[CANN] Add Ascend NPU backend (#6035)

* [CANN] Add Ascend NPU backend

Ascend is a full-stack AI computing infrastructure for industry
applications and services based on Huawei Ascend processors and
software.

CANN (Compute Architecture of Neural Networks), developped by
Huawei, is a heterogeneous computing architecture for AI.

Co-authored-by: wangshuai09 <391746016@qq.com>

* delete trailing whitespaces

* Modify the code based on review comment

* Rename LLAMA_CANN to GGML_CANN

* Make ggml-common.h private

* add ggml_cann prefix for acl funcs

* Add logging for CANN backend

* Delete Trailing whitespace

---------

Co-authored-by: wangshuai09 <391746016@qq.com>
This commit is contained in:
hipudding 2024-07-17 19:23:50 +08:00 committed by GitHub
parent da3913d8f9
commit 1bdd8ae19f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
27 changed files with 10756 additions and 8 deletions

View file

@ -0,0 +1,32 @@
if (NOT SOC_TYPE)
set (SOC_TYPE "Ascend910B3")
endif()
file(GLOB SRC_FILES
get_row_f32.cpp
get_row_f16.cpp
get_row_q4_0.cpp
get_row_q8_0.cpp
quantize_f32_q8_0.cpp
quantize_f16_q8_0.cpp
dup.cpp
)
string(TOLOWER ${SOC_TYPE} SOC_VERSION)
set(ASCEND_CANN_PACKAGE_PATH ${CANN_INSTALL_DIR})
set(RUN_MODE "npu" CACHE STRING "run mode: npu/sim")
if(EXISTS ${ASCEND_CANN_PACKAGE_PATH}/compiler/tikcpp/ascendc_kernel_cmake)
set(ASCENDC_CMAKE_DIR ${ASCEND_CANN_PACKAGE_PATH}/compiler/tikcpp/ascendc_kernel_cmake)
elseif(EXISTS ${ASCEND_CANN_PACKAGE_PATH}/ascendc_devkit/tikcpp/samples/cmake)
set(ASCENDC_CMAKE_DIR ${ASCEND_CANN_PACKAGE_PATH}/ascendc_devkit/tikcpp/samples/cmake)
else()
message(FATAL_ERROR "ascendc_kernel_cmake does not exist, please check whether the compiler package is installed.")
endif()
include(${ASCENDC_CMAKE_DIR}/ascendc.cmake)
ascendc_library(ascendc_kernels STATIC
${SRC_FILES}
)
#ascendc_compile_definitions(ascendc_kernels PRIVATE -DASCENDC_DUMP)

View file

@ -0,0 +1,17 @@
#ifndef ASCENDC_KERNELS_H
#define ASCENDC_KERNELS_H
#include "aclrtlaunch_ascendc_get_row_f32.h"
#include "aclrtlaunch_ascendc_get_row_f16.h"
#include "aclrtlaunch_ascendc_get_row_q8_0.h"
#include "aclrtlaunch_ascendc_get_row_q4_0.h"
#include "aclrtlaunch_ascendc_quantize_f32_q8_0.h"
#include "aclrtlaunch_ascendc_quantize_f16_q8_0.h"
#include "aclrtlaunch_ascendc_dup_by_rows_fp16.h"
#include "aclrtlaunch_ascendc_dup_by_rows_fp32.h"
#include "aclrtlaunch_ascendc_dup_by_rows_fp32_to_fp16.h"
#include "aclrtlaunch_ascendc_dup_by_rows_fp16_to_fp32.h"
#endif // ASCENDC_KERNELS_H

View file

@ -0,0 +1,223 @@
#include "kernel_operator.h"
#include <cmath>
using namespace AscendC;
#define BUFFER_NUM 2
template <typename SRC_T, typename DST_T>
class DupByRows {
public:
__aicore__ inline DupByRows() {}
__aicore__ inline void init(GM_ADDR src, GM_ADDR dst, int64_t *input_ne_ub,
size_t *input_nb_ub) {
/* Dup by rows when src is contigous on first dimension and dst is
contiguous, each kernel process one row.
*/
// Input has four dims.
int64_t op_block_num = GetBlockNum();
int64_t op_block_idx = GetBlockIdx();
// param
num_rows = input_ne_ub[1] * input_ne_ub[2] * input_ne_ub[3];
num_elem = input_ne_ub[0];
// index for (ne[1], ne[2], ne[3]): (idx_ne1, idx_ne2, idx_ne3)
idx_ne3 = op_block_idx / (input_ne_ub[1] * input_ne_ub[2]);
idx_ne2 = (op_block_idx - idx_ne3 * (input_ne_ub[1] * input_ne_ub[2]))
/ (input_ne_ub[1]);
idx_ne1 = op_block_idx - idx_ne3 * (input_ne_ub[1] * input_ne_ub[2])
- idx_ne2 * input_ne_ub[1];
// src may not contiguous in dim [1,2,3], so stride decited by ne&nb
src_stride = input_nb_ub[3] * idx_ne3 + input_nb_ub[2] * idx_ne2
+ input_nb_ub[1] * idx_ne1;
// dst is contiguous
dst_stride = op_block_idx * (input_ne_ub[0] * sizeof(DST_T));
src_gm.SetGlobalBuffer(reinterpret_cast<__gm__ SRC_T *>(src +
src_stride));
dst_gm.SetGlobalBuffer(reinterpret_cast<__gm__ DST_T *>(dst +
dst_stride));
pipe.InitBuffer(src_queue, BUFFER_NUM, (sizeof(SRC_T) * num_elem +
32 - 1) / 32 * 32);
pipe.InitBuffer(dst_queue, BUFFER_NUM, (sizeof(DST_T) * num_elem +
32 - 1) / 32 * 32);
}
__aicore__ inline void copy_in() {
LocalTensor<SRC_T> src_local = src_queue.AllocTensor<SRC_T>();
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = num_elem * sizeof(SRC_T);
DataCopyPadExtParams<SRC_T> padParams;
DataCopyPad(src_local, src_gm, dataCopyParams, padParams);
src_queue.EnQue(src_local);
}
__aicore__ inline void copy_out() {
LocalTensor<DST_T> dst_local = dst_queue.DeQue<DST_T>();
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = num_elem * sizeof(DST_T);
DataCopyPad(dst_gm, dst_local, dataCopyParams);
dst_queue.FreeTensor(dst_local);
}
__aicore__ inline void dup() {
// main process, copy one row data from src to dst.
copy_in();
LocalTensor<SRC_T> src_local = src_queue.DeQue<SRC_T>();
LocalTensor<DST_T> dst_local = dst_queue.AllocTensor<DST_T>();
int32_t BLOCK_NUM = 32 / sizeof(DST_T);
DataCopy(dst_local, src_local, (num_elem + BLOCK_NUM - 1)
/ BLOCK_NUM * BLOCK_NUM);
dst_queue.EnQue<DST_T>(dst_local);
src_queue.FreeTensor(src_local);
copy_out();
}
__aicore__ inline void dup_with_cast() {
// main process, copy one row data from src to dst.
// cast dtype from src to dst.
copy_in();
LocalTensor<SRC_T> src_local = src_queue.DeQue<SRC_T>();
LocalTensor<DST_T> dst_local = dst_queue.AllocTensor<DST_T>();
Cast(dst_local, src_local, RoundMode::CAST_NONE, num_elem);
dst_queue.EnQue<DST_T>(dst_local);
src_queue.FreeTensor(src_local);
copy_out();
}
private:
TPipe pipe;
GlobalTensor<SRC_T> src_gm;
GlobalTensor<DST_T> dst_gm;
int64_t num_rows;
int64_t num_elem;
int64_t idx_ne3;
int64_t idx_ne2;
int64_t idx_ne1;
int64_t src_stride;
int64_t dst_stride;
TQue<QuePosition::VECIN, BUFFER_NUM> src_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> dst_queue;
};
template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
auto gm_ptr = (__gm__ uint8_t *)gm;
auto ub_ptr = (uint8_t *)(ub);
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
*ub_ptr = *gm_ptr;
}
}
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16(
GM_ADDR src_gm,
GM_ADDR dst_gm,
GM_ADDR input_ne_gm,
GM_ADDR input_nb_gm,
GM_ADDR output_ne_gm,
GM_ADDR output_nb_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
DupByRows<half, half> op;
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
op.dup();
}
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32(
GM_ADDR src_gm,
GM_ADDR dst_gm,
GM_ADDR input_ne_gm,
GM_ADDR input_nb_gm,
GM_ADDR output_ne_gm,
GM_ADDR output_nb_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
DupByRows<float_t, float_t> op;
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
op.dup();
}
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32_to_fp16(
GM_ADDR src_gm,
GM_ADDR dst_gm,
GM_ADDR input_ne_gm,
GM_ADDR input_nb_gm,
GM_ADDR output_ne_gm,
GM_ADDR output_nb_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
DupByRows<float_t, half> op;
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
op.dup_with_cast();
}
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16_to_fp32(
GM_ADDR src_gm,
GM_ADDR dst_gm,
GM_ADDR input_ne_gm,
GM_ADDR input_nb_gm,
GM_ADDR output_ne_gm,
GM_ADDR output_nb_gm) {
// copy params from gm to ub.
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
DupByRows<half, float_t> op;
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
op.dup_with_cast();
}

View file

@ -0,0 +1,186 @@
#include "kernel_operator.h"
// optimize me. Use template to avoid copy code.
using namespace AscendC;
#define BUFFER_NUM 2
class GET_ROW_F16 {
public:
__aicore__ inline GET_ROW_F16() {}
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
int64_t *input_ne_ub, size_t *input_nb_ub,
int64_t *indices_ne_ub, size_t *indices_nb_ub,
int64_t *output_ne_ub, size_t *output_nb_ub) {
// TODO, use template for F16/f32
int64_t op_block_num = GetBlockNum();
int64_t op_block_idx = GetBlockIdx();
for (int i = 0; i < 4; i++) {
input_ne[i] = input_ne_ub[i];
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
indices_ne[i] = indices_ne_ub[i];
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
output_ne[i] = output_ne_ub[i];
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
}
// Indices has two dims. n_elements = all rows should get.
// dr, all rows should this thread get.
uint64_t n_elements =
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
dr = n_elements / op_block_num;
uint64_t tails = n_elements % op_block_num;
if (op_block_idx < tails) {
dr += 1;
ir = dr * op_block_idx;
} else {
ir = dr * op_block_idx + tails;
}
input_gm.SetGlobalBuffer((__gm__ half *)input);
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
output_gm.SetGlobalBuffer((__gm__ float *)output);
uint64_t input_local_buffer_size = ((input_ne[0] * sizeof(half) + 31)
& ~31);
uint64_t output_local_buffer_size = ((input_ne[0] * sizeof(float) + 31)
& ~31);
local_buffer_elems = input_local_buffer_size / sizeof(half);
// TODO, consider long row that can't put in UB.
// All data should asign to 32. It's ok because all data is align to 32.
pipe.InitBuffer(input_queue, BUFFER_NUM, input_local_buffer_size);
pipe.InitBuffer(output_queue, BUFFER_NUM, output_local_buffer_size);
}
__aicore__ inline void copy_in(uint32_t offset, size_t len) {
LocalTensor<half> input_local = input_queue.AllocTensor<half>();
size_t tail = len % 32;
len = len & ~31;
DataCopy(input_local, input_gm[offset], len);
if(tail != 0) {
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = tail * sizeof(half);
DataCopyPadExtParams<half> padParams;
DataCopyPad(input_local[len], input_gm[offset + len],
dataCopyParams, padParams);
}
input_queue.EnQue(input_local);
}
__aicore__ inline void copy_out(uint32_t offset, size_t len) {
LocalTensor<float> output_local = output_queue.DeQue<float>();
size_t tail = len % 32;
len = len & ~31;
DataCopy(output_gm[offset], output_local, len);
if(tail != 0) {
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = tail * sizeof(float);
DataCopyPad(output_gm[offset + len], output_local[len],
dataCopyParams);
}
output_queue.FreeTensor(output_local);
}
__aicore__ inline void calculate_row(int64_t idx) {
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
const int64_t indices_ne1_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
indices_ne[0];
const int64_t indices_ne0_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
indices_ne1_idx * indices_ne[0]);
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
indices_ne1_idx * indices_stride[1] +
indices_ne2_idx * indices_stride[2];
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
const int64_t input_offset = selected_row_idx * input_stride[1] +
indices_ne1_idx * input_stride[2] +
indices_ne2_idx * input_stride[3];
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
indices_ne1_idx * output_stride[2] +
indices_ne2_idx * output_stride[3];
copy_in(input_offset, input_ne[0]);
LocalTensor<half> input_local = input_queue.DeQue<half>();
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
Cast(output_local, input_local, RoundMode::CAST_NONE,
local_buffer_elems);
output_queue.EnQue(output_local);
copy_out(output_offset, input_ne[0]);
input_queue.FreeTensor(input_local);
}
__aicore__ inline void calculate() {
for (int64_t i = ir; i < ir + dr; i++) {
calculate_row(i);
}
}
private:
int64_t input_ne[4];
size_t input_stride[4];
int64_t indices_ne[4];
size_t indices_stride[4];
int64_t output_ne[4];
size_t output_stride[4];
size_t local_buffer_elems;
int64_t ir;
int64_t dr;
TPipe pipe;
GlobalTensor<half> input_gm;
GlobalTensor<int32_t> indices_gm;
GlobalTensor<float> output_gm;
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
};
template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
auto gm_ptr = (__gm__ uint8_t *)gm;
auto ub_ptr = (uint8_t *)(ub);
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
*ub_ptr = *gm_ptr;
}
}
extern "C" __global__ __aicore__ void ascendc_get_row_f16(
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm,
GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t indices_ne_ub[4];
size_t indices_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
GET_ROW_F16 op;
op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub,
indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub);
op.calculate();
}

View file

@ -0,0 +1,180 @@
#include "kernel_operator.h"
// optimize me. Use template to avoid copy code.
using namespace AscendC;
#define BUFFER_NUM 2
class GET_ROW_F32 {
public:
__aicore__ inline GET_ROW_F32() {}
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
int64_t *input_ne_ub, size_t *input_nb_ub,
int64_t *indices_ne_ub, size_t *indices_nb_ub,
int64_t *output_ne_ub, size_t *output_nb_ub) {
int64_t op_block_num = GetBlockNum();
int64_t op_block_idx = GetBlockIdx();
for (int i = 0; i < 4; i++) {
input_ne[i] = input_ne_ub[i];
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
indices_ne[i] = indices_ne_ub[i];
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
output_ne[i] = output_ne_ub[i];
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
}
// Indices has two dims. n_elements = all rows should get.
// dr, all rows should this thread get.
uint64_t n_elements =
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
dr = n_elements / op_block_num;
uint64_t tails = n_elements % op_block_num;
if (op_block_idx < tails) {
dr += 1;
ir = dr * op_block_idx;
} else {
ir = dr * op_block_idx + tails;
}
input_gm.SetGlobalBuffer((__gm__ float *)input);
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
output_gm.SetGlobalBuffer((__gm__ float *)output);
uint64_t local_buffer_size = ((input_ne[0] * sizeof(float) + 31) & ~31);
local_buffer_elems = local_buffer_size / sizeof(float);
// TODO, consider long row that can't put in UB.
// All data should asign to 32. It's ok because all data is align to 32.
pipe.InitBuffer(input_queue, BUFFER_NUM, local_buffer_size);
pipe.InitBuffer(output_queue, BUFFER_NUM, local_buffer_size);
}
__aicore__ inline void copy_in(uint32_t offset, size_t len) {
LocalTensor<float> input_local = input_queue.AllocTensor<float>();
size_t tail = len % 32;
len = len & ~31;
DataCopy(input_local, input_gm[offset], len);
if(tail != 0) {
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = tail * sizeof(float);
DataCopyPadExtParams<float> padParams;
DataCopyPad(input_local[len], input_gm[offset + len],
dataCopyParams, padParams);
}
input_queue.EnQue(input_local);
}
__aicore__ inline void copy_out(uint32_t offset, size_t len) {
LocalTensor<float> output_local = output_queue.DeQue<float>();
size_t tail = len % 32;
len = len & ~31;
DataCopy(output_gm[offset], output_local, len);
if(tail != 0) {
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = tail * sizeof(float);
DataCopyPad(output_gm[offset + len], output_local[len],
dataCopyParams);
}
output_queue.FreeTensor(output_local);
}
__aicore__ inline void calculate_row(int64_t idx) {
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
const int64_t indices_ne1_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
indices_ne[0];
const int64_t indices_ne0_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
indices_ne1_idx * indices_ne[0]);
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
indices_ne1_idx * indices_stride[1] +
indices_ne2_idx * indices_stride[2];
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
const int64_t input_offset = selected_row_idx * input_stride[1] +
indices_ne1_idx * input_stride[2] +
indices_ne2_idx * input_stride[3];
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
indices_ne1_idx * output_stride[2] +
indices_ne2_idx * output_stride[3];
copy_in(input_offset, input_ne[0]);
LocalTensor<float> input_local = input_queue.DeQue<float>();
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
DataCopy(output_local, input_local, local_buffer_elems);
output_queue.EnQue(output_local);
copy_out(output_offset, input_ne[0]);
input_queue.FreeTensor(input_local);
}
__aicore__ inline void calculate() {
for (int64_t i = ir; i < ir + dr; i++) {
calculate_row(i);
}
}
private:
int64_t input_ne[4];
size_t input_stride[4];
int64_t indices_ne[4];
size_t indices_stride[4];
int64_t output_ne[4];
size_t output_stride[4];
size_t local_buffer_elems;
int64_t ir;
int64_t dr;
TPipe pipe;
GlobalTensor<float> input_gm;
GlobalTensor<int32_t> indices_gm;
GlobalTensor<float> output_gm;
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
};
template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
auto gm_ptr = (__gm__ uint8_t *)gm;
auto ub_ptr = (uint8_t *)(ub);
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
*ub_ptr = *gm_ptr;
}
}
extern "C" __global__ __aicore__ void ascendc_get_row_f32(
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm,
GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t indices_ne_ub[4];
size_t indices_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
GET_ROW_F32 op;
op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub,
indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub);
op.calculate();
}

View file

@ -0,0 +1,193 @@
#include "kernel_operator.h"
// optimize me. Use template to avoid copy code.
using namespace AscendC;
#define BUFFER_NUM 2
#define QK4_0 32
class GET_ROW_Q4_0 {
public:
__aicore__ inline GET_ROW_Q4_0() {}
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
int64_t *input_ne_ub, int64_t *indices_ne_ub,
size_t *indices_nb_ub, int64_t *output_ne_ub,
size_t *output_nb_ub) {
int64_t op_block_num = GetBlockNum();
int64_t op_block_idx = GetBlockIdx();
for (int i = 0; i < 4; i++) {
input_ne[i] = input_ne_ub[i];
indices_ne[i] = indices_ne_ub[i];
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
scale_ne[i] = input_ne_ub[i];
output_ne[i] = output_ne_ub[i];
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
}
// one scale for a group.
scale_ne[0] /= QK4_0;
input_stride[0] = 1;
scale_stride[0] = 1;
output_stride[0] = 1;
for (int i = 1; i < 4; i++) {
input_stride[i] = input_stride[i - 1] * input_ne[i - 1];
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
}
group_size_in_row = input_ne[0] / QK4_0;
int64_t scale_offset = input_ne[0] * input_ne[1] * input_ne[2] *
input_ne[3] / 2;
// Indices has two dims. n_elements = all rows should get.
// dr, all rows should this thread get.
uint64_t n_elements =
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
dr = n_elements / op_block_num;
uint64_t tails = n_elements % op_block_num;
if (op_block_idx < tails) {
dr += 1;
ir = dr * op_block_idx;
} else {
ir = dr * op_block_idx + tails;
}
input_gm.SetGlobalBuffer((__gm__ int4b_t *)input);
scale_gm.SetGlobalBuffer((__gm__ half *)(input + scale_offset));
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
output_gm.SetGlobalBuffer((__gm__ float *)output);
pipe.InitBuffer(input_queue, BUFFER_NUM, QK4_0 * sizeof(int4b_t));
pipe.InitBuffer(cast_queue, BUFFER_NUM, QK4_0 * sizeof(half));
pipe.InitBuffer(output_queue, BUFFER_NUM, QK4_0 * sizeof(float));
}
__aicore__ inline void copy_in(uint32_t offset) {
LocalTensor<int4b_t> input_local = input_queue.AllocTensor<int4b_t>();
// 32 * sizeof(int4b_t) = 16, which is not aligned to 32, why no error?
DataCopy(input_local, input_gm[offset], QK4_0);
input_queue.EnQue(input_local);
}
__aicore__ inline void copy_out(uint32_t offset) {
LocalTensor<float> output_local = output_queue.DeQue<float>();
DataCopy(output_gm[offset], output_local, QK4_0);
output_queue.FreeTensor(output_local);
}
__aicore__ inline void calculate_group(int64_t idx, int64_t group) {
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
const int64_t indices_ne1_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
indices_ne[0];
const int64_t indices_ne0_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
indices_ne1_idx * indices_ne[0]);
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
indices_ne1_idx * indices_stride[1] +
indices_ne2_idx * indices_stride[2];
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
const int64_t input_offset = selected_row_idx * input_stride[1] +
indices_ne1_idx * input_stride[2] +
indices_ne2_idx * input_stride[3] +
group * QK4_0;
const int64_t scale_offset = selected_row_idx * scale_stride[1] +
indices_ne1_idx * scale_stride[2] +
indices_ne2_idx * scale_stride[3] + group;
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
indices_ne1_idx * output_stride[2] +
indices_ne2_idx * output_stride[3] +
group * QK4_0;
copy_in(input_offset);
LocalTensor<int4b_t> input_local = input_queue.DeQue<int4b_t>();
LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
// TODO: cast more data to speed up.
Cast(cast_local, input_local, RoundMode::CAST_NONE, QK4_0);
Cast(output_local, cast_local, RoundMode::CAST_NONE, QK4_0);
// Only mul need compile by group.
half scale = scale_gm.GetValue(scale_offset);
Muls(output_local, output_local, (float)scale, QK4_0);
input_queue.FreeTensor(input_local);
cast_queue.FreeTensor(cast_local);
output_queue.EnQue(output_local);
copy_out(output_offset);
}
__aicore__ inline void calculate() {
for (int64_t i = ir; i < ir + dr; i++) {
for (int64_t j = 0; j < group_size_in_row; j++) {
calculate_group(i, j);
}
}
}
private:
int64_t input_ne[4];
size_t input_stride[4];
int64_t scale_ne[4];
size_t scale_stride[4];
int64_t indices_ne[4];
size_t indices_stride[4];
int64_t output_ne[4];
size_t output_stride[4];
int64_t ir;
int64_t dr;
int64_t group_size_in_row;
TPipe pipe;
GlobalTensor<int4b_t> input_gm;
GlobalTensor<half> scale_gm;
GlobalTensor<int32_t> indices_gm;
GlobalTensor<float> output_gm;
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
TQue<QuePosition::VECIN, BUFFER_NUM> cast_queue;
};
template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
auto gm_ptr = (__gm__ uint8_t *)gm;
auto ub_ptr = (uint8_t *)(ub);
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
*ub_ptr = *gm_ptr;
}
}
extern "C" __global__ __aicore__ void ascendc_get_row_q4_0(
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
int64_t input_ne_ub[4];
int64_t indices_ne_ub[4];
size_t indices_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
GET_ROW_Q4_0 op;
op.init(input_gm, indices_gm, output_gm, input_ne_ub, indices_ne_ub,
indices_nb_ub, output_ne_ub, output_nb_ub);
op.calculate();
}

View file

@ -0,0 +1,191 @@
#include "kernel_operator.h"
// optimize me. Use template to avoid copy code.
using namespace AscendC;
#define BUFFER_NUM 2
#define QK8_0 32
class GET_ROW_Q8_0 {
public:
__aicore__ inline GET_ROW_Q8_0() {}
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
int64_t *input_ne_ub, int64_t *indices_ne_ub,
size_t *indices_nb_ub, int64_t *output_ne_ub,
size_t *output_nb_ub) {
int64_t op_block_num = GetBlockNum();
int64_t op_block_idx = GetBlockIdx();
for (int i = 0; i < 4; i++) {
input_ne[i] = input_ne_ub[i];
indices_ne[i] = indices_ne_ub[i];
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
scale_ne[i] = input_ne_ub[i];
output_ne[i] = output_ne_ub[i];
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
}
// one scale for a group.
scale_ne[0] /= QK8_0;
input_stride[0] = 1;
scale_stride[0] = 1;
output_stride[0] = 1;
for (int i = 1; i < 4; i++) {
input_stride[i] = input_stride[i - 1] * input_ne[i - 1];
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
}
group_size_in_row = input_ne[0] / QK8_0;
int64_t scale_offset = input_ne[0] * input_ne[1] * input_ne[2] *
input_ne[3] * sizeof(int8_t);
// Indices has two dims. n_elements = all rows should get.
// dr, all rows should this thread get.
uint64_t n_elements =
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
dr = n_elements / op_block_num;
uint64_t tails = n_elements % op_block_num;
if (op_block_idx < tails) {
dr += 1;
ir = dr * op_block_idx;
} else {
ir = dr * op_block_idx + tails;
}
input_gm.SetGlobalBuffer((__gm__ int8_t *)input);
scale_gm.SetGlobalBuffer((__gm__ half *)(input + scale_offset));
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
output_gm.SetGlobalBuffer((__gm__ float *)output);
pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
pipe.InitBuffer(cast_queue, BUFFER_NUM, QK8_0 * sizeof(half));
pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(float));
}
__aicore__ inline void copy_in(uint32_t offset) {
LocalTensor<int8_t> input_local = input_queue.AllocTensor<int8_t>();
DataCopy(input_local, input_gm[offset], QK8_0);
input_queue.EnQue(input_local);
}
__aicore__ inline void copy_out(uint32_t offset) {
LocalTensor<float> output_local = output_queue.DeQue<float>();
DataCopy(output_gm[offset], output_local, QK8_0);
output_queue.FreeTensor(output_local);
}
__aicore__ inline void calculate_group(int64_t idx, int64_t group) {
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
const int64_t indices_ne1_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
indices_ne[0];
const int64_t indices_ne0_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
indices_ne1_idx * indices_ne[0]);
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
indices_ne1_idx * indices_stride[1] +
indices_ne2_idx * indices_stride[2];
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
const int64_t input_offset = selected_row_idx * input_stride[1] +
indices_ne1_idx * input_stride[2] +
indices_ne2_idx * input_stride[3] +
group * QK8_0;
const int64_t scale_offset = selected_row_idx * scale_stride[1] +
indices_ne1_idx * scale_stride[2] +
indices_ne2_idx * scale_stride[3] + group;
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
indices_ne1_idx * output_stride[2] +
indices_ne2_idx * output_stride[3] +
group * QK8_0;
copy_in(input_offset);
LocalTensor<int8_t> input_local = input_queue.DeQue<int8_t>();
LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
// TODO: cast more data to speed up.
Cast(cast_local, input_local, RoundMode::CAST_NONE, QK8_0);
Cast(output_local, cast_local, RoundMode::CAST_NONE, QK8_0);
// Only mul need compile by group.
half scale = scale_gm.GetValue(scale_offset);
Muls(output_local, output_local, (float)scale, QK8_0);
input_queue.FreeTensor(input_local);
cast_queue.FreeTensor(cast_local);
output_queue.EnQue(output_local);
copy_out(output_offset);
}
__aicore__ inline void calculate() {
for (int64_t i = ir; i < ir + dr; i++) {
for (int64_t j = 0; j < group_size_in_row; j++) {
calculate_group(i, j);
}
}
}
private:
int64_t input_ne[4];
size_t input_stride[4];
int64_t scale_ne[4];
size_t scale_stride[4];
int64_t indices_ne[4];
size_t indices_stride[4];
int64_t output_ne[4];
size_t output_stride[4];
int64_t ir;
int64_t dr;
int64_t group_size_in_row;
TPipe pipe;
GlobalTensor<int8_t> input_gm;
GlobalTensor<half> scale_gm;
GlobalTensor<int32_t> indices_gm;
GlobalTensor<float> output_gm;
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
TQue<QuePosition::VECIN, BUFFER_NUM> cast_queue;
};
template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
auto gm_ptr = (__gm__ uint8_t *)gm;
auto ub_ptr = (uint8_t *)(ub);
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
*ub_ptr = *gm_ptr;
}
}
extern "C" __global__ __aicore__ void ascendc_get_row_q8_0(
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
int64_t input_ne_ub[4];
int64_t indices_ne_ub[4];
size_t indices_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
GET_ROW_Q8_0 op;
op.init(input_gm, indices_gm, output_gm, input_ne_ub, indices_ne_ub,
indices_nb_ub, output_ne_ub, output_nb_ub);
op.calculate();
}

View file

@ -0,0 +1,208 @@
#include "kernel_operator.h"
using namespace AscendC;
#define BUFFER_NUM 2
#define QK8_0 32
class QUANTIZE_F16_Q8_0 {
public:
__aicore__ inline QUANTIZE_F16_Q8_0() {}
__aicore__ inline void init(GM_ADDR input, GM_ADDR output,
int64_t *input_ne_ub, size_t *input_nb_ub,
int64_t *output_ne_ub) {
int64_t op_block_num = GetBlockNum();
int64_t op_block_idx = GetBlockIdx();
for (int i = 0; i < 4; i++) {
input_ne[i] = input_ne_ub[i];
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
output_ne[i] = output_ne_ub[i];
}
output_stride[0] = 1;
for (int i = 1; i < 4; i++) {
output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
}
scale_ne = input_ne;
scale_stride[0] = 1;
scale_stride[1] = input_ne[0] / QK8_0;
for (int i = 2; i < 4; i++) {
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
}
// split input tensor by rows.
uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
dr = nr / op_block_num;
uint64_t tails = nr % op_block_num;
if (op_block_idx < tails) {
dr += 1;
ir = dr * op_block_idx;
} else {
ir = dr * op_block_idx + tails;
}
group_size_in_row = scale_stride[1];
int64_t output_size = output_ne[0] * output_ne[1] * output_ne[2] *
output_ne[3] * sizeof(uint8_t);
input_gm.SetGlobalBuffer((__gm__ half *)input);
output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
scale_gm.SetGlobalBuffer((__gm__ half *)(output + output_size + ir *
group_size_in_row *
sizeof(half)));
pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(half));
pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
pipe.InitBuffer(work_queue, 1, 32);
pipe.InitBuffer(max_queue, 1, 32);
pipe.InitBuffer(abs_queue, 1, QK8_0 * sizeof(float));
pipe.InitBuffer(scale_queue, 1, 32);
pipe.InitBuffer(cast_queue ,1 ,QK8_0 * sizeof(float));
}
__aicore__ inline void copy_in(uint32_t offset) {
LocalTensor<half> input_local = input_queue.AllocTensor<half>();
DataCopy(input_local, input_gm[offset], QK8_0);
input_queue.EnQue(input_local);
}
__aicore__ inline void copy_out(uint32_t offset) {
LocalTensor<int8_t> output_local = output_queue.DeQue<int8_t>();
DataCopy(output_gm[offset], output_local, QK8_0);
output_queue.FreeTensor(output_local);
}
__aicore__ inline half calculate_group(int64_t row, int64_t group) {
const int64_t i3 = row / (input_ne[1] * input_ne[2]);
const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
const int64_t i1 =
row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];
const int64_t input_offset = i1 * input_stride[1] +
i2 * input_stride[2] +
i3 * input_stride[3] + QK8_0 * group;
const int64_t output_offset = i1 * output_stride[1] +
i2 * output_stride[2] +
i3 * output_stride[3] + QK8_0 * group;
copy_in(input_offset);
LocalTensor<half> input_local = input_queue.DeQue<half>();
LocalTensor<int8_t> output_local = output_queue.AllocTensor<int8_t>();
LocalTensor<float> work_local = work_queue.AllocTensor<float>();
LocalTensor<float> abs_local = abs_queue.AllocTensor<float>();
LocalTensor<float> max_local = max_queue.AllocTensor<float>();
LocalTensor<float> cast_local = cast_queue.AllocTensor<float>();
Cast(cast_local, input_local, RoundMode::CAST_NONE, QK8_0);
Abs(abs_local, cast_local, QK8_0);
ReduceMax(max_local, abs_local, work_local, QK8_0);
pipe_barrier(PIPE_ALL);
float d = max_local.GetValue(0);
d = d / ((1 << 7) - 1);
if (d != 0) {
Muls(cast_local, cast_local, 1.0f / d, QK8_0);
}
Cast(cast_local, cast_local, RoundMode::CAST_ROUND, QK8_0);
Cast(input_local, cast_local, RoundMode::CAST_ROUND, QK8_0);
Cast(output_local, input_local, RoundMode::CAST_ROUND, QK8_0);
output_queue.EnQue(output_local);
copy_out(output_offset);
input_queue.FreeTensor(input_local);
work_queue.FreeTensor(work_local);
abs_queue.FreeTensor(abs_local);
max_queue.FreeTensor(max_local);
cast_queue.FreeTensor(cast_local);
return (half)d;
}
__aicore__ inline void calculate() {
LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
uint32_t scale_local_offset = 0;
uint32_t scale_global_offset = 0;
for (int64_t i = ir; i < ir + dr; i++) {
for (int64_t j = 0; j < group_size_in_row; j++) {
half scale = calculate_group(i, j);
scale_local.SetValue(scale_local_offset++, scale);
if (scale_local_offset == 16) {
scale_local_offset = 0;
// TODO: OPTIMIZE ME
pipe_barrier(PIPE_ALL);
DataCopy(scale_gm[scale_global_offset], scale_local, 16);
pipe_barrier(PIPE_ALL);
scale_global_offset += 16;
}
}
}
if (scale_local_offset != 0) {
pipe_barrier(PIPE_ALL);
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = scale_local_offset * sizeof(half);
DataCopyPad(scale_gm[scale_global_offset], scale_local,
dataCopyParams);
pipe_barrier(PIPE_ALL);
}
}
private:
int64_t input_ne[4];
size_t input_stride[4];
int64_t *scale_ne;
size_t scale_stride[4];
int64_t output_ne[4];
size_t output_stride[4];
int64_t group_size_in_row;
int64_t ir;
int64_t dr;
TPipe pipe;
GlobalTensor<half> input_gm;
GlobalTensor<half> scale_gm;
GlobalTensor<int8_t> output_gm;
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
TQue<QuePosition::VECIN, 1> work_queue;
TQue<QuePosition::VECOUT, 1> max_queue;
TQue<QuePosition::VECIN, 1> abs_queue;
TQue<QuePosition::VECOUT, 1> scale_queue;
TQue<QuePosition::VECOUT, 1> cast_queue;
};
template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
auto gm_ptr = (__gm__ uint8_t *)gm;
auto ub_ptr = (uint8_t *)(ub);
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
*ub_ptr = *gm_ptr;
}
}
extern "C" __global__ __aicore__ void ascendc_quantize_f16_q8_0(
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t output_ne_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
QUANTIZE_F16_Q8_0 op;
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
op.calculate();
}

View file

@ -0,0 +1,206 @@
#include "kernel_operator.h"
using namespace AscendC;
#define BUFFER_NUM 2
#define QK8_0 32
class QUANTIZE_F32_Q8_0 {
public:
__aicore__ inline QUANTIZE_F32_Q8_0() {}
__aicore__ inline void init(GM_ADDR input, GM_ADDR output,
int64_t *input_ne_ub, size_t *input_nb_ub,
int64_t *output_ne_ub) {
int64_t op_block_num = GetBlockNum();
int64_t op_block_idx = GetBlockIdx();
for (int i = 0; i < 4; i++) {
input_ne[i] = input_ne_ub[i];
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
output_ne[i] = output_ne_ub[i];
}
output_stride[0] = 1;
for (int i = 1; i < 4; i++) {
output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
}
scale_ne = input_ne;
scale_stride[0] = 1;
scale_stride[1] = input_ne[0] / QK8_0;
for (int i = 2; i < 4; i++) {
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
}
// split input tensor by rows.
uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
dr = nr / op_block_num;
uint64_t tails = nr % op_block_num;
if (op_block_idx < tails) {
dr += 1;
ir = dr * op_block_idx;
} else {
ir = dr * op_block_idx + tails;
}
group_size_in_row = scale_stride[1];
int64_t output_size = output_ne[0] * output_ne[1] * output_ne[2] *
output_ne[3] * sizeof(uint8_t);
input_gm.SetGlobalBuffer((__gm__ float *)input);
output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
scale_gm.SetGlobalBuffer((__gm__ half *)(output + output_size +
ir * group_size_in_row *
sizeof(half)));
pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(float));
pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
pipe.InitBuffer(work_queue, 1, 32);
pipe.InitBuffer(max_queue, 1, 32);
pipe.InitBuffer(abs_queue, 1, QK8_0 * sizeof(float));
pipe.InitBuffer(cast_queue, 1, QK8_0 * sizeof(half));
pipe.InitBuffer(scale_queue, 1, 32);
}
__aicore__ inline void copy_in(uint32_t offset) {
LocalTensor<float> input_local = input_queue.AllocTensor<float>();
DataCopy(input_local, input_gm[offset], QK8_0);
input_queue.EnQue(input_local);
}
__aicore__ inline void copy_out(uint32_t offset) {
LocalTensor<int8_t> output_local = output_queue.DeQue<int8_t>();
DataCopy(output_gm[offset], output_local, QK8_0);
output_queue.FreeTensor(output_local);
}
__aicore__ inline half calculate_group(int64_t row, int64_t group) {
const int64_t i3 = row / (input_ne[1] * input_ne[2]);
const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
const int64_t i1 =
row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];
const int64_t input_offset = i1 * input_stride[1] +
i2 * input_stride[2] +
i3 * input_stride[3] + QK8_0 * group;
const int64_t output_offset = i1 * output_stride[1] +
i2 * output_stride[2] +
i3 * output_stride[3] + QK8_0 * group;
copy_in(input_offset);
LocalTensor<float> input_local = input_queue.DeQue<float>();
LocalTensor<int8_t> output_local = output_queue.AllocTensor<int8_t>();
LocalTensor<float> work_local = work_queue.AllocTensor<float>();
LocalTensor<float> abs_local = abs_queue.AllocTensor<float>();
LocalTensor<float> max_local = max_queue.AllocTensor<float>();
LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
Abs(abs_local, input_local, QK8_0);
ReduceMax(max_local, abs_local, work_local, QK8_0);
pipe_barrier(PIPE_ALL);
float d = max_local.GetValue(0);
d = d / ((1 << 7) - 1);
if (d != 0) {
Muls(input_local, input_local, 1.0f / d, QK8_0);
}
Cast(input_local, input_local, RoundMode::CAST_ROUND, QK8_0);
Cast(cast_local, input_local, RoundMode::CAST_ROUND, QK8_0);
Cast(output_local, cast_local, RoundMode::CAST_ROUND, QK8_0);
output_queue.EnQue(output_local);
copy_out(output_offset);
input_queue.FreeTensor(input_local);
work_queue.FreeTensor(work_local);
abs_queue.FreeTensor(abs_local);
max_queue.FreeTensor(max_local);
cast_queue.FreeTensor(cast_local);
return (half)d;
}
__aicore__ inline void calculate() {
LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
uint32_t scale_local_offset = 0;
uint32_t scale_global_offset = 0;
for (int64_t i = ir; i < ir + dr; i++) {
for (int64_t j = 0; j < group_size_in_row; j++) {
half scale = calculate_group(i, j);
scale_local.SetValue(scale_local_offset++, scale);
if (scale_local_offset == 16) {
scale_local_offset = 0;
// TODO: OPTIMIZE ME
pipe_barrier(PIPE_ALL);
DataCopy(scale_gm[scale_global_offset], scale_local, 16);
pipe_barrier(PIPE_ALL);
scale_global_offset += 16;
}
}
}
if (scale_local_offset != 0) {
pipe_barrier(PIPE_ALL);
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = scale_local_offset * sizeof(half);
DataCopyPad(scale_gm[scale_global_offset], scale_local,
dataCopyParams);
pipe_barrier(PIPE_ALL);
}
}
private:
int64_t input_ne[4];
size_t input_stride[4];
int64_t *scale_ne;
size_t scale_stride[4];
int64_t output_ne[4];
size_t output_stride[4];
int64_t group_size_in_row;
int64_t ir;
int64_t dr;
TPipe pipe;
GlobalTensor<float> input_gm;
GlobalTensor<half> scale_gm;
GlobalTensor<int8_t> output_gm;
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
TQue<QuePosition::VECIN, 1> work_queue;
TQue<QuePosition::VECOUT, 1> max_queue;
TQue<QuePosition::VECIN, 1> abs_queue;
TQue<QuePosition::VECIN, 1> cast_queue;
TQue<QuePosition::VECOUT, 1> scale_queue;
};
template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
auto gm_ptr = (__gm__ uint8_t *)gm;
auto ub_ptr = (uint8_t *)(ub);
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
*ub_ptr = *gm_ptr;
}
}
extern "C" __global__ __aicore__ void ascendc_quantize_f32_q8_0(
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t output_ne_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
QUANTIZE_F32_Q8_0 op;
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
op.calculate();
}