Merge branch 'ggerganov:master' into load-parallel-prompt-file
This commit is contained in:
commit
1c4c8cd801
3 changed files with 73 additions and 55 deletions
|
@ -363,7 +363,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.lora_adapter.push_back({argv[i], 1.0f});
|
||||
params.lora_adapter.push_back(std::make_tuple(argv[i], 1.0f));
|
||||
params.use_mmap = false;
|
||||
} else if (arg == "--lora-scaled") {
|
||||
if (++i >= argc) {
|
||||
|
@ -375,7 +375,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.lora_adapter.push_back({lora_adapter, std::stof(argv[i])});
|
||||
params.lora_adapter.push_back(std::make_tuple(lora_adapter, std::stof(argv[i])));
|
||||
params.use_mmap = false;
|
||||
} else if (arg == "--lora-base") {
|
||||
if (++i >= argc) {
|
||||
|
@ -618,6 +618,9 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||
process_escapes(params.prompt);
|
||||
process_escapes(params.input_prefix);
|
||||
process_escapes(params.input_suffix);
|
||||
for (auto & antiprompt : params.antiprompt) {
|
||||
process_escapes(antiprompt);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
|
|
|
@ -4,6 +4,7 @@
|
|||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import contextlib
|
||||
import json
|
||||
import os
|
||||
import struct
|
||||
|
@ -20,10 +21,10 @@ if 'NO_LOCAL_GGUF' not in os.environ:
|
|||
import gguf
|
||||
|
||||
|
||||
def count_model_parts(dir_model: Path) -> int:
|
||||
def count_model_parts(dir_model: Path, prefix: str) -> int:
|
||||
num_parts = 0
|
||||
for filename in os.listdir(dir_model):
|
||||
if filename.startswith("pytorch_model-"):
|
||||
if filename.startswith(prefix):
|
||||
num_parts += 1
|
||||
|
||||
if num_parts > 0:
|
||||
|
@ -77,20 +78,26 @@ print("gguf: loading model "+dir_model.name)
|
|||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||
hparams = json.load(f)
|
||||
|
||||
if hparams["architectures"][0] != "RWForCausalLM":
|
||||
if hparams["architectures"][0] != "FalconForCausalLM":
|
||||
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||
|
||||
sys.exit(1)
|
||||
|
||||
# get number of model parts
|
||||
num_parts = count_model_parts(dir_model)
|
||||
num_parts = count_model_parts(dir_model, "model-00")
|
||||
if num_parts:
|
||||
is_safetensors = True
|
||||
from safetensors import safe_open
|
||||
else:
|
||||
is_safetensors = False
|
||||
num_parts = count_model_parts(dir_model, "pytorch_model-")
|
||||
|
||||
ARCH=gguf.MODEL_ARCH.FALCON
|
||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||
|
||||
print("gguf: get model metadata")
|
||||
|
||||
block_count = hparams["n_layer"]
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
|
||||
gguf_writer.add_name("Falcon")
|
||||
gguf_writer.add_context_length(2048) # not in config.json
|
||||
|
@ -98,9 +105,9 @@ gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
|
|||
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"])
|
||||
gguf_writer.add_block_count(block_count)
|
||||
gguf_writer.add_head_count(hparams["n_head"])
|
||||
if "n_head_kv" in hparams:
|
||||
gguf_writer.add_head_count_kv(hparams["n_head_kv"])
|
||||
gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||||
if "num_kv_heads" in hparams:
|
||||
gguf_writer.add_head_count_kv(hparams["num_kv_heads"])
|
||||
else:
|
||||
gguf_writer.add_head_count_kv(1)
|
||||
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
|
||||
|
@ -146,8 +153,8 @@ special_vocab.add_to_gguf(gguf_writer)
|
|||
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
||||
|
||||
# params for qkv transform
|
||||
n_head = hparams["n_head"]
|
||||
n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
|
||||
n_head = hparams["num_attention_heads"]
|
||||
n_head_kv = hparams["num_kv_heads"] if "num_kv_heads" in hparams else 1
|
||||
|
||||
head_dim = hparams["hidden_size"] // n_head
|
||||
|
||||
|
@ -156,6 +163,10 @@ print("gguf: get tensor metadata")
|
|||
|
||||
if num_parts == 0:
|
||||
part_names = iter(("pytorch_model.bin",))
|
||||
elif is_safetensors:
|
||||
part_names = (
|
||||
f"model-{n:05}-of-{num_parts:05}.safetensors" for n in range(1, num_parts + 1)
|
||||
)
|
||||
else:
|
||||
part_names = (
|
||||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
||||
|
@ -165,10 +176,14 @@ for part_name in part_names:
|
|||
if args.vocab_only:
|
||||
break
|
||||
print("gguf: loading model part '" + part_name + "'")
|
||||
model_part = torch.load(dir_model / part_name, map_location="cpu")
|
||||
if is_safetensors:
|
||||
ctx = safe_open(dir_model / part_name, framework="pt", device="cpu")
|
||||
else:
|
||||
ctx = contextlib.nullcontext(torch.load(dir_model / part_name, map_location="cpu"))
|
||||
|
||||
with ctx as model_part:
|
||||
for name in model_part.keys():
|
||||
data = model_part[name]
|
||||
data = model_part.get_tensor(name) if is_safetensors else model_part[name]
|
||||
|
||||
old_dtype = data.dtype
|
||||
|
||||
|
|
|
@ -1015,7 +1015,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.lora_adapter.push_back({argv[i], 1.0f});
|
||||
params.lora_adapter.push_back(std::make_tuple(argv[i], 1.0f));
|
||||
params.use_mmap = false;
|
||||
}
|
||||
else if (arg == "--lora-scaled")
|
||||
|
@ -1031,7 +1031,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.lora_adapter.push_back({lora_adapter, std::stof(argv[i])});
|
||||
params.lora_adapter.push_back(std::make_tuple(lora_adapter, std::stof(argv[i])));
|
||||
params.use_mmap = false;
|
||||
}
|
||||
else if (arg == "--lora-base")
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue