ggml : change ggml_graph_compute() API to not require context (#1999)
* ggml_graph_compute: deprecate using ggml_context, try resolve issue #287 * rewrite: no longer consider backward compitability; plan and make_plan * minor: rename ctx as plan; const * remove ggml_graph_compute from tests/test-grad0.c, but current change breaks backward * add static ggml_graph_compute_sugar() * minor: update comments * reusable buffers * ggml : more consistent naming + metal fixes * ggml : fix docs * tests : disable grad / opt + minor naming changes * ggml : add ggml_graph_compute_with_ctx() - backwards compatible API - deduplicates a lot of copy-paste * ci : enable test-grad0 * examples : factor out plan allocation into a helper function * llama : factor out plan stuff into a helper function * ci : fix env * llama : fix duplicate symbols + refactor example benchmark * ggml : remove obsolete assert + refactor n_tasks section * ggml : fix indentation in switch * llama : avoid unnecessary bool * ggml : remove comments from source file and match order in header --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
7242140283
commit
1d656d6360
13 changed files with 571 additions and 449 deletions
760
ggml.c
760
ggml.c
|
@ -4583,14 +4583,13 @@ struct ggml_tensor * ggml_new_tensor_impl(
|
|||
/*.src0 =*/ NULL,
|
||||
/*.src1 =*/ NULL,
|
||||
/*.opt =*/ { NULL },
|
||||
/*.n_tasks =*/ 0,
|
||||
/*.perf_runs =*/ 0,
|
||||
/*.perf_cycles =*/ 0,
|
||||
/*.perf_time_us =*/ 0,
|
||||
/*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
|
||||
/*.name =*/ { 0 },
|
||||
/*.extra =*/ NULL,
|
||||
/*.pad =*/ { 0 },
|
||||
/*.padding =*/ { 0 },
|
||||
};
|
||||
|
||||
// TODO: this should not be needed as long as we don't rely on aligned SIMD loads
|
||||
|
@ -10718,8 +10717,6 @@ static void ggml_compute_forward_mul_mat(
|
|||
|
||||
float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
|
||||
|
||||
assert(ne00 % 32 == 0);
|
||||
|
||||
for (int64_t ic = 0; ic < ne11; ++ic) {
|
||||
vec_dot(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
|
||||
}
|
||||
|
@ -15772,9 +15769,6 @@ struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
|
|||
struct ggml_cgraph result = {
|
||||
/*.n_nodes =*/ 0,
|
||||
/*.n_leafs =*/ 0,
|
||||
/*.n_threads =*/ GGML_DEFAULT_N_THREADS,
|
||||
/*.work_size =*/ 0,
|
||||
/*.work =*/ NULL,
|
||||
/*.nodes =*/ { NULL },
|
||||
/*.grads =*/ { NULL },
|
||||
/*.leafs =*/ { NULL },
|
||||
|
@ -15945,12 +15939,13 @@ void clear_numa_thread_affinity(void) {}
|
|||
#endif
|
||||
|
||||
struct ggml_compute_state_shared {
|
||||
struct ggml_cgraph * cgraph;
|
||||
const struct ggml_cgraph * cgraph;
|
||||
const struct ggml_cplan * cplan;
|
||||
|
||||
int64_t perf_node_start_cycles;
|
||||
int64_t perf_node_start_time_us;
|
||||
|
||||
int n_threads;
|
||||
const int n_threads;
|
||||
|
||||
// synchronization primitives
|
||||
atomic_int n_active; // num active threads
|
||||
|
@ -15974,9 +15969,13 @@ static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const
|
|||
|
||||
static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
struct ggml_compute_state * state = (struct ggml_compute_state *) data;
|
||||
struct ggml_cgraph * cgraph = state->shared->cgraph;
|
||||
|
||||
const int n_threads = state->shared->n_threads;
|
||||
const struct ggml_cgraph * cgraph = state->shared->cgraph;
|
||||
const struct ggml_cplan * cplan = state->shared->cplan;
|
||||
|
||||
const int * n_tasks_arr = cplan->n_tasks;
|
||||
const int n_threads = state->shared->n_threads;
|
||||
|
||||
set_numa_thread_affinity(state->ith, n_threads);
|
||||
|
||||
int node_n = -1;
|
||||
|
@ -15989,15 +15988,15 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
|||
/*.type =*/ GGML_TASK_FINALIZE,
|
||||
/*.ith =*/ 0,
|
||||
/*.nth =*/ 0,
|
||||
/*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
|
||||
/*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
|
||||
/*.wsize =*/ cplan->work_size,
|
||||
/*.wdata =*/ cplan->work_data,
|
||||
};
|
||||
|
||||
if (node_n != -1) {
|
||||
/* FINALIZE */
|
||||
struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
|
||||
if (GGML_OP_HAS_FINALIZE[node->op]) {
|
||||
params.nth = node->n_tasks;
|
||||
params.nth = n_tasks_arr[node_n];
|
||||
ggml_compute_forward(¶ms, node);
|
||||
ggml_graph_compute_perf_stats_node(node, state->shared);
|
||||
}
|
||||
|
@ -16008,11 +16007,12 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
|||
GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
|
||||
|
||||
struct ggml_tensor * node = cgraph->nodes[node_n];
|
||||
const int n_tasks = n_tasks_arr[node_n];
|
||||
|
||||
state->shared->perf_node_start_cycles = ggml_perf_cycles();
|
||||
state->shared->perf_node_start_time_us = ggml_perf_time_us();
|
||||
|
||||
params.nth = node->n_tasks;
|
||||
params.nth = n_tasks;
|
||||
|
||||
/* INIT */
|
||||
if (GGML_OP_HAS_INIT[node->op]) {
|
||||
|
@ -16020,7 +16020,7 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
|||
ggml_compute_forward(¶ms, node);
|
||||
}
|
||||
|
||||
if (node->n_tasks == 1) {
|
||||
if (n_tasks == 1) {
|
||||
// TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
|
||||
// they do something more efficient than spinning (?)
|
||||
params.type = GGML_TASK_COMPUTE;
|
||||
|
@ -16052,16 +16052,17 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
|||
|
||||
/* COMPUTE */
|
||||
struct ggml_tensor * node = cgraph->nodes[node_n];
|
||||
const int n_tasks = n_tasks_arr[node_n];
|
||||
|
||||
struct ggml_compute_params params = {
|
||||
/*.type =*/ GGML_TASK_COMPUTE,
|
||||
/*.ith =*/ state->ith,
|
||||
/*.nth =*/ node->n_tasks,
|
||||
/*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
|
||||
/*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
|
||||
/*.nth =*/ n_tasks,
|
||||
/*.wsize =*/ cplan->work_size,
|
||||
/*.wdata =*/ cplan->work_data,
|
||||
};
|
||||
|
||||
if (state->ith < node->n_tasks) {
|
||||
if (state->ith < n_tasks) {
|
||||
ggml_compute_forward(¶ms, node);
|
||||
}
|
||||
}
|
||||
|
@ -16069,11 +16070,364 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
|||
return 0;
|
||||
}
|
||||
|
||||
void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
|
||||
const int n_threads = cgraph->n_threads;
|
||||
struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
||||
if (n_threads <= 0) {
|
||||
n_threads = GGML_DEFAULT_N_THREADS;
|
||||
}
|
||||
|
||||
size_t work_size = 0;
|
||||
|
||||
struct ggml_cplan cplan;
|
||||
memset(&cplan, 0, sizeof(struct ggml_cplan));
|
||||
|
||||
// thread scheduling for the different operations + work buffer size estimation
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
int n_tasks = 1;
|
||||
|
||||
struct ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
switch (node->op) {
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_DUP:
|
||||
{
|
||||
n_tasks = n_threads;
|
||||
|
||||
size_t cur = 0;
|
||||
if (ggml_is_quantized(node->type)) {
|
||||
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks;
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_ADD1:
|
||||
{
|
||||
n_tasks = n_threads;
|
||||
|
||||
size_t cur = 0;
|
||||
|
||||
if (ggml_is_quantized(node->src0->type)) {
|
||||
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_tasks;
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_ACC:
|
||||
{
|
||||
n_tasks = n_threads;
|
||||
|
||||
size_t cur = 0;
|
||||
|
||||
if (ggml_is_quantized(node->src0->type)) {
|
||||
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_tasks;
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_SUB:
|
||||
case GGML_OP_DIV:
|
||||
case GGML_OP_SQR:
|
||||
case GGML_OP_SQRT:
|
||||
case GGML_OP_LOG:
|
||||
case GGML_OP_SUM:
|
||||
case GGML_OP_SUM_ROWS:
|
||||
case GGML_OP_MEAN:
|
||||
case GGML_OP_ARGMAX:
|
||||
case GGML_OP_REPEAT:
|
||||
case GGML_OP_REPEAT_BACK:
|
||||
case GGML_OP_ABS:
|
||||
case GGML_OP_SGN:
|
||||
case GGML_OP_NEG:
|
||||
case GGML_OP_STEP:
|
||||
case GGML_OP_TANH:
|
||||
case GGML_OP_ELU:
|
||||
case GGML_OP_RELU:
|
||||
{
|
||||
n_tasks = 1;
|
||||
} break;
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_GELU:
|
||||
case GGML_OP_GELU_QUICK:
|
||||
case GGML_OP_SILU:
|
||||
case GGML_OP_SILU_BACK:
|
||||
case GGML_OP_NORM:
|
||||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_RMS_NORM_BACK:
|
||||
{
|
||||
n_tasks = n_threads;
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT:
|
||||
case GGML_OP_OUT_PROD:
|
||||
{
|
||||
n_tasks = n_threads;
|
||||
|
||||
// TODO: use different scheduling for different matrix sizes
|
||||
//const int nr0 = ggml_nrows(node->src0);
|
||||
//const int nr1 = ggml_nrows(node->src1);
|
||||
|
||||
//n_tasks = MIN(n_threads, MAX(1, nr0/128));
|
||||
//printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
|
||||
|
||||
size_t cur = 0;
|
||||
const enum ggml_type vec_dot_type = type_traits[node->src0->type].vec_dot_type;
|
||||
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
|
||||
n_tasks = 1; // TODO: this actually is doing nothing
|
||||
// the threads are still spinning
|
||||
} else
|
||||
#elif defined(GGML_USE_CLBLAST)
|
||||
if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
|
||||
n_tasks = 1; // TODO: this actually is doing nothing
|
||||
// the threads are still spinning
|
||||
cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
|
||||
} else
|
||||
#endif
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
|
||||
n_tasks = 1; // TODO: this actually is doing nothing
|
||||
// the threads are still spinning
|
||||
if (node->src0->type != GGML_TYPE_F32) {
|
||||
// here we need memory just for single 2D matrix from src0
|
||||
cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
|
||||
}
|
||||
} else
|
||||
#endif
|
||||
if (node->src1->type != vec_dot_type) {
|
||||
cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[vec_dot_type];
|
||||
} else {
|
||||
cur = 0;
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_SCALE:
|
||||
{
|
||||
n_tasks = 1;
|
||||
} break;
|
||||
case GGML_OP_SET:
|
||||
case GGML_OP_CONT:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_GET_ROWS:
|
||||
case GGML_OP_GET_ROWS_BACK:
|
||||
case GGML_OP_DIAG:
|
||||
case GGML_OP_DIAG_MASK_ZERO:
|
||||
{
|
||||
n_tasks = 1;
|
||||
} break;
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
case GGML_OP_SOFT_MAX_BACK:
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_ROPE_BACK:
|
||||
{
|
||||
n_tasks = n_threads;
|
||||
} break;
|
||||
case GGML_OP_ALIBI:
|
||||
{
|
||||
n_tasks = 1; //TODO
|
||||
} break;
|
||||
case GGML_OP_CLAMP:
|
||||
{
|
||||
n_tasks = 1; //TODO
|
||||
} break;
|
||||
case GGML_OP_CONV_1D:
|
||||
{
|
||||
n_tasks = n_threads;
|
||||
|
||||
GGML_ASSERT(node->src0->ne[3] == 1);
|
||||
GGML_ASSERT(node->src1->ne[2] == 1);
|
||||
GGML_ASSERT(node->src1->ne[3] == 1);
|
||||
|
||||
size_t cur = 0;
|
||||
const int nk = node->src0->ne[0];
|
||||
|
||||
if (node->src0->type == GGML_TYPE_F16 &&
|
||||
node->src1->type == GGML_TYPE_F32) {
|
||||
cur = sizeof(ggml_fp16_t)*(
|
||||
nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
|
||||
( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
|
||||
);
|
||||
} else if (node->src0->type == GGML_TYPE_F32 &&
|
||||
node->src1->type == GGML_TYPE_F32) {
|
||||
cur = sizeof(float)*(
|
||||
nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
|
||||
( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
|
||||
);
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_CONV_2D:
|
||||
{
|
||||
n_tasks = n_threads;
|
||||
|
||||
GGML_ASSERT(node->src1->ne[3] == 1);
|
||||
|
||||
const int64_t ne00 = node->src0->ne[0]; // W
|
||||
const int64_t ne01 = node->src0->ne[1]; // H
|
||||
const int64_t ne02 = node->src0->ne[2]; // C
|
||||
const int64_t ne03 = node->src0->ne[3]; // N
|
||||
|
||||
const int64_t ne10 = node->src1->ne[0]; // W
|
||||
const int64_t ne11 = node->src1->ne[1]; // H
|
||||
const int64_t ne12 = node->src1->ne[2]; // C
|
||||
|
||||
const int64_t nk = ne00*ne01;
|
||||
|
||||
UNUSED(ne02);
|
||||
UNUSED(ne03);
|
||||
UNUSED(nk);
|
||||
|
||||
size_t cur = 0;
|
||||
|
||||
if (node->src0->type == GGML_TYPE_F16 &&
|
||||
node->src1->type == GGML_TYPE_F32) {
|
||||
cur = sizeof(ggml_fp16_t)*(ne10*ne11*ne12);
|
||||
} else if (node->src0->type == GGML_TYPE_F32 &&
|
||||
node->src1->type == GGML_TYPE_F32) {
|
||||
cur = sizeof(float)* (ne10*ne11*ne12);
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_FLASH_ATTN:
|
||||
{
|
||||
n_tasks = n_threads;
|
||||
|
||||
size_t cur = 0;
|
||||
|
||||
const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
|
||||
|
||||
if (node->src1->type == GGML_TYPE_F32) {
|
||||
cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
|
||||
cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
|
||||
}
|
||||
|
||||
if (node->src1->type == GGML_TYPE_F16) {
|
||||
cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
|
||||
cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_FLASH_FF:
|
||||
{
|
||||
n_tasks = n_threads;
|
||||
|
||||
size_t cur = 0;
|
||||
|
||||
if (node->src1->type == GGML_TYPE_F32) {
|
||||
cur = sizeof(float)*node->src1->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
|
||||
cur += sizeof(float)*node->src1->ne[1]*n_tasks; // this is overestimated by x2
|
||||
}
|
||||
|
||||
if (node->src1->type == GGML_TYPE_F16) {
|
||||
cur = sizeof(float)*node->src1->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
|
||||
cur += sizeof(float)*node->src1->ne[1]*n_tasks; // this is overestimated by x2
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_FLASH_ATTN_BACK:
|
||||
{
|
||||
n_tasks = n_threads;
|
||||
|
||||
size_t cur = 0;
|
||||
|
||||
const int64_t D = node->src0->ne[0];
|
||||
const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
|
||||
const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
|
||||
if (node->src1->type == GGML_TYPE_F32) {
|
||||
cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
|
||||
cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
|
||||
}
|
||||
|
||||
if (node->src1->type == GGML_TYPE_F16) {
|
||||
cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
|
||||
cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_WIN_PART:
|
||||
case GGML_OP_WIN_UNPART:
|
||||
case GGML_OP_MAP_UNARY:
|
||||
case GGML_OP_MAP_BINARY:
|
||||
case GGML_OP_MAP_CUSTOM1:
|
||||
case GGML_OP_MAP_CUSTOM2:
|
||||
case GGML_OP_MAP_CUSTOM3:
|
||||
{
|
||||
n_tasks = 1;
|
||||
} break;
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||||
{
|
||||
n_tasks = n_threads;
|
||||
|
||||
size_t cur = ggml_type_size(node->type)*(n_tasks + node->src0->ne[0]*n_tasks);
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
|
||||
{
|
||||
n_tasks = n_threads;
|
||||
|
||||
size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*n_tasks;
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_NONE:
|
||||
{
|
||||
n_tasks = 1;
|
||||
} break;
|
||||
case GGML_OP_COUNT:
|
||||
{
|
||||
GGML_ASSERT(false);
|
||||
} break;
|
||||
}
|
||||
|
||||
cplan.n_tasks[i] = n_tasks;
|
||||
}
|
||||
|
||||
if (work_size > 0) {
|
||||
work_size += CACHE_LINE_SIZE*(n_threads - 1);
|
||||
}
|
||||
|
||||
cplan.n_threads = n_threads;
|
||||
cplan.work_size = work_size;
|
||||
cplan.work_data = NULL;
|
||||
|
||||
return cplan;
|
||||
}
|
||||
|
||||
void ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
|
||||
{
|
||||
GGML_ASSERT(cplan);
|
||||
GGML_ASSERT(cplan->n_threads > 0);
|
||||
|
||||
if (cplan->work_size > 0) {
|
||||
GGML_ASSERT(cplan->work_data);
|
||||
}
|
||||
|
||||
for (int i = 0; i < cgraph->n_nodes; ++i) {
|
||||
if (cgraph->nodes[i]->op != GGML_OP_NONE) {
|
||||
GGML_ASSERT(cplan->n_tasks[i] > 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const int n_threads = cplan->n_threads;
|
||||
|
||||
struct ggml_compute_state_shared state_shared = {
|
||||
/*.cgraph =*/ cgraph,
|
||||
/*.cgraph_plan =*/ cplan,
|
||||
/*.perf_node_start_cycles =*/ 0,
|
||||
/*.perf_node_start_time_us =*/ 0,
|
||||
/*.n_threads =*/ n_threads,
|
||||
|
@ -16082,336 +16436,6 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
|||
};
|
||||
struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
|
||||
|
||||
// initialize tasks + work buffer
|
||||
{
|
||||
size_t work_size = 0;
|
||||
|
||||
// thread scheduling for the different operations
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
switch (node->op) {
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_DUP:
|
||||
{
|
||||
node->n_tasks = n_threads;
|
||||
|
||||
size_t cur = 0;
|
||||
if (ggml_is_quantized(node->type)) {
|
||||
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_ADD1:
|
||||
{
|
||||
node->n_tasks = n_threads;
|
||||
|
||||
size_t cur = 0;
|
||||
|
||||
if (ggml_is_quantized(node->src0->type)) {
|
||||
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_ACC:
|
||||
{
|
||||
node->n_tasks = n_threads;
|
||||
|
||||
size_t cur = 0;
|
||||
|
||||
if (ggml_is_quantized(node->src0->type)) {
|
||||
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_SUB:
|
||||
case GGML_OP_DIV:
|
||||
case GGML_OP_SQR:
|
||||
case GGML_OP_SQRT:
|
||||
case GGML_OP_LOG:
|
||||
case GGML_OP_SUM:
|
||||
case GGML_OP_SUM_ROWS:
|
||||
case GGML_OP_MEAN:
|
||||
case GGML_OP_ARGMAX:
|
||||
case GGML_OP_REPEAT:
|
||||
case GGML_OP_REPEAT_BACK:
|
||||
case GGML_OP_ABS:
|
||||
case GGML_OP_SGN:
|
||||
case GGML_OP_NEG:
|
||||
case GGML_OP_STEP:
|
||||
case GGML_OP_TANH:
|
||||
case GGML_OP_ELU:
|
||||
case GGML_OP_RELU:
|
||||
{
|
||||
node->n_tasks = 1;
|
||||
} break;
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_GELU:
|
||||
case GGML_OP_GELU_QUICK:
|
||||
case GGML_OP_SILU:
|
||||
case GGML_OP_SILU_BACK:
|
||||
case GGML_OP_NORM:
|
||||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_RMS_NORM_BACK:
|
||||
{
|
||||
node->n_tasks = n_threads;
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT:
|
||||
case GGML_OP_OUT_PROD:
|
||||
{
|
||||
node->n_tasks = n_threads;
|
||||
|
||||
// TODO: use different scheduling for different matrix sizes
|
||||
//const int nr0 = ggml_nrows(node->src0);
|
||||
//const int nr1 = ggml_nrows(node->src1);
|
||||
|
||||
//node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
|
||||
//printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
|
||||
|
||||
size_t cur = 0;
|
||||
const enum ggml_type vec_dot_type = type_traits[node->src0->type].vec_dot_type;
|
||||
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
|
||||
node->n_tasks = 1; // TODO: this actually is doing nothing
|
||||
// the threads are still spinning
|
||||
}
|
||||
else
|
||||
#elif defined(GGML_USE_CLBLAST)
|
||||
if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
|
||||
node->n_tasks = 1; // TODO: this actually is doing nothing
|
||||
// the threads are still spinning
|
||||
cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
|
||||
}
|
||||
else
|
||||
#endif
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
|
||||
node->n_tasks = 1; // TODO: this actually is doing nothing
|
||||
// the threads are still spinning
|
||||
if (node->src0->type != GGML_TYPE_F32) {
|
||||
// here we need memory just for single 2D matrix from src0
|
||||
cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
|
||||
}
|
||||
} else
|
||||
#endif
|
||||
if (node->src1->type != vec_dot_type) {
|
||||
cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[vec_dot_type];
|
||||
} else {
|
||||
cur = 0;
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_SCALE:
|
||||
{
|
||||
node->n_tasks = 1;
|
||||
} break;
|
||||
case GGML_OP_SET:
|
||||
case GGML_OP_CONT:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_GET_ROWS:
|
||||
case GGML_OP_GET_ROWS_BACK:
|
||||
case GGML_OP_DIAG:
|
||||
case GGML_OP_DIAG_MASK_ZERO:
|
||||
{
|
||||
node->n_tasks = 1;
|
||||
} break;
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
case GGML_OP_SOFT_MAX_BACK:
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_ROPE_BACK:
|
||||
{
|
||||
node->n_tasks = n_threads;
|
||||
} break;
|
||||
case GGML_OP_ALIBI:
|
||||
{
|
||||
node->n_tasks = 1; //TODO
|
||||
} break;
|
||||
case GGML_OP_CLAMP:
|
||||
{
|
||||
node->n_tasks = 1; //TODO
|
||||
} break;
|
||||
case GGML_OP_CONV_1D:
|
||||
{
|
||||
node->n_tasks = n_threads;
|
||||
|
||||
GGML_ASSERT(node->src0->ne[3] == 1);
|
||||
GGML_ASSERT(node->src1->ne[2] == 1);
|
||||
GGML_ASSERT(node->src1->ne[3] == 1);
|
||||
|
||||
size_t cur = 0;
|
||||
const int nk = node->src0->ne[0];
|
||||
|
||||
if (node->src0->type == GGML_TYPE_F16 &&
|
||||
node->src1->type == GGML_TYPE_F32) {
|
||||
cur = sizeof(ggml_fp16_t)*(
|
||||
nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
|
||||
( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
|
||||
);
|
||||
} else if (node->src0->type == GGML_TYPE_F32 &&
|
||||
node->src1->type == GGML_TYPE_F32) {
|
||||
cur = sizeof(float)*(
|
||||
nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
|
||||
( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
|
||||
);
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_CONV_2D:
|
||||
{
|
||||
node->n_tasks = n_threads;
|
||||
|
||||
GGML_ASSERT(node->src1->ne[3] == 1);
|
||||
|
||||
const int64_t ne00 = node->src0->ne[0]; // W
|
||||
const int64_t ne01 = node->src0->ne[1]; // H
|
||||
const int64_t ne02 = node->src0->ne[2]; // C
|
||||
const int64_t ne03 = node->src0->ne[3]; // N
|
||||
|
||||
const int64_t ne10 = node->src1->ne[0]; // W
|
||||
const int64_t ne11 = node->src1->ne[1]; // H
|
||||
const int64_t ne12 = node->src1->ne[2]; // C
|
||||
|
||||
const int64_t nk = ne00*ne01;
|
||||
|
||||
UNUSED(ne02);
|
||||
UNUSED(ne03);
|
||||
UNUSED(nk);
|
||||
|
||||
size_t cur = 0;
|
||||
|
||||
if (node->src0->type == GGML_TYPE_F16 &&
|
||||
node->src1->type == GGML_TYPE_F32) {
|
||||
cur = sizeof(ggml_fp16_t)*(ne10*ne11*ne12);
|
||||
} else if (node->src0->type == GGML_TYPE_F32 &&
|
||||
node->src1->type == GGML_TYPE_F32) {
|
||||
cur = sizeof(float)* (ne10*ne11*ne12);
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_FLASH_ATTN:
|
||||
{
|
||||
node->n_tasks = n_threads;
|
||||
|
||||
size_t cur = 0;
|
||||
|
||||
const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
|
||||
|
||||
if (node->src1->type == GGML_TYPE_F32) {
|
||||
cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
|
||||
cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
|
||||
}
|
||||
|
||||
if (node->src1->type == GGML_TYPE_F16) {
|
||||
cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
|
||||
cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_FLASH_FF:
|
||||
{
|
||||
node->n_tasks = n_threads;
|
||||
|
||||
size_t cur = 0;
|
||||
|
||||
if (node->src1->type == GGML_TYPE_F32) {
|
||||
cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
|
||||
cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
|
||||
}
|
||||
|
||||
if (node->src1->type == GGML_TYPE_F16) {
|
||||
cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
|
||||
cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_FLASH_ATTN_BACK:
|
||||
{
|
||||
node->n_tasks = n_threads;
|
||||
|
||||
size_t cur = 0;
|
||||
|
||||
const int64_t D = node->src0->ne[0];
|
||||
const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
|
||||
const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
|
||||
if (node->src1->type == GGML_TYPE_F32) {
|
||||
cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
|
||||
cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
|
||||
}
|
||||
|
||||
if (node->src1->type == GGML_TYPE_F16) {
|
||||
cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
|
||||
cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_WIN_PART:
|
||||
case GGML_OP_WIN_UNPART:
|
||||
case GGML_OP_MAP_UNARY:
|
||||
case GGML_OP_MAP_BINARY:
|
||||
case GGML_OP_MAP_CUSTOM1:
|
||||
case GGML_OP_MAP_CUSTOM2:
|
||||
case GGML_OP_MAP_CUSTOM3:
|
||||
{
|
||||
node->n_tasks = 1;
|
||||
} break;
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||||
{
|
||||
node->n_tasks = n_threads;
|
||||
|
||||
size_t cur = ggml_type_size(node->type)*(node->n_tasks + node->src0->ne[0]*node->n_tasks);
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
|
||||
{
|
||||
node->n_tasks = n_threads;
|
||||
|
||||
size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*node->n_tasks;
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_NONE:
|
||||
{
|
||||
node->n_tasks = 1;
|
||||
} break;
|
||||
case GGML_OP_COUNT:
|
||||
{
|
||||
GGML_ASSERT(false);
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
||||
if (cgraph->work != NULL && work_size > cgraph->work_size) {
|
||||
GGML_ASSERT(false); // TODO: better handling
|
||||
}
|
||||
|
||||
if (work_size > 0 && cgraph->work == NULL) {
|
||||
cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
|
||||
|
||||
GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
|
||||
cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
|
||||
}
|
||||
}
|
||||
|
||||
// create thread pool
|
||||
if (n_threads > 1) {
|
||||
for (int j = 1; j < n_threads; ++j) {
|
||||
|
@ -16473,6 +16497,17 @@ void ggml_graph_reset(struct ggml_cgraph * cgraph) {
|
|||
}
|
||||
}
|
||||
|
||||
void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
|
||||
struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
|
||||
|
||||
struct ggml_tensor * buf = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cplan.work_size);
|
||||
GGML_ASSERT(buf);
|
||||
|
||||
cplan.work_data = buf->data;
|
||||
|
||||
ggml_graph_compute(cgraph, &cplan);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
|
||||
for (int i = 0; i < cgraph->n_leafs; i++) {
|
||||
struct ggml_tensor * leaf = cgraph->leafs[i];
|
||||
|
@ -16511,14 +16546,13 @@ static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char
|
|||
const int64_t * ne = tensor->ne;
|
||||
const size_t * nb = tensor->nb;
|
||||
|
||||
fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %8d %16p %32s\n",
|
||||
fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
|
||||
arg,
|
||||
ggml_type_name(tensor->type),
|
||||
ggml_op_name (tensor->op),
|
||||
tensor->n_dims,
|
||||
ne[0], ne[1], ne[2], ne[3],
|
||||
nb[0], nb[1], nb[2], nb[3],
|
||||
tensor->n_tasks,
|
||||
tensor->data,
|
||||
tensor->name);
|
||||
}
|
||||
|
@ -17254,9 +17288,6 @@ static enum ggml_opt_result ggml_opt_adam(
|
|||
struct ggml_cgraph * gb) {
|
||||
GGML_ASSERT(ggml_is_scalar(f));
|
||||
|
||||
gf->n_threads = params.n_threads;
|
||||
gb->n_threads = params.n_threads;
|
||||
|
||||
// these will store the parameters we want to optimize
|
||||
struct ggml_tensor * ps[GGML_MAX_PARAMS];
|
||||
|
||||
|
@ -17303,7 +17334,8 @@ static enum ggml_opt_result ggml_opt_adam(
|
|||
// compute the function value
|
||||
ggml_graph_reset (gf);
|
||||
ggml_set_f32 (f->grad, 1.0f);
|
||||
ggml_graph_compute(ctx, gb);
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
|
||||
|
||||
opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
|
||||
opt->adam.fx_best = opt->adam.fx_prev;
|
||||
|
@ -17383,7 +17415,8 @@ static enum ggml_opt_result ggml_opt_adam(
|
|||
|
||||
ggml_graph_reset (gf);
|
||||
ggml_set_f32 (f->grad, 1.0f);
|
||||
ggml_graph_compute(ctx, gb);
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
|
||||
|
||||
const float fx = ggml_get_f32_1d(f, 0);
|
||||
|
||||
|
@ -17505,7 +17538,8 @@ static enum ggml_opt_result linesearch_backtracking(
|
|||
|
||||
ggml_graph_reset (gf);
|
||||
ggml_set_f32 (f->grad, 1.0f);
|
||||
ggml_graph_compute(ctx, gb);
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
|
||||
|
||||
ggml_opt_get_grad(np, ps, g);
|
||||
|
||||
|
@ -17573,9 +17607,6 @@ static enum ggml_opt_result ggml_opt_lbfgs(
|
|||
}
|
||||
}
|
||||
|
||||
gf->n_threads = params.n_threads;
|
||||
gb->n_threads = params.n_threads;
|
||||
|
||||
const int m = params.lbfgs.m;
|
||||
|
||||
// these will store the parameters we want to optimize
|
||||
|
@ -17627,7 +17658,8 @@ static enum ggml_opt_result ggml_opt_lbfgs(
|
|||
|
||||
ggml_graph_reset (gf);
|
||||
ggml_set_f32 (f->grad, 1.0f);
|
||||
ggml_graph_compute(ctx, gb);
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
|
||||
|
||||
ggml_opt_get_grad(np, ps, g);
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue