Move CLBlast implementation to separate file

Add buffer reuse code (adapted from slaren's cuda implementation)
This commit is contained in:
0cc4m 2023-04-23 09:59:45 +02:00
parent 6f66870726
commit 1b16b8c90d
4 changed files with 281 additions and 207 deletions

View file

@ -34,8 +34,8 @@ endif
#
# keep standard at C11 and C++11
CFLAGS = -I. -O3 -DNDEBUG -std=c11 -fPIC
CXXFLAGS = -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC
CFLAGS = -I. -O3 -DNODEBUG -std=c11 -fPIC
CXXFLAGS = -I. -I./examples -O3 -DNODEBUG -std=c++11 -fPIC
LDFLAGS =
# warnings
@ -105,8 +105,8 @@ ifdef LLAMA_OPENBLAS
LDFLAGS += -lopenblas
endif
ifdef LLAMA_CUBLAS
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include
LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include
LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64
OBJS += ggml-cuda.o
NVCC = nvcc
NVCCFLAGS = --forward-unknown-to-host-compiler -arch=native
@ -116,6 +116,9 @@ endif
ifdef LLAMA_CLBLAST
CFLAGS += -DGGML_USE_CLBLAST
LDFLAGS += -lclblast -lOpenCL
OBJS += ggml-opencl.o
ggml-opencl.o: ggml-opencl.cpp ggml-opencl.h
$(CXX) $(CXXFLAGS) -c $< -o $@
endif
ifdef LLAMA_GPROF
CFLAGS += -pg

239
ggml-opencl.cpp Normal file
View file

@ -0,0 +1,239 @@
#include "ggml-opencl.h"
#include <atomic>
#include <cstdio>
#include <cstring>
#include <ggml_clblast_dequant.cl>
struct scoped_spin_lock {
std::atomic_flag& lock;
scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
while (lock.test_and_set(std::memory_order_acquire)) {
; // spin
}
}
~scoped_spin_lock() {
lock.clear(std::memory_order_release);
}
scoped_spin_lock(const scoped_spin_lock&) = delete;
scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
};
struct cl_buffer {
cl_mem mem;
size_t size = 0;
};
cl_platform_id platform;
cl_device_id device;
cl_context context;
cl_command_queue queue;
cl_program program;
cl_kernel kernel_q4_0, kernel_q4_1;
bool cl_initialized = false;
size_t cl_size_a = 0, cl_size_b = 0, cl_size_c = 0;
static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS];
static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT;
cl_mem ggml_cl_pool_malloc(size_t size, size_t * actual_size) {
scoped_spin_lock lock(g_cl_pool_lock);
for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
cl_buffer& b = g_cl_buffer_pool[i];
if (b.size >= size && b.size != 0) {
cl_mem mem = b.mem;
*actual_size = b.size;
b.size = 0;
return mem;
}
}
cl_int err;
cl_mem mem = clCreateBuffer(context, 0, size, NULL, &err);
*actual_size = size;
CL_CHECK(err, "clCreateBuffer");
return mem;
}
void ggml_cl_pool_free(cl_mem mem, size_t size) {
scoped_spin_lock lock(g_cl_pool_lock);
for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
cl_buffer& b = g_cl_buffer_pool[i];
if (b.size == 0) {
b.mem = mem;
b.size = size;
return;
}
}
fprintf(stderr, "WARNING: cl buffer pool full, increase MAX_CL_BUFFERS\n");
clReleaseMemObject(mem);
}
cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
cl_program program;
char *program_log;
size_t program_size, log_size;
int err;
program_size = strlen(program_buffer);
program = clCreateProgramWithSource(ctx, 1,
(const char**)&program_buffer, &program_size, &err);
if(err < 0) {
fprintf(stderr, "OpenCL error creating program");
exit(1);
}
err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
if(err < 0) {
clGetProgramBuildInfo(program, dev, CL_PROGRAM_BUILD_LOG,
0, NULL, &log_size);
program_log = (char*) malloc(log_size + 1);
program_log[log_size] = '\0';
clGetProgramBuildInfo(program, dev, CL_PROGRAM_BUILD_LOG,
log_size + 1, program_log, NULL);
printf("%s\n", program_log);
free(program_log);
exit(1);
}
return program;
}
void ggml_cl_init() {
cl_int err = 0;
char * KCPP_CLBLAST_PLATFORM = getenv("KCPP_CLBLAST_PLATFORM");
char * KCPP_CLBLAST_DEVICES = getenv("KCPP_CLBLAST_DEVICES");
int plat_num = (KCPP_CLBLAST_PLATFORM == NULL ? 0 : atoi(KCPP_CLBLAST_PLATFORM));
int dev_num = (KCPP_CLBLAST_DEVICES == NULL ? 0 : atoi(KCPP_CLBLAST_DEVICES));
printf("\nInitializing CLBlast (First Run)...");
printf("\nAttempting to use: Platform=%d, Device=%d (If invalid, program will crash)\n",plat_num,dev_num);
cl_uint num_platforms;
clGetPlatformIDs(0, NULL, &num_platforms);
cl_platform_id* platforms = (cl_platform_id*)malloc(num_platforms*sizeof(cl_platform_id));
clGetPlatformIDs(num_platforms, platforms, NULL);
platform = platforms[plat_num];
char platform_buffer[1024];
clGetPlatformInfo(platform, CL_PLATFORM_NAME, sizeof(platform_buffer), &platform_buffer, NULL);
cl_uint num_devices;
clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL, &num_devices);
cl_device_id* devices = (cl_device_id*)malloc(num_devices*sizeof(cl_device_id));
clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, num_devices, devices, NULL);
device = devices[dev_num];
char device_buffer[1024];
clGetDeviceInfo(device, CL_DEVICE_NAME, sizeof(device_buffer), &device_buffer, NULL);
printf("Using Platform: %s Device: %s\n", platform_buffer, device_buffer);
context = clCreateContext(NULL, 1, &device, NULL, NULL, &err);
if (err != CL_SUCCESS) {
printf("Error creating OpenCL context: %d\n", err);
fflush(stdout);
}
queue = clCreateCommandQueue(context, device, 0, &err);
if (err != CL_SUCCESS) {
printf("Error creating OpenCL Command Queue: %d\n", err);
fflush(stdout);
}
free(platforms);
free(devices);
program = build_program_from_source(context, device, clblast_dequant);
// Prepare dequantize kernels
kernel_q4_0 = clCreateKernel(program, "dequantize_row_q4_0", &err);
if(err < 0) {
printf("Error creating OpenCL dequantize q4_0 kernel: %d\n", err);
fflush(stdout);
};
kernel_q4_1 = clCreateKernel(program, "dequantize_row_q4_1", &err);
if(err < 0) {
printf("Error creating OpenCL dequantize q4_1 kernel: %d\n", err);
fflush(stdout);
};
cl_initialized = true;
}
void ggml_cl_sgemm_wrapper(const CLBlastLayout order, const CLBlastTranspose trans_a, const CLBlastTranspose trans_b, const int m, const int n, const int k, const float alpha, const void *host_a, const int lda, const float *host_b, const int ldb, const float beta, float *host_c, const int ldc, const int btype) {
cl_int err = 0;
cl_event events[4];
events[0] = NULL;
events[1] = NULL;
events[2] = NULL;
events[3] = NULL;
bool dequant = (btype == 2 || btype == 3);
cl_kernel kernel = btype == 2 ? kernel_q4_0 : kernel_q4_1;
size_t global = n * k, local = 16, qb_size;
cl_mem cl_buffer_a, cl_buffer_qb, cl_buffer_b, cl_buffer_c;
size_t buf_size_a, buf_size_qb, buf_size_b, buf_size_c;
// Prepare buffers
cl_buffer_a = ggml_cl_pool_malloc(m * k * sizeof(float), &buf_size_a);
if (dequant) {
qb_size = global * (sizeof(float) * (btype == 2 ? 1 : 2) + 16) / 32;
cl_buffer_qb = ggml_cl_pool_malloc(qb_size, &buf_size_qb);
}
cl_buffer_b = ggml_cl_pool_malloc(n*k*sizeof(float), &buf_size_b);
cl_buffer_c = ggml_cl_pool_malloc(m*n*sizeof(float), &buf_size_c);
if (dequant) {
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &cl_buffer_qb);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_buffer_b);
if(err < 0) {
printf("Error setting OpenCL kernel args: %d\n", err);
fflush(stdout);
}
clEnqueueWriteBuffer(queue, cl_buffer_qb, CL_FALSE, 0, qb_size, host_b, 0, NULL, events + 1);
} else {
clEnqueueWriteBuffer(queue, cl_buffer_b, CL_FALSE, 0, n*k*sizeof(float), host_b, 0, NULL, events + 1);
}
clEnqueueWriteBuffer(queue, cl_buffer_a, CL_FALSE, 0, m*k*sizeof(float), host_a, 0, NULL, events);
clEnqueueWriteBuffer(queue, cl_buffer_c, CL_FALSE, 0, m*n*sizeof(float), host_c, 0, NULL, events + 2);
if (dequant) {
err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 1, events + 1, events + 3);
if(err < 0) {
printf("Error enqueueing OpenCL dequantize kernel: %d\n", err);
fflush(stdout);
}
}
clWaitForEvents(dequant ? 4 : 3, events);
clReleaseEvent(events[0]);
clReleaseEvent(events[1]);
clReleaseEvent(events[2]);
if (dequant) {
clReleaseEvent(events[3]);
}
// Call the SGEMM routine.
CLBlastStatusCode status = CLBlastSgemm(order,
trans_a, trans_b,
m, n, k,
alpha,
cl_buffer_a, 0, lda,
cl_buffer_b, 0, ldb,
beta,
cl_buffer_c, 0, ldc,
&queue, events);
clEnqueueReadBuffer(queue, cl_buffer_c, CL_TRUE, 0, m*n*sizeof(float), host_c, 1, events, events + 1);
// Wait for completion
clWaitForEvents(2, events);
clReleaseEvent(events[0]);
clReleaseEvent(events[1]);
ggml_cl_pool_free(cl_buffer_a, buf_size_a);
if (dequant) {
ggml_cl_pool_free(cl_buffer_qb, buf_size_qb);
}
ggml_cl_pool_free(cl_buffer_b, buf_size_b);
ggml_cl_pool_free(cl_buffer_c, buf_size_c);
}

31
ggml-opencl.h Normal file
View file

@ -0,0 +1,31 @@
#pragma once
#define CL_TARGET_OPENCL_VERSION 110
#include <clblast_c.h>
#define MAX_CL_BUFFERS 16
#ifdef __cplusplus
extern "C" {
#endif
// Buffer reuse code adapted from cuda implementation by slaren
#define CL_CHECK(err, name) \
do { \
cl_int err_ = (err); \
if (err_ != CL_SUCCESS) { \
fprintf(stderr, "OpenCL %s error %d at %s:%d\n", name, err_, __FILE__, __LINE__); \
exit(1); \
} \
} while (0)
cl_mem ggml_cl_pool_malloc(size_t size, size_t * actual_size);
void ggml_cl_pool_free(cl_mem mem, size_t size);
cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer);
void ggml_cl_init();
void ggml_cl_sgemm_wrapper(const CLBlastLayout order, const CLBlastTranspose trans_a, const CLBlastTranspose trans_b, const int m, const int n, const int k, const float alpha, const void *host_a, const int lda, const float *host_b, const int ldb, const float beta, float *host_c, const int ldc, const int btype);
#ifdef __cplusplus
}
#endif

207
ggml.c
View file

@ -150,206 +150,7 @@ inline static void* ggml_aligned_malloc(size_t size) {
#elif defined(GGML_USE_CUBLAS)
#include "ggml-cuda.h"
#elif defined(GGML_USE_CLBLAST)
#define CL_TARGET_OPENCL_VERSION 110
#include <clblast_c.h>
#include <ggml_clblast_dequant.cl>
#include <cblas.h>
cl_platform_id platform;
cl_device_id device;
cl_context context;
cl_command_queue queue;
cl_program program;
cl_kernel kernel_q4_0, kernel_q4_1;
bool cl_initialized = false;
size_t cl_size_a = 0, cl_size_b = 0, cl_size_c = 0;
cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
cl_program program;
char *program_log;
size_t program_size, log_size;
int err;
program_size = strlen(program_buffer);
program = clCreateProgramWithSource(ctx, 1,
(const char**)&program_buffer, &program_size, &err);
if(err < 0) {
perror("OpenCL error creating program");
exit(1);
}
err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
if(err < 0) {
clGetProgramBuildInfo(program, dev, CL_PROGRAM_BUILD_LOG,
0, NULL, &log_size);
program_log = (char*) malloc(log_size + 1);
program_log[log_size] = '\0';
clGetProgramBuildInfo(program, dev, CL_PROGRAM_BUILD_LOG,
log_size + 1, program_log, NULL);
printf("%s\n", program_log);
free(program_log);
exit(1);
}
return program;
}
static void ggml_cl_init() {
cl_int err = 0;
char * KCPP_CLBLAST_PLATFORM = getenv("KCPP_CLBLAST_PLATFORM");
char * KCPP_CLBLAST_DEVICES = getenv("KCPP_CLBLAST_DEVICES");
int plat_num = (KCPP_CLBLAST_PLATFORM == NULL ? 0 : atoi(KCPP_CLBLAST_PLATFORM));
int dev_num = (KCPP_CLBLAST_DEVICES == NULL ? 0 : atoi(KCPP_CLBLAST_DEVICES));
printf("\nInitializing CLBlast (First Run)...");
printf("\nAttempting to use: Platform=%d, Device=%d (If invalid, program will crash)\n",plat_num,dev_num);
cl_uint num_platforms;
clGetPlatformIDs(0, NULL, &num_platforms);
cl_platform_id* platforms = (cl_platform_id*)malloc(num_platforms*sizeof(cl_platform_id));
clGetPlatformIDs(num_platforms, platforms, NULL);
platform = platforms[plat_num];
char platform_buffer[1024];
clGetPlatformInfo(platform, CL_PLATFORM_NAME, sizeof(platform_buffer), &platform_buffer, NULL);
cl_uint num_devices;
clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL, &num_devices);
cl_device_id* devices = (cl_device_id*)malloc(num_devices*sizeof(cl_device_id));
clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, num_devices, devices, NULL);
device = devices[dev_num];
char device_buffer[1024];
clGetDeviceInfo(device, CL_DEVICE_NAME, sizeof(device_buffer), &device_buffer, NULL);
printf("Using Platform: %s Device: %s\n", platform_buffer, device_buffer);
context = clCreateContext(NULL, 1, &device, NULL, NULL, &err);
if (err != CL_SUCCESS) {
printf("Error creating OpenCL context: %d\n", err);
fflush(stdout);
}
queue = clCreateCommandQueue(context, device, 0, &err);
if (err != CL_SUCCESS) {
printf("Error creating OpenCL Command Queue: %d\n", err);
fflush(stdout);
}
free(platforms);
free(devices);
program = build_program_from_source(context, device, clblast_dequant);
// Prepare dequantize kernels
kernel_q4_0 = clCreateKernel(program, "dequantize_row_q4_0", &err);
if(err < 0) {
printf("Error creating OpenCL dequantize q4_0 kernel: %d\n", err);
fflush(stdout);
};
kernel_q4_1 = clCreateKernel(program, "dequantize_row_q4_1", &err);
if(err < 0) {
printf("Error creating OpenCL dequantize q4_1 kernel: %d\n", err);
fflush(stdout);
};
cl_initialized = true;
}
static void ggml_cl_sgemm_wrapper(const CBLAS_ORDER order, const CBLAS_TRANSPOSE trans_a, const CBLAS_TRANSPOSE trans_b, const int m, const int n, const int k, const float alpha, const void *host_a, const int lda, const float *host_b, const int ldb, const float beta, float *host_c, const int ldc, const int btype) {
cl_int err = 0;
cl_event events[4];
events[0] = NULL;
events[1] = NULL;
events[2] = NULL;
events[3] = NULL;
if (!cl_initialized) {
ggml_cl_init();
}
bool dequant = (btype == 2 || btype == 3);
cl_kernel kernel = btype == 2 ? kernel_q4_0 : kernel_q4_1;
size_t global = n * k, local = 16, qb_size;
cl_mem cl_buffer_a, cl_buffer_qb, cl_buffer_b, cl_buffer_c;
// Prepare buffers
cl_buffer_a = clCreateBuffer(context, CL_MEM_READ_ONLY, m*k*sizeof(float), NULL, &err);
if (err != CL_SUCCESS) {
printf("Error creating OpenCL Buffer A: %d\n", err);
fflush(stdout);
}
if (dequant) {
qb_size = global * (sizeof(float) * (btype == 2 ? 1 : 2) + 16) / 32;
cl_buffer_qb = clCreateBuffer(context, CL_MEM_READ_ONLY, qb_size, NULL, &err);
if (err != CL_SUCCESS) {
printf("Error creating OpenCL Buffer QB: %d\n", err);
fflush(stdout);
}
}
cl_buffer_b = clCreateBuffer(context, CL_MEM_READ_WRITE, n*k*sizeof(float), NULL, &err);
if (err != CL_SUCCESS) {
printf("Error creating OpenCL Buffer B: %d\n", err);
fflush(stdout);
}
cl_buffer_c = clCreateBuffer(context, CL_MEM_READ_WRITE, m*n*sizeof(float), NULL, &err);
if (err != CL_SUCCESS) {
printf("Error creating OpenCL Buffer C: %d\n", err);
fflush(stdout);
}
if (dequant) {
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &cl_buffer_qb);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_buffer_b);
if(err < 0) {
printf("Error setting OpenCL kernel args: %d\n", err);
fflush(stdout);
}
clEnqueueWriteBuffer(queue, cl_buffer_qb, CL_FALSE, 0, qb_size, host_b, 0, NULL, events + 1);
} else {
clEnqueueWriteBuffer(queue, cl_buffer_b, CL_FALSE, 0, n*k*sizeof(float), host_b, 0, NULL, events + 1);
}
clEnqueueWriteBuffer(queue, cl_buffer_a, CL_FALSE, 0, m*k*sizeof(float), host_a, 0, NULL, events);
clEnqueueWriteBuffer(queue, cl_buffer_c, CL_FALSE, 0, m*n*sizeof(float), host_c, 0, NULL, events + 2);
if (dequant) {
err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 1, events + 1, events + 3);
if(err < 0) {
printf("Error enqueueing OpenCL dequantize kernel: %d\n", err);
fflush(stdout);
}
}
clWaitForEvents(dequant ? 4 : 3, events);
clReleaseEvent(events[0]);
clReleaseEvent(events[1]);
clReleaseEvent(events[2]);
if (dequant) {
clReleaseEvent(events[3]);
}
// Call the SGEMM routine.
CLBlastStatusCode status = CLBlastSgemm(order,
trans_a, trans_b,
m, n, k,
alpha,
cl_buffer_a, 0, lda,
cl_buffer_b, 0, ldb,
beta,
cl_buffer_c, 0, ldc,
&queue, events);
clEnqueueReadBuffer(queue, cl_buffer_c, CL_TRUE, 0, m*n*sizeof(float), host_c, 1, events, events + 1);
// Wait for completion
if (status == CLBlastSuccess) {
clWaitForEvents(2, events);
clReleaseEvent(events[0]);
clReleaseEvent(events[1]);
}
clReleaseMemObject(cl_buffer_a);
if (dequant) {
clReleaseMemObject(cl_buffer_qb);
}
clReleaseMemObject(cl_buffer_b);
clReleaseMemObject(cl_buffer_c);
}
#include "ggml-opencl.h"
#endif
#undef MIN
@ -7774,7 +7575,7 @@ static void ggml_compute_forward_mul_mat_f32(
CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
#elif defined(GGML_USE_CLBLAST)
// zT = y * xT
ggml_cl_sgemm_wrapper(CblasRowMajor, CblasNoTrans, CblasTrans,
ggml_cl_sgemm_wrapper(CLBlastLayoutRowMajor, CLBlastTransposeNo, CLBlastTransposeYes,
ne11, ne01, ne10,
1.0f, y, ne10,
x, ne10,
@ -8008,7 +7809,7 @@ static void ggml_compute_forward_mul_mat_f16_f32(
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
// zT = y * xT
ggml_cl_sgemm_wrapper(CblasRowMajor, CblasNoTrans, CblasTrans,
ggml_cl_sgemm_wrapper(CLBlastLayoutRowMajor, CLBlastTransposeNo, CLBlastTransposeYes,
ne11, ne01, ne10,
1.0f, y, ne10,
x, ne10,
@ -8281,7 +8082,7 @@ static void ggml_compute_forward_mul_mat_q_f32(
CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
#elif defined(GGML_USE_CLBLAST)
// zT = y * xT
ggml_cl_sgemm_wrapper(CblasRowMajor, CblasNoTrans, CblasTrans,
ggml_cl_sgemm_wrapper(CLBlastLayoutRowMajor, CLBlastTransposeNo, CLBlastTransposeYes,
ne11, ne01, ne10,
1.0f, y, ne10,
x, ne10,