix flake check`. Currently we expose all packages, but we could
# make more granular choices
checks = config.packages;
};
};
}

View file

@ -90,7 +90,7 @@ extern "C" {
void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph without a plan
void (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
bool (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
// check if the backend supports an operation
bool (*supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);

View file

@ -195,11 +195,14 @@ void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_
ggml_backend_synchronize(backend);
}
void ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
backend->iface.graph_compute(backend, cgraph);
bool ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
if (!backend->iface.graph_compute(backend, cgraph)) {
return false;
}
// TODO: optional sync
ggml_backend_synchronize(backend);
return true;
}
bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
@ -597,7 +600,7 @@ static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_bac
GGML_UNUSED(backend);
}
static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
static bool ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
@ -611,13 +614,18 @@ static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_c
cplan.work_data = cpu_ctx->work_data;
ggml_graph_compute(cgraph, &cplan);
return true;
}
static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
return true;
switch (op->op) {
case GGML_OP_MUL_MAT:
return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
default:
return true;
}
GGML_UNUSED(backend);
GGML_UNUSED(op);
}
static struct ggml_backend_i cpu_backend_i = {

View file

@ -58,7 +58,7 @@ extern "C" {
GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API void ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API bool ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API bool ggml_backend_supports_op (ggml_backend_t backend, const struct ggml_tensor * op);
// tensor copy between different backends

View file

@ -119,7 +119,9 @@
#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
#define CC_VOLTA 700
#define CC_OFFSET_AMD 1000000
#define CC_RDNA1 (CC_OFFSET_AMD + 1010)
#define CC_RDNA2 (CC_OFFSET_AMD + 1030)
#define CC_RDNA3 (CC_OFFSET_AMD + 1100)
#define GGML_CUDA_MAX_NODES 8192
@ -133,7 +135,6 @@
// TODO: improve this to be correct for more hardware
// for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores
// probably other such cases, and not sure what happens on AMD hardware
#if !defined(GGML_CUDA_FORCE_MMQ)
#define CUDA_USE_TENSOR_CORES
#endif
@ -6662,7 +6663,7 @@ static void ggml_cuda_pool_free_leg(int device, void * ptr, size_t size) {
// pool with virtual memory
static CUdeviceptr g_cuda_pool_addr[GGML_CUDA_MAX_DEVICES] = {0};
static size_t g_cuda_pool_used[GGML_CUDA_MAX_DEVICES] = {0};
static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 36; // 64 GB
static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
static void * ggml_cuda_pool_malloc_vmm(int device, size_t size, size_t * actual_size) {
scoped_spin_lock lock(g_cuda_pool_lock);
@ -7485,6 +7486,8 @@ static void ggml_cuda_op_dequantize_mul_mat_vec(
const int64_t ne00 = src0->ne[0];
const int64_t row_diff = row_high - row_low;
GGML_ASSERT(src1->type == GGML_TYPE_F32);
// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
#ifdef GGML_CUDA_F16
cuda_pool_alloc<half> src1_dfloat_a;
@ -7577,6 +7580,7 @@ static void ggml_cuda_op_mul_mat_cublas(
const int compute_capability = g_device_caps[id].cc;
if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
//printf("this branch\n");
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
cuda_pool_alloc<half> src0_as_f16;
if (src0->type != GGML_TYPE_F16) {
@ -7614,9 +7618,9 @@ static void ggml_cuda_op_mul_mat_cublas(
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
}
else {
} else {
cuda_pool_alloc<float> src0_ddq_as_f32;
cuda_pool_alloc<float> src1_ddq_as_f32;
if (src0->type != GGML_TYPE_F32) {
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
@ -7624,7 +7628,15 @@ static void ggml_cuda_op_mul_mat_cublas(
src0_ddq_as_f32.alloc(row_diff*ne00);
to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
}
if (src1->type != GGML_TYPE_F32) {
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type);
GGML_ASSERT(to_fp32_cuda != nullptr);
src1_ddq_as_f32.alloc(src1_ncols*ne10);
to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
}
const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
const float alpha = 1.0f;
const float beta = 0.0f;
@ -7633,9 +7645,9 @@ static void ggml_cuda_op_mul_mat_cublas(
CUBLAS_CHECK(
cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
row_diff, src1_ncols, ne10,
&alpha, src0_ddf_i, ne00,
src1_ddf_i, ne10,
&beta, dst_dd_i, ldc));
&alpha, src0_ddf_i, ne00,
src1_ddf1_i, ne10,
&beta, dst_dd_i, ldc));
}
(void) dst;
@ -8035,6 +8047,7 @@ static void ggml_cuda_op_mul_mat(
GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(src1->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
@ -8481,9 +8494,9 @@ static __global__ void k_compute_batched_ptrs(
int64_t i03 = i13 / r3;
int64_t i02 = i12 / r2;
ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12/2 + i13*nb13/2;
ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
}
static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@ -8492,28 +8505,10 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0]; GGML_UNUSED(ne00);
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
GGML_TENSOR_BINARY_OP_LOCALS
const int64_t nb01 = src0->nb[1];
const int64_t nb02 = src0->nb[2]; GGML_UNUSED(nb02);
const int64_t nb03 = src0->nb[3]; GGML_UNUSED(nb03);
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int64_t ne12 = src1->ne[2];
const int64_t ne13 = src1->ne[3];
const int64_t nb11 = src1->nb[1];
const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
const int64_t ne1 = ggml_nelements(src1);
const int64_t ne = ggml_nelements(dst);
const int64_t ne_dst = ggml_nelements(dst);
ggml_cuda_set_device(g_main_device);
cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
@ -8522,7 +8517,7 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
void * src0_ddq = src0_extra->data_device[g_main_device];
half * src0_as_f16 = (half *) src0_ddq;
half * src0_f16 = (half *) src0_ddq;
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
@ -8531,11 +8526,15 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
// convert src1 to fp16
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
GGML_ASSERT(to_fp16_cuda != nullptr);
cuda_pool_alloc<half> src1_as_f16(ne1);
to_fp16_cuda(src1_ddf, src1_as_f16.get(), ne1, main_stream);
cuda_pool_alloc<half> src1_f16_alloc;
if (src1->type != GGML_TYPE_F16) {
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
const int64_t ne_src1 = ggml_nelements(src1);
src1_f16_alloc.alloc(ne_src1);
GGML_ASSERT(to_fp16_cuda != nullptr);
to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
}
half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get();
cuda_pool_alloc<half> dst_f16;
char * dst_t;
@ -8557,7 +8556,7 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
const void * beta = &beta_f16;
if (dst->op_params[0] == GGML_PREC_DEFAULT) {
dst_t = (char *) dst_f16.alloc(ne);
dst_t = (char *) dst_f16.alloc(ne_dst);
nbd2 /= sizeof(float) / sizeof(half);
nbd3 /= sizeof(float) / sizeof(half);
@ -8604,9 +8603,9 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
CUBLAS_CHECK(
cublasGemmStridedBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
alpha, (const char *) src0_as_f16, CUDA_R_16F, nb01/sizeof(half), src0->nb[2]/sizeof(half), // strideA
(const char *) src1_as_f16.get(), CUDA_R_16F, nb11/sizeof(float), src1->nb[2]/sizeof(float), // strideB
beta, ( char *) dst_t, cu_data_type, ne01, dst->nb[2]/sizeof(float), // strideC
alpha, (const char *) src0_f16, CUDA_R_16F, nb01/nb00, nb02/nb00, // strideA
(const char *) src1_f16, CUDA_R_16F, nb11/nb10, nb12/nb10, // strideB
beta, ( char *) dst_t, cu_data_type, ne01, nb2/nb0, // strideC
ne12*ne13,
cu_compute_type,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
@ -8619,12 +8618,13 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
dim3 block_dims(ne13, ne12);
k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
src0_as_f16, src1_as_f16.get(), dst_t,
src0_f16, src1_f16, dst_t,
ptrs_src.get(), ptrs_dst.get(),
ne12, ne13,
ne23,
nb02, nb03,
nb12, nb13,
src1->type == GGML_TYPE_F16 ? nb12 : nb12/2,
src1->type == GGML_TYPE_F16 ? nb13 : nb13/2,
nbd2, nbd3,
r2, r3);
CUDA_CHECK(cudaGetLastError());
@ -8632,8 +8632,8 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
CUBLAS_CHECK(
cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F, nb01/sizeof(half),
(const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, nb11/sizeof(float),
alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F, nb01/nb00,
(const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, nb11/nb10,
beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01,
ne23,
cu_compute_type,
@ -8643,7 +8643,7 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
if (dst->op_params[0] == GGML_PREC_DEFAULT) {
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
to_fp32_cuda(dst_f16.get(), dst_ddf, ne, main_stream);
to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream);
}
}
@ -8662,11 +8662,25 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
}
}
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
const bool fp16_performance_good = min_compute_capability >= CC_RDNA1;
bool use_mul_mat_q = ggml_is_quantized(src0->type);
#ifdef CUDA_USE_TENSOR_CORES
const bool use_tensor_cores = true;
use_mul_mat_q = use_mul_mat_q && min_compute_capability < CC_RDNA3;
#endif // CUDA_USE_TENSOR_CORES
#else
const bool use_tensor_cores = false;
#endif
const bool fp16_performance_good = min_compute_capability >= CC_VOLTA;
bool use_mul_mat_q = min_compute_capability >= MIN_CC_DP4A && ggml_is_quantized(src0->type);
#ifdef CUDA_USE_TENSOR_CORES
// when tensor cores are available, use them for large batch size
// ref: https://github.com/ggerganov/llama.cpp/pull/3776
use_mul_mat_q = use_mul_mat_q && !(fp16_performance_good && src1->ne[1] > MMQ_MAX_BATCH_SIZE);
#endif // CUDA_USE_TENSOR_CORES
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
// debug helpers
//printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
@ -8676,19 +8690,19 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
//printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
//printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
if (!split && all_on_device && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
// KQ single-batch
ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
} else if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
} else if (!split && all_on_device && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
// KQV single-batch
ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
} else if (!split && all_on_device && use_tensor_cores && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
} else if (!split && all_on_device && fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
// KQ + KQV multi-batch
ggml_cuda_mul_mat_mat_batched_cublas(src0, src1, dst);
} else if (src0->type == GGML_TYPE_F32) {
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
} else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0) {
if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src1->type == GGML_TYPE_F32) {
#ifdef GGML_CUDA_FORCE_DMMV
const bool use_mul_mat_vec_q = false;
#else
@ -8702,14 +8716,6 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false);
}
} else {
bool use_mul_mat_q = min_compute_capability >= MIN_CC_DP4A && ggml_is_quantized(src0->type);
// when tensor cores are available, use them for large batch size
// ref: https://github.com/ggerganov/llama.cpp/pull/3776
if (use_tensor_cores && min_compute_capability >= CC_VOLTA && src1->ne[1] > MMQ_MAX_BATCH_SIZE) {
use_mul_mat_q = false;
}
if (use_mul_mat_q) {
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_q, true);
} else {
@ -9904,7 +9910,7 @@ static void ggml_backend_cuda_graph_plan_compute(ggml_backend_t backend, ggml_ba
UNUSED(plan);
}
static void ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
static bool ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
ggml_cuda_set_main_device(cuda_ctx->device);
@ -9961,6 +9967,8 @@ static void ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph
}
UNUSED(backend);
return true;
}
static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
@ -10033,14 +10041,19 @@ static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_ten
}
return false;
} break;
case GGML_OP_DUP:
case GGML_OP_REPEAT:
case GGML_OP_CONCAT:
{
ggml_type src0_type = op->src[0]->type;
return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
} break;
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
case GGML_OP_NORM:
case GGML_OP_REPEAT:
case GGML_OP_DUP:
case GGML_OP_ADD:
case GGML_OP_MUL:
case GGML_OP_DIV:
@ -10057,7 +10070,6 @@ static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_ten
case GGML_OP_SUM_ROWS:
case GGML_OP_ARGSORT:
case GGML_OP_ACC:
case GGML_OP_CONCAT:
case GGML_OP_GROUP_NORM:
case GGML_OP_UPSCALE:
case GGML_OP_PAD:

View file

@ -5,6 +5,7 @@
// GGML internal header
#include <assert.h>
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
#include <stddef.h>
#include <stdbool.h>
#include <string.h> // memcpy

View file

@ -87,7 +87,7 @@ int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx);
// same as ggml_graph_compute but uses Metal
// creates gf->n_threads command buffers in parallel
void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
bool ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
//
// backend API

View file

@ -87,6 +87,7 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(get_rows_q4_K);
GGML_METAL_DECL_KERNEL(get_rows_q5_K);
GGML_METAL_DECL_KERNEL(get_rows_q6_K);
GGML_METAL_DECL_KERNEL(get_rows_i32);
GGML_METAL_DECL_KERNEL(rms_norm);
GGML_METAL_DECL_KERNEL(group_norm);
GGML_METAL_DECL_KERNEL(norm);
@ -259,6 +260,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
NSError * error = nil;
NSString * libPath = [bundle pathForResource:@"default" ofType:@"metallib"];
if (libPath != nil) {
// pre-compiled library found
NSURL * libURL = [NSURL fileURLWithPath:libPath];
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [libPath UTF8String]);
ctx->library = [ctx->device newLibraryWithURL:libURL error:&error];
@ -291,6 +293,13 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
options = [MTLCompileOptions new];
options.preprocessorMacros = @{ @"QK_K" : @(64) };
#endif
// try to disable fast-math
// NOTE: this seems to have no effect whatsoever
// instead, in order to disable fast-math, we have to build default.metallib from the command line
// using xcrun -sdk macosx metal -fno-fast-math -c ggml-metal.metal -o ggml-metal.air
// and go through the "pre-compiled library found" path above
//[options setFastMathEnabled:false];
ctx->library = [ctx->device newLibraryWithSource:src options:options error:&error];
}
@ -369,6 +378,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(get_rows_q4_K);
GGML_METAL_ADD_KERNEL(get_rows_q5_K);
GGML_METAL_ADD_KERNEL(get_rows_q6_K);
GGML_METAL_ADD_KERNEL(get_rows_i32);
GGML_METAL_ADD_KERNEL(rms_norm);
GGML_METAL_ADD_KERNEL(group_norm);
GGML_METAL_ADD_KERNEL(norm);
@ -491,6 +501,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_DEL_KERNEL(get_rows_q4_K);
GGML_METAL_DEL_KERNEL(get_rows_q5_K);
GGML_METAL_DEL_KERNEL(get_rows_q6_K);
GGML_METAL_DEL_KERNEL(get_rows_i32);
GGML_METAL_DEL_KERNEL(rms_norm);
GGML_METAL_DEL_KERNEL(group_norm);
GGML_METAL_DEL_KERNEL(norm);
@ -966,7 +977,7 @@ static bool ggml_metal_supports_op(const struct ggml_tensor * op) {
return false;
}
}
void ggml_metal_graph_compute(
bool ggml_metal_graph_compute(
struct ggml_metal_context * ctx,
struct ggml_cgraph * gf) {
@autoreleasepool {
@ -1230,7 +1241,7 @@ void ggml_metal_graph_compute(
// not sure how to avoid this
// TODO: make a simpler cpy_bytes kernel
const int nth = MIN(1024, ne00);
const int nth = MIN((int) ctx->pipeline_cpy_f32_f32.maxTotalThreadsPerThreadgroup, ne00);
[encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
@ -1285,7 +1296,7 @@ void ggml_metal_graph_compute(
[encoder setBytes:&pnb3 length:sizeof(pnb3) atIndex:26];
[encoder setBytes:&offs length:sizeof(offs) atIndex:27];
const int nth = MIN(1024, ne0);
const int nth = MIN((int) ctx->pipeline_add.maxTotalThreadsPerThreadgroup, ne00);
[encoder dispatchThreadgroups:MTLSizeMake(ne11, ne12, ne13) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
@ -1649,6 +1660,10 @@ void ggml_metal_graph_compute(
}
};
if (ggml_is_quantized(src0t)) {
GGML_ASSERT(ne00 >= nth0*nth1);
}
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
@ -1707,6 +1722,9 @@ void ggml_metal_graph_compute(
// TODO: make this more general
GGML_ASSERT(n_as <= 8);
// max size of the src1ids array in the kernel stack
GGML_ASSERT(ne11 <= 512);
struct ggml_tensor * src2 = gf->nodes[i]->src[2];
const int64_t ne20 = src2 ? src2->ne[0] : 0;
@ -1724,9 +1742,6 @@ void ggml_metal_graph_compute(
GGML_ASSERT(!ggml_is_transposed(src2));
GGML_ASSERT(!ggml_is_transposed(src1));
GGML_ASSERT(ne20 % 32 == 0);
// !!!!!!!!! TODO: this assert is probably required but not sure!
//GGML_ASSERT(ne20 >= 64);
GGML_ASSERT(src1t == GGML_TYPE_F32);
const uint r2 = ne12/ne22;
@ -1734,22 +1749,22 @@ void ggml_metal_graph_compute(
// find the break-even point where the matrix-matrix kernel becomes more efficient compared
// to the matrix-vector kernel
int ne11_mm_min = 1;
int ne11_mm_min = n_as;
const int idx = ((int32_t *) dst->op_params)[0];
// batch size
GGML_ASSERT(ne01 == ne11);
const int64_t _ne1 = 1; // kernel_mul_mm_impl needs a reference in constant memory
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
// !!!
// TODO: for now, always use mat-vec kernels until we figure out how to improve the
// indirect matrix multiplication
// !!!
if ([ctx->device supportsFamily:MTLGPUFamilyApple7] && _ne1 > ne11_mm_min) {
if ([ctx->device supportsFamily:MTLGPUFamilyApple7] &&
ne20 % 32 == 0 && ne20 >= 64 &&
ne11 > ne11_mm_min) {
switch (src2->type) {
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_f32_f32]; break;
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_f16_f32]; break;
@ -1779,14 +1794,15 @@ void ggml_metal_graph_compute(
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:11];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:12];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13];
[encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:14];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
[encoder setBytes:&r2 length:sizeof(r2) atIndex:16];
[encoder setBytes:&r3 length:sizeof(r3) atIndex:17];
[encoder setBytes:&idx length:sizeof(idx) atIndex:18];
// TODO: how to make this an array? read Metal docs
for (int j = 0; j < n_as; ++j) {
struct ggml_tensor * src_cur = dst->src[2 + j];
for (int j = 0; j < 8; ++j) {
// NOTE: this is done like this to avoid uninitialized kernel arguments when n_as < 8
struct ggml_tensor * src_cur = dst->src[2 + (j % n_as)];
size_t offs_src_cur = 0;
id<MTLBuffer> id_src_cur = ggml_metal_get_buffer(ctx, src_cur, &offs_src_cur);
@ -1796,8 +1812,7 @@ void ggml_metal_graph_compute(
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
// TODO: processing one row at a time (ne11 -> 1) is not efficient
[encoder dispatchThreadgroups:MTLSizeMake( (_ne1 + 31)/32, (ne21 + 63)/64, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
[encoder dispatchThreadgroups:MTLSizeMake((ne11 + 31)/32, (ne21 + 63)/64, n_as*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
} else {
int nth0 = 32;
int nth1 = 1;
@ -1880,11 +1895,17 @@ void ggml_metal_graph_compute(
} break;
default:
{
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t);
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src2t);
GGML_ASSERT(false && "not implemented");
}
};
if (ggml_is_quantized(src2t)) {
GGML_ASSERT(ne20 >= nth0*nth1);
}
const int64_t _ne1 = 1; // kernels needs a reference in constant memory
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
@ -1909,8 +1930,9 @@ void ggml_metal_graph_compute(
[encoder setBytes:&r3 length:sizeof(r3) atIndex:21];
[encoder setBytes:&idx length:sizeof(idx) atIndex:22];
// TODO: how to make this an array? read Metal docs
for (int j = 0; j < n_as; ++j) {
struct ggml_tensor * src_cur = dst->src[2 + j];
for (int j = 0; j < 8; ++j) {
// NOTE: this is done like this to avoid uninitialized kernel arguments when n_as < 8
struct ggml_tensor * src_cur = dst->src[2 + (j % n_as)];
size_t offs_src_cur = 0;
id<MTLBuffer> id_src_cur = ggml_metal_get_buffer(ctx, src_cur, &offs_src_cur);
@ -1959,6 +1981,7 @@ void ggml_metal_graph_compute(
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_K]; break;
case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_K]; break;
case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_K]; break;
case GGML_TYPE_I32: [encoder setComputePipelineState:ctx->pipeline_get_rows_i32]; break;
default: GGML_ASSERT(false && "not implemented");
}
@ -2229,7 +2252,7 @@ void ggml_metal_graph_compute(
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
[encoder setBytes:&sf length:sizeof(sf) atIndex:18];
const int nth = MIN(1024, ne0);
const int nth = MIN((int) ctx->pipeline_upscale_f32.maxTotalThreadsPerThreadgroup, ne0);
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
@ -2382,10 +2405,11 @@ void ggml_metal_graph_compute(
MTLCommandBufferStatus status = (MTLCommandBufferStatus) [ctx->command_buffers[i] status];
if (status != MTLCommandBufferStatusCompleted) {
GGML_METAL_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, i, status);
GGML_ASSERT(false);
return false;
}
}
return true;
}
}
@ -2665,10 +2689,10 @@ static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffer_type(ggm
UNUSED(backend);
}
static void ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
static bool ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context;
ggml_metal_graph_compute(metal_ctx, cgraph);
return ggml_metal_graph_compute(metal_ctx, cgraph);
}
static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {

File diff suppressed because it is too large Load diff

View file

@ -6,19 +6,19 @@
extern "C" {
#endif
void ggml_cl_init(void);
GGML_API void ggml_cl_init(void);
void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
GGML_API void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
GGML_API bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
GGML_API size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
GGML_API void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
void * ggml_cl_host_malloc(size_t size);
void ggml_cl_host_free(void * ptr);
GGML_API void * ggml_cl_host_malloc(size_t size);
GGML_API void ggml_cl_host_free(void * ptr);
void ggml_cl_free_data(const struct ggml_tensor* tensor);
GGML_API void ggml_cl_free_data(const struct ggml_tensor* tensor);
void ggml_cl_transform_tensor(void * data, struct ggml_tensor * tensor);
GGML_API void ggml_cl_transform_tensor(void * data, struct ggml_tensor * tensor);
#ifdef __cplusplus
}

View file

@ -410,13 +410,17 @@ inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
#if !defined(__ARM_FEATURE_DOTPROD)
inline static int32x4_t vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
}
#else
#define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c)
#endif
#endif
@ -2481,8 +2485,8 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx,
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
// dot product into int32x4_t
const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
@ -2769,8 +2773,8 @@ void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restri
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
// dot product into int32x4_t
const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
@ -2936,11 +2940,11 @@ void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restri
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
}
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
@ -3228,11 +3232,11 @@ void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restri
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
}
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
@ -3483,12 +3487,12 @@ void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restri
const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
ggml_vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
ggml_vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
}
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
@ -3598,8 +3602,8 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
// We use this macro instead of a function call because for some reason
// the code runs 2-3% slower, even if the function is declared inline
#define MULTIPLY_ACCUM_WITH_SCALE(index)\
isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
#define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
@ -3973,10 +3977,10 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
sum += d * (isum1 + isum2);
}
@ -4256,10 +4260,10 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
scale += 4;
@ -4273,10 +4277,10 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
scale += 4;
@ -4757,10 +4761,10 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3]));
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
sum += d * isum;
@ -5109,14 +5113,14 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
sumi1 += vaddvq_s32(p1) * scales[2*j+0];
q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
sumi2 += vaddvq_s32(p2) * scales[2*j+1];
}
@ -5449,13 +5453,13 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
const int32_t sumi1 = vaddvq_s32(p1) * scales[0];
q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
sumf += d * (sumi1 + sumi2);
@ -5722,8 +5726,8 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
}
sumf += d * sumi - dmin * sumi_mins;
@ -6112,10 +6116,10 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
int32_t sumi1 = sc[0] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
int32_t sumi2 = sc[1] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
int32_t sumi3 = sc[2] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
int32_t sumi4 = sc[3] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
int32_t sumi1 = sc[0] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
int32_t sumi2 = sc[1] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
int32_t sumi3 = sc[2] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
int32_t sumi4 = sc[3] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
}
@ -6399,10 +6403,10 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
scale += 4;
@ -6426,10 +6430,10 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
scale += 4;
}
//sum += isum * d_all * y[i].d;
@ -6816,10 +6820,10 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
sum += isum * d_all * y[i].d;

View file

@ -70,7 +70,7 @@ static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block s
// 2-bit quantization
// weight is represented as x = a * q + b
// 16 blocks of 16 elements each
// Effectively 2.5625 bits per weight
// Effectively 2.625 bits per weight
typedef struct {
uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
uint8_t qs[QK_K/4]; // quants

217
ggml.c
View file

@ -4766,8 +4766,11 @@ struct ggml_tensor * ggml_get_rows(
}
// TODO: implement non F32 return
//struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
enum ggml_type type = GGML_TYPE_F32;
if (a->type == GGML_TYPE_I32) {
type = a->type;
}
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
result->op = GGML_OP_GET_ROWS;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
@ -6938,14 +6941,165 @@ static void ggml_compute_forward_dup_f32(
}
}
// A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
static void ggml_compute_forward_dup_bytes(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
GGML_ASSERT(src0->type == dst->type);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
ggml_compute_forward_dup_same_cont(params, src0, dst);
return;
}
GGML_TENSOR_UNARY_OP_LOCALS;
const size_t type_size = ggml_type_size(src0->type);
const int ith = params->ith; // thread index
const int nth = params->nth; // number of threads
// parallelize by rows
const int nr = ne01;
// number of rows per thread
const int dr = (nr + nth - 1) / nth;
// row range for this thread
const int ir0 = dr * ith;
const int ir1 = MIN(ir0 + dr, nr);
if (src0->type == dst->type &&
ne00 == ne0 &&
nb00 == type_size && nb0 == type_size) {
// copy by rows
const size_t rs = ne00 * type_size;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ir0; i01 < ir1; i01++) {
memcpy(
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
rs);
}
}
}
return;
}
if (ggml_is_contiguous(dst)) {
size_t id = 0;
char * dst_ptr = (char *) dst->data;
const size_t rs = ne00 * type_size;
if (nb00 == type_size) {
// src0 is contigous on first dimension, copy by rows
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int64_t i01 = ir0; i01 < ir1; i01++) {
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
memcpy(dst_ptr + id, src0_ptr, rs);
id += rs;
}
id += rs * (ne01 - ir1);
}
}
} else {
//printf("%s: this is not optimal - fix me\n", __func__);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
memcpy(dst_ptr + id, src0_ptr, type_size);
id += type_size;
}
}
id += rs * (ne01 - ir1);
}
}
}
return;
}
// dst counters
int64_t i10 = 0;
int64_t i11 = 0;
int64_t i12 = 0;
int64_t i13 = 0;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
memcpy(dst_ptr, src0_ptr, type_size);
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
}
static void ggml_compute_forward_dup(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
ggml_compute_forward_dup_same_cont(params, src0, dst);
if (src0->type == dst->type) {
ggml_compute_forward_dup_bytes(params, src0, dst);
return;
}
switch (src0->type) {
case GGML_TYPE_F16:
{
@ -8404,10 +8558,12 @@ static void ggml_compute_forward_repeat(
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F16:
case GGML_TYPE_I16:
{
ggml_compute_forward_repeat_f16(params, src0, dst);
} break;
case GGML_TYPE_F32:
case GGML_TYPE_I32:
{
ggml_compute_forward_repeat_f32(params, src0, dst);
} break;
@ -8550,6 +8706,7 @@ static void ggml_compute_forward_concat(
struct ggml_tensor* dst) {
switch (src0->type) {
case GGML_TYPE_F32:
case GGML_TYPE_I32:
{
ggml_compute_forward_concat_f32(params, src0, src1, dst);
} break;
@ -9547,10 +9704,10 @@ static void ggml_compute_forward_group_norm(
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
// helper function to determine if it is better to use BLAS or not
// for large matrices, BLAS is faster
static bool ggml_compute_forward_mul_mat_use_blas(
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
//const int64_t ne00 = src0->ne[0];
//const int64_t ne01 = src0->ne[1];
@ -9630,7 +9787,7 @@ static void ggml_compute_forward_mul_mat(
#endif
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
if (ggml_compute_forward_mul_mat_use_blas(dst)) {
if (params->ith != 0) {
return;
}
@ -9687,7 +9844,7 @@ static void ggml_compute_forward_mul_mat(
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
assert(params->wsize >= ne11*ne12*ne13*row_size);
assert(src1->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
for (int64_t i13 = 0; i13 < ne13; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
@ -10674,6 +10831,7 @@ static void ggml_compute_forward_get_rows(
ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
} break;
case GGML_TYPE_F32:
case GGML_TYPE_I32:
{
ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
} break;
@ -16143,24 +16301,6 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
//n_tasks = MIN(n_threads, MAX(1, nr0/128));
//printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
#if defined(GGML_USE_CUBLAS)
if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning
}
#elif defined(GGML_USE_CLBLAST)
if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning
}
#endif
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning
}
#endif
} break;
case GGML_OP_MUL_MAT_ID:
{
@ -16333,6 +16473,7 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
state->shared->node_n += 1;
return (thread_ret_t) GGML_EXIT_ABORTED;
}
if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
// all other threads are finished and spinning
// do finalize and init here so we don't have synchronize again
@ -16398,14 +16539,18 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
} else {
// wait for other threads to finish
const int last = node_n;
const bool do_yield = last < 0 || cgraph->nodes[last]->op == GGML_OP_MUL_MAT;
while (true) {
// TODO: this sched_yield can have significant impact on the performance - either positive or negative
// depending on the workload and the operating system.
// since it is not clear what is the best approach, it should potentially become user-configurable
// ref: https://github.com/ggerganov/ggml/issues/291
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
sched_yield();
#endif
// UPD: adding the do_yield flag seems to resolve the issue universally
if (do_yield) {
sched_yield();
}
node_n = atomic_load(&state->shared->node_n);
if (node_n != last) break;
@ -16484,7 +16629,7 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
} else
#endif
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
if (ggml_compute_forward_mul_mat_use_blas(node)) {
if (node->src[0]->type != GGML_TYPE_F32) {
// here we need memory just for single 2D matrix from src0
cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
@ -19638,6 +19783,14 @@ int ggml_cpu_has_avx(void) {
#endif
}
int ggml_cpu_has_avx_vnni(void) {
#if defined(__AVXVNNI__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_avx2(void) {
#if defined(__AVX2__)
return 1;

1
ggml.h
View file

@ -2198,6 +2198,7 @@ extern "C" {
//
GGML_API int ggml_cpu_has_avx (void);
GGML_API int ggml_cpu_has_avx_vnni (void);
GGML_API int ggml_cpu_has_avx2 (void);
GGML_API int ggml_cpu_has_avx512 (void);
GGML_API int ggml_cpu_has_avx512_vbmi(void);

View file

@ -46,6 +46,8 @@ class Keys:
HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
CLAMP_KQV = "{arch}.attention.clamp_kqv"
KEY_LENGTH = "{arch}.attention.key_length"
VALUE_LENGTH = "{arch}.attention.value_length"
LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
@ -370,7 +372,16 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.GPT2: [
# TODO
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.POS_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.PHI: [
MODEL_TENSOR.TOKEN_EMBD,

View file

@ -333,6 +333,12 @@ class GGUFWriter:
def add_head_count_kv(self, count: int) -> None:
self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
def add_key_length(self, length: int) -> None:
self.add_uint32(Keys.Attention.KEY_LENGTH.format(arch=self.arch), length)
def add_value_length(self, length: int) -> None:
self.add_uint32(Keys.Attention.VALUE_LENGTH.format(arch=self.arch), length)
def add_max_alibi_bias(self, bias: float) -> None:
self.add_float32(Keys.Attention.MAX_ALIBI_BIAS.format(arch=self.arch), bias)

View file

@ -18,6 +18,7 @@ class TensorNameMap:
"embeddings.word_embeddings", # bert
"language_model.embedding.word_embeddings", # persimmon
"transformer.embd.wte", # phi1 phi1_5 phi2
"wte", # gpt2
),
# Token type embeddings
@ -34,6 +35,7 @@ class TensorNameMap:
MODEL_TENSOR.POS_EMBD: (
"transformer.wpe", # gpt2
"embeddings.position_embeddings", # bert
"wpe", # gpt2
),
# Output
@ -53,7 +55,7 @@ class TensorNameMap:
"norm", # llama-pth
"embeddings.LayerNorm", # bert
"transformer.norm_f", # mpt
"ln_f", # refact bloom qwen
"ln_f", # refact bloom qwen gpt2
"language_model.encoder.final_layernorm", # persimmon
"lm_head.ln", # phi1 phi1_5 phi2
),
@ -79,6 +81,7 @@ class TensorNameMap:
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon
"model.layers.{bid}.ln1", # yi
"transformer.h.{bid}.ln", # phi1 phi1_5 phi2
"h.{bid}.ln_1", # gpt2
"model.layers.layers.{bid}.norm", # plamo
),
@ -96,6 +99,7 @@ class TensorNameMap:
"h.{bid}.self_attention.query_key_value", # bloom
"language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
"transformer.h.{bid}.mixer.Wqkv", # phi1 phi1_5 phi2
"h.{bid}.attn.c_attn", # gpt2
),
# Attention query
@ -138,6 +142,7 @@ class TensorNameMap:
"transformer.h.{bid}.attn.out_proj", # gpt-j
"language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
"transformer.h.{bid}.mixer.out_proj", # phi1 phi1_5 phi2
"h.{bid}.attn.c_proj", # gpt2
"model.layers.layers.{bid}.self_attn.o_proj", # plamo
),
@ -159,6 +164,7 @@ class TensorNameMap:
"encoder.layer.{bid}.output.LayerNorm", # bert
"language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
"model.layers.{bid}.ln2", # yi
"h.{bid}.ln_2", # gpt2
),
MODEL_TENSOR.FFN_GATE_INP: (
@ -180,6 +186,7 @@ class TensorNameMap:
"language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
"transformer.h.{bid}.mlp.w1", # qwen
"transformer.h.{bid}.mlp.fc1", # phi1 phi1_5 phi2
"h.{bid}.mlp.c_fc", # gpt2
"model.layers.layers.{bid}.mlp.up_proj", # plamo
),
@ -219,6 +226,7 @@ class TensorNameMap:
"transformer.h.{bid}.mlp.fc_out", # gpt-j
"language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
"transformer.h.{bid}.mlp.fc2", # phi1 phi1_5 phi2
"h.{bid}.mlp.c_proj", # gpt2
"model.layers.layers.{bid}.mlp.down_proj", # plamo
),

529
llama.cpp

File diff suppressed because it is too large Load diff

63
llama.h
View file

@ -226,7 +226,7 @@ extern "C" {
// model quantization parameters
typedef struct llama_model_quantize_params {
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
enum llama_ftype ftype; // quantize to this llama_ftype
bool allow_requantize; // allow quantizing non-f32/f16 tensors
bool quantize_output_tensor; // quantize output.weight
@ -310,21 +310,20 @@ extern "C" {
LLAMA_API int64_t llama_time_us(void);
LLAMA_API int llama_max_devices (void);
LLAMA_API int32_t llama_max_devices(void);
LLAMA_API bool llama_mmap_supported (void);
LLAMA_API bool llama_mlock_supported(void);
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
// TODO: become more consistent with returned int types across the API
LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
LLAMA_API int llama_n_vocab (const struct llama_model * model);
LLAMA_API int llama_n_ctx_train(const struct llama_model * model);
LLAMA_API int llama_n_embd (const struct llama_model * model);
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
// Get the model's RoPE frequency scaling factor
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
@ -335,19 +334,19 @@ extern "C" {
// - GGUF array values are not supported by these functions
// Get metadata value as a string by key name
LLAMA_API int llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
// Get the number of metadata key/value pairs
LLAMA_API int llama_model_meta_count(const struct llama_model * model);
LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
// Get metadata key name by index
LLAMA_API int llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size);
LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
// Get metadata value as a string by index
LLAMA_API int llama_model_meta_val_str_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size);
LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
// Get a string describing the model type
LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
// Returns the total size of all the tensors in the model in bytes
LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
@ -359,7 +358,7 @@ extern "C" {
LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
// Returns 0 on success
LLAMA_API int llama_model_quantize(
LLAMA_API uint32_t llama_model_quantize(
const char * fname_inp,
const char * fname_out,
const llama_model_quantize_params * params);
@ -370,20 +369,20 @@ extern "C" {
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
// will be applied on top of the previous one
// Returns 0 on success
LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
LLAMA_API DEPRECATED(int32_t llama_apply_lora_from_file(
struct llama_context * ctx,
const char * path_lora,
float scale,
const char * path_base_model,
int n_threads),
int32_t n_threads),
"use llama_model_apply_lora_from_file instead");
LLAMA_API int llama_model_apply_lora_from_file(
LLAMA_API int32_t llama_model_apply_lora_from_file(
const struct llama_model * model,
const char * path_lora,
float scale,
const char * path_base_model,
int n_threads);
int32_t n_threads);
//
// KV cache
@ -439,10 +438,10 @@ extern "C" {
// Returns the number of tokens in the KV cache (slow, use only for debug)
// If a KV cell has multiple sequences assigned to it, it will be counted multiple times
LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
// Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
LLAMA_API int llama_get_kv_cache_used_cells(const struct llama_context * ctx);
LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
// Clear the KV cache
LLAMA_API void llama_kv_cache_clear(
@ -533,7 +532,7 @@ extern "C" {
struct llama_context * ctx,
llama_token * tokens,
int32_t n_tokens,
int n_past),
int32_t n_past),
"use llama_decode() instead");
// Same as llama_eval, but use float matrix input directly.
@ -542,7 +541,7 @@ extern "C" {
struct llama_context * ctx,
float * embd,
int32_t n_tokens,
int n_past),
int32_t n_past),
"use llama_decode() instead");
// Return batch for single sequence of tokens starting at pos_0
@ -574,7 +573,7 @@ extern "C" {
// 0 - success
// 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
// < 0 - error
LLAMA_API int llama_decode(
LLAMA_API int32_t llama_decode(
struct llama_context * ctx,
struct llama_batch batch);
@ -614,10 +613,10 @@ extern "C" {
LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
// Returns -1 if unknown, 1 for true or 0 for false.
LLAMA_API int llama_add_bos_token(const struct llama_model * model);
LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
// Returns -1 if unknown, 1 for true or 0 for false.
LLAMA_API int llama_add_eos_token(const struct llama_model * model);
LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
// codellama infill tokens
LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
@ -635,12 +634,12 @@ extern "C" {
/// @return Returns a negative number on failure - the number of tokens that would have been returned
/// @param special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext.
/// Does not insert a leading space.
LLAMA_API int llama_tokenize(
LLAMA_API int32_t llama_tokenize(
const struct llama_model * model,
const char * text,
int text_len,
int32_t text_len,
llama_token * tokens,
int n_max_tokens,
int32_t n_max_tokens,
bool add_bos,
bool special);
@ -648,11 +647,11 @@ extern "C" {
// Uses the vocabulary in the provided context.
// Does not write null terminator to the buffer.
// User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
LLAMA_API int llama_token_to_piece(
LLAMA_API int32_t llama_token_to_piece(
const struct llama_model * model,
llama_token token,
char * buf,
int length);
int32_t length);
//
// Grammar
@ -704,7 +703,7 @@ extern "C" {
LLAMA_API void llama_sample_top_k(
struct llama_context * ctx,
llama_token_data_array * candidates,
int k,
int32_t k,
size_t min_keep);
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
@ -763,7 +762,7 @@ extern "C" {
llama_token_data_array * candidates,
float tau,
float eta,
int m,
int32_t m,
float * mu);
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
@ -836,8 +835,8 @@ extern "C" {
llama_beam_search_callback_fn_t callback,
void * callback_data,
size_t n_beams,
int n_past,
int n_predict);
int32_t n_past,
int32_t n_predict);
// Performance information
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);

BIN
models/ggml-vocab-gpt2.gguf Normal file

Binary file not shown.

View file

@ -1,3 +0,0 @@
-r requirements.txt
torch==2.1.1
transformers==4.35.2

View file

@ -1,5 +1,12 @@
numpy==1.24.4
sentencepiece==0.1.98
transformers>=4.34.0
gguf>=0.1.0
protobuf>=4.21.0
# These requirements include all dependencies for all top-level python scripts
# for llama.cpp. Avoid adding packages here directly.
#
# Package versions must stay compatible across all top-level python scripts.
#
-r ./requirements/requirements-convert.txt
-r ./requirements/requirements-convert-hf-to-gguf.txt
-r ./requirements/requirements-convert-llama-ggml-to-gguf.txt
-r ./requirements/requirements-convert-lora-to-ggml.txt
-r ./requirements/requirements-convert-persimmon-to-gguf.txt

View file

@ -0,0 +1,2 @@
-r ./requirements-convert.txt
torch~=2.1.1

View file

@ -0,0 +1 @@
-r ./requirements-convert.txt

View file

@ -0,0 +1,2 @@
-r ./requirements-convert.txt
torch~=2.1.1

View file

@ -0,0 +1,2 @@
-r ./requirements-convert.txt
torch~=2.1.1

View file

@ -0,0 +1,5 @@
numpy~=1.24.4
sentencepiece~=0.1.98
transformers>=4.35.2,<5.0.0
gguf>=0.1.0
protobuf>=4.21.0,<5.0.0

174
scripts/check-requirements.sh Executable file
View file

@ -0,0 +1,174 @@
#!/bin/bash
set -euo pipefail
#
# check-requirements.sh checks all requirements files for each top-level
# convert*.py script.
#
# WARNING: This is quite IO intensive, because a fresh venv is set up for every
# python script. As of 2023-12-22, this writes ~2.7GB of data. An adequately
# sized tmpfs /tmp or ramdisk is recommended if running this frequently.
#
# usage: check-requirements.sh [<working_dir>]
# check-requirements.sh nocleanup [<working_dir>]
#
# where:
# - <working_dir> is a directory that can be used as the base for
# setting up the venvs. Defaults to `/tmp`.
# - 'nocleanup' as the first argument will disable automatic cleanup
# of the files created by this script.
#
# requires:
# - bash >= 3.2.57
# - shellcheck
#
# For each script, it creates a fresh venv, `pip install`s the requirements, and
# finally imports the python script to check for `ImportError`.
#
log() {
local level=$1 msg=$2
printf >&2 '%s: %s\n' "$level" "$msg"
}
debug() {
log DEBUG "$@"
}
info() {
log INFO "$@"
}
fatal() {
log FATAL "$@"
exit 1
}
cleanup() {
if [[ -n ${workdir+x} && -d $workdir && -w $workdir ]]; then
info "Removing $workdir"
local count=0
rm -rfv -- "$workdir" | while read -r; do
if (( count++ > 750 )); then
printf .
count=0
fi
done
printf '\n'
info "Removed $workdir"
fi
}
do_cleanup=1
if [[ ${1-} == nocleanup ]]; then
do_cleanup=0; shift
fi
if (( do_cleanup )); then
trap exit INT TERM
trap cleanup EXIT
fi
this=$(realpath -- "$0"); readonly this
cd "$(dirname "$this")/.." # PWD should stay in llama.cpp project directory
shellcheck "$this"
readonly reqs_dir=requirements
if [[ ${1+x} ]]; then
tmp_dir=$(realpath -- "$1")
if [[ ! ( -d $tmp_dir && -w $tmp_dir ) ]]; then
fatal "$tmp_dir is not a writable directory"
fi
else
tmp_dir=/tmp
fi
workdir=$(mktemp -d "$tmp_dir/check-requirements.XXXX"); readonly workdir
info "Working directory: $workdir"
check_requirements() {
local reqs=$1
info "$reqs: beginning check"
pip --disable-pip-version-check install -qr "$reqs"
info "$reqs: OK"
}
check_convert_script() {
local py=$1 # e.g. ./convert-hf-to-gguf.py
local pyname=${py##*/} # e.g. convert-hf-to-gguf.py
pyname=${pyname%.py} # e.g. convert-hf-to-gguf
info "$py: beginning check"
local reqs="$reqs_dir/requirements-$pyname.txt"
if [[ ! -r $reqs ]]; then
fatal "$py missing requirements. Expected: $reqs"
fi
local venv="$workdir/$pyname-venv"
python3 -m venv "$venv"
(
# shellcheck source=/dev/null
source "$venv/bin/activate"
check_requirements "$reqs"
python - "$py" "$pyname" <<'EOF'
import sys
from importlib.machinery import SourceFileLoader
py, pyname = sys.argv[1:]
SourceFileLoader(pyname, py).load_module()
EOF
)
if (( do_cleanup )); then
rm -rf -- "$venv"
fi
info "$py: imports OK"
}
readonly ignore_eq_eq='check_requirements: ignore "=="'
for req in "$reqs_dir"/*; do
# Check that all sub-requirements are added to top-level requirements.txt
if ! grep -qF "$req" requirements.txt; then
fatal "$req needs to be added to requirements.txt"
fi
# Make sure exact release versions aren't being pinned in the requirements
# Filters out the ignore string
if grep -vF "$ignore_eq_eq" "$req" | grep -q '=='; then
tab=$'\t'
cat >&2 <<EOF
FATAL: Avoid pinning exact package versions. Use '~=' instead.
You can suppress this error by appending the following to the line:
$tab# $ignore_eq_eq
EOF
exit 1
fi
done
all_venv="$workdir/all-venv"
python3 -m venv "$all_venv"
(
# shellcheck source=/dev/null
source "$all_venv/bin/activate"
check_requirements requirements.txt
)
if (( do_cleanup )); then
rm -rf -- "$all_venv"
fi
check_convert_script convert.py
for py in convert-*.py; do
check_convert_script "$py"
done
info 'Done! No issues found.'

View file

@ -27,21 +27,36 @@ echo "Syncing ggml changes since commit $lc"
cd $SRC_GGML
git log --oneline $lc..HEAD
git log --oneline $lc..HEAD --reverse | grep -v "(llama/[0-9]*)" | cut -d' ' -f1 > $SRC_LLAMA/ggml-commits
git format-patch $lc --stdout -- \
include/ggml/ggml*.h \
src/ggml*.h \
src/ggml*.c \
src/ggml*.cpp \
src/ggml*.m \
src/ggml*.metal \
src/ggml*.cu \
tests/test-opt.cpp \
tests/test-grad0.cpp \
tests/test-quantize-fns.cpp \
tests/test-quantize-perf.cpp \
tests/test-backend-ops.cpp \
> $SRC_LLAMA/ggml-src.patch
if [ ! -s $SRC_LLAMA/ggml-commits ]; then
rm -v $SRC_LLAMA/ggml-commits
echo "No new commits"
exit 0
fi
if [ -f $SRC_LLAMA/ggml-src.patch ]; then
rm -v $SRC_LLAMA/ggml-src.patch
fi
while read c; do
git format-patch -k $c~1..$c --stdout -- \
include/ggml/ggml*.h \
src/ggml*.h \
src/ggml*.c \
src/ggml*.cpp \
src/ggml*.m \
src/ggml*.metal \
src/ggml*.cu \
tests/test-opt.cpp \
tests/test-grad0.cpp \
tests/test-quantize-fns.cpp \
tests/test-quantize-perf.cpp \
tests/test-backend-ops.cpp \
>> $SRC_LLAMA/ggml-src.patch
done < $SRC_LLAMA/ggml-commits
rm -v $SRC_LLAMA/ggml-commits
# delete files if empty
if [ ! -s $SRC_LLAMA/ggml-src.patch ]; then
@ -72,7 +87,6 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then
# src/ggml-impl.h -> ggml-impl.h
# src/ggml-metal.h -> ggml-metal.h
# src/ggml-metal.m -> ggml-metal.m
# src/ggml-metal.metal -> ggml-metal.metal
# src/ggml-mpi.h -> ggml-mpi.h
# src/ggml-mpi.c -> ggml-mpi.c
# src/ggml-opencl.cpp -> ggml-opencl.cpp
@ -99,7 +113,6 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then
-e 's/src\/ggml-impl\.h/ggml-impl.h/g' \
-e 's/src\/ggml-metal\.h/ggml-metal.h/g' \
-e 's/src\/ggml-metal\.m/ggml-metal.m/g' \
-e 's/src\/ggml-metal\.metal/ggml-metal.metal/g' \
-e 's/src\/ggml-mpi\.h/ggml-mpi.h/g' \
-e 's/src\/ggml-mpi\.c/ggml-mpi.c/g' \
-e 's/src\/ggml-opencl\.cpp/ggml-opencl.cpp/g' \

View file

@ -1 +1 @@
76e7f47b69e8334384dc718480c496dafbd47999
f96711108d55bdbbd277e6be07204dce6a94fb93

View file

@ -2,7 +2,7 @@ function(llama_build_executable source)
get_filename_component(TEST_TARGET ${source} NAME_WE)
add_executable(${TEST_TARGET} ${source})
install(TARGETS ${TEST_TARGET} RUNTIME)
target_link_libraries(${TEST_TARGET} PRIVATE llama common)
target_link_libraries(${TEST_TARGET} PRIVATE common)
endfunction()
function(llama_test_executable name source)
@ -14,7 +14,7 @@ function(llama_build_and_test_executable source)
get_filename_component(TEST_TARGET ${source} NAME_WE)
add_executable(${TEST_TARGET} ${source})
install(TARGETS ${TEST_TARGET} RUNTIME)
target_link_libraries(${TEST_TARGET} PRIVATE llama common)
target_link_libraries(${TEST_TARGET} PRIVATE common)
add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}> ${ARGN})
endfunction()
@ -41,6 +41,7 @@ llama_test_executable (test-tokenizer-1-stablelm-3b-4e1t test-tokenizer-1-bpe.cp
llama_test_executable (test-tokenizer-1-gpt-neox test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-gpt-neox.gguf)
llama_test_executable (test-tokenizer-1-refact test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-refact.gguf)
llama_test_executable (test-tokenizer-1-starcoder test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-starcoder.gguf)
llama_test_executable (test-tokenizer-1-gpt2 test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-gpt2.gguf)
# llama_test_executable (test-tokenizer-1-bloom test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-bloom.gguf) # BIG
llama_build_and_test_executable(test-grammar-parser.cpp)

View file

@ -15,19 +15,18 @@
#include <thread>
#include <vector>
static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
size_t size = ggml_nelements(tensor);
std::vector<float> data(size);
#if 0
std::default_random_engine generator(rd());
static std::default_random_engine generator(1234);
std::uniform_real_distribution<float> distribution(min, max);
for (size_t i = 0; i < size; i++) {
data[i] = distribution(generator);
}
#endif
#else
auto init_thread = [&](size_t start, size_t end) {
std::random_device rd;
std::default_random_engine generator(rd());
@ -49,6 +48,7 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
for (auto & t : threads) {
t.join();
}
#endif
if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
@ -58,6 +58,9 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
int64_t hist[16];
ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size, hist);
ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
} else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
// This is going to create some weird integers though.
ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
} else {
GGML_ASSERT(false);
}
@ -87,8 +90,13 @@ static std::vector<float> tensor_to_float(const ggml_tensor * t) {
tv.push_back(*(float *) &buf[i]);
} else if (t->type == GGML_TYPE_I32) {
tv.push_back((float)*(int32_t *) &buf[i]);
} else if (t->type == GGML_TYPE_I16) {
tv.push_back((float)*(int16_t *) &buf[i]);
} else if (t->type == GGML_TYPE_I8) {
tv.push_back((float)*(int8_t *) &buf[i]);
} else if (quantized) {
tt.to_float(&buf[i], vq.data(), bs);
std::vector<float> vq(ggml_blck_size(t->type));
tt.to_float(&buf[i], vq.data(), ggml_blck_size(t->type));
tv.insert(tv.end(), vq.begin(), vq.end());
} else {
GGML_ASSERT(false);
@ -350,13 +358,18 @@ struct test_case {
fflush(stdout);
// check if backends support op
bool supported = true;
for (ggml_backend_t backend : {backend1, backend2}) {
if (!ggml_backend_supports_op(backend, out)) {
printf("not supported\n");
ggml_free(ctx);
return true;
printf("not supported [%s] ", ggml_backend_name(backend));
supported = false;
}
}
if (!supported) {
printf("\n");
ggml_free(ctx);
return true;
}
// post-graph sentinel
add_sentinel(ctx);
@ -379,15 +392,21 @@ struct test_case {
struct callback_userdata {
bool ok;
double max_err;
ggml_backend_t backend1;
ggml_backend_t backend2;
};
callback_userdata ud {
true,
max_nmse_err(),
backend1,
backend2
};
auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
callback_userdata * ud = (callback_userdata *) user_data;
const char * bn1 = ggml_backend_name(ud->backend1);
const char * bn2 = ggml_backend_name(ud->backend2);
if (t1->op == GGML_OP_NONE) {
// sentinels must be unchanged
@ -409,7 +428,7 @@ struct test_case {
for (size_t i = 0; i < f1.size(); i++) {
// check for nans
if (std::isnan(f1[i]) || std::isnan(f2[i])) {
printf("[%s] NaN at index %zu (%f %f) ", ggml_op_desc(t1), i, f1[i], f2[i]);
printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
ud->ok = false;
return true;
}
@ -417,12 +436,12 @@ struct test_case {
if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
if (std::signbit(f1[i]) != std::signbit(f2[i])) {
printf("[%s] inf sign mismatch: %f %f ", ggml_op_desc(t1), f1[i], f2[i]);
printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
ud->ok = false;
return true;
}
} else {
printf("[%s] inf mismatch: %f %f ", ggml_op_desc(t1), f1[i], f2[i]);
printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
ud->ok = false;
return true;
}
@ -432,7 +451,7 @@ struct test_case {
double err = nmse(f1.data(), f2.data(), f1.size());
if (err > ud->max_err) {
printf("[%s] NMSE = %f ", ggml_op_desc(t1), err);
//for (int i = 0; i < f1.size(); i++) {
//for (int i = 0; i < (int) f1.size(); i++) {
// printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
//}
//printf("\n");
@ -656,17 +675,26 @@ struct test_repeat : public test_case {
struct test_dup : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
const std::array<int64_t, 4> permute;
bool _use_permute;
std::string vars() override {
return VARS_TO_STR2(type, ne);
std::string v = VARS_TO_STR2(type, ne);
if (_use_permute) v += "," + VAR_TO_STR(permute);
return v;
}
test_dup(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 10, 10, 1})
: type(type), ne(ne) {}
std::array<int64_t, 4> ne = {10, 10, 10, 1},
std::array<int64_t, 4> permute = {0, 0, 0, 0})
: type(type), ne(ne), permute(permute),
_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
if (_use_permute) {
src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
}
ggml_tensor * out = ggml_dup(ctx, src);
return out;
}
@ -1445,14 +1473,26 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
}
}
}
for (int b : {1, 7}) {
for (bool v : {false, true}) {
test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
}
}
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1}));
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {2, 1, 1, 1}));
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 2, 1, 1}));
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 2, 1}));
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 2}));
test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 10, 10, 10}, {2, 1, 1, 1}));
test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 10, 10, 10}, {1, 1, 1, 2}));
test_cases.emplace_back(new test_dup());
test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
for (ggml_type type : all_types) {
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, type, {256, 10, 10, 1}));
@ -1505,8 +1545,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
}
for (ggml_type type_a : all_types) {
for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
// FIXME: CPU crashes on f16xf16
for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {2, 1}));
@ -1561,7 +1600,8 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_alibi());
test_cases.emplace_back(new test_im2col());
test_cases.emplace_back(new test_concat());
test_cases.emplace_back(new test_concat(GGML_TYPE_F32));
test_cases.emplace_back(new test_concat(GGML_TYPE_I32));
for (ggml_sort_order order : {GGML_SORT_ASC, GGML_SORT_DESC}) {
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));