Merge branch 'master' into mpi-heterogenous

This commit is contained in:
Branden Butler 2024-03-18 21:49:31 -05:00 committed by GitHub
commit 1d744d8226
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
49 changed files with 3052 additions and 1453 deletions

View file

@ -48,6 +48,28 @@ jobs:
CC=gcc-8 make tests -j $(nproc)
make test -j $(nproc)
ubuntu-focal-make-curl:
runs-on: ubuntu-20.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v3
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential gcc-8 libcurl4-openssl-dev
- name: Build
id: make_build
env:
LLAMA_FATAL_WARNINGS: 1
LLAMA_CURL: 1
run: |
CC=gcc-8 make -j $(nproc)
ubuntu-latest-cmake:
runs-on: ubuntu-latest
@ -76,40 +98,40 @@ jobs:
cd build
ctest -L main --verbose --timeout 900
ubuntu-latest-cmake-sanitizer:
runs-on: ubuntu-latest
continue-on-error: true
strategy:
matrix:
sanitizer: [ADDRESS, THREAD, UNDEFINED]
build_type: [Debug, Release]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v3
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential
- name: Build
id: cmake_build
run: |
mkdir build
cd build
cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
cmake --build . --config ${{ matrix.build_type }} -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
ctest -L main --verbose --timeout 900
# ubuntu-latest-cmake-sanitizer:
# runs-on: ubuntu-latest
#
# continue-on-error: true
#
# strategy:
# matrix:
# sanitizer: [ADDRESS, THREAD, UNDEFINED]
# build_type: [Debug, Release]
#
# steps:
# - name: Clone
# id: checkout
# uses: actions/checkout@v3
#
# - name: Dependencies
# id: depends
# run: |
# sudo apt-get update
# sudo apt-get install build-essential
#
# - name: Build
# id: cmake_build
# run: |
# mkdir build
# cd build
# cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
# cmake --build . --config ${{ matrix.build_type }} -j $(nproc)
#
# - name: Test
# id: cmake_test
# run: |
# cd build
# ctest -L main --verbose --timeout 900
ubuntu-latest-cmake-mpi:
runs-on: ubuntu-latest

22
.github/workflows/close-issue.yml vendored Normal file
View file

@ -0,0 +1,22 @@
name: Close inactive issues
on:
schedule:
- cron: "42 0 * * *"
jobs:
close-issues:
runs-on: ubuntu-latest
permissions:
issues: write
pull-requests: write
steps:
- uses: actions/stale@v5
with:
days-before-issue-stale: 30
days-before-issue-close: 14
stale-issue-label: "stale"
close-issue-message: "This issue was closed because it has been inactive for 14 days since being marked as stale."
days-before-pr-stale: -1
days-before-pr-close: -1
operations-per-run: 1000
repo-token: ${{ secrets.GITHUB_TOKEN }}

View file

@ -24,13 +24,13 @@ jobs:
strategy:
matrix:
sanitizer: [ADDRESS, THREAD, UNDEFINED]
# TODO: temporary disabled due to linux kernel issues
#sanitizer: [ADDRESS, THREAD, UNDEFINED]
sanitizer: [UNDEFINED]
build_type: [Debug]
include:
- build_type: Release
sanitizer: ""
- build_type: Debug
sanitizer: THREAD
disabled_on_pr: true
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
@ -57,7 +57,8 @@ jobs:
cmake \
python3-pip \
wget \
language-pack-en
language-pack-en \
libcurl4-openssl-dev
- name: Build
id: cmake_build
@ -67,6 +68,7 @@ jobs:
cmake .. \
-DLLAMA_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
cmake --build . --config ${{ matrix.build_type }} -j $(nproc) --target server
@ -101,12 +103,21 @@ jobs:
with:
fetch-depth: 0
- name: libCURL
id: get_libcurl
env:
CURL_VERSION: 8.6.0_6
run: |
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-win64-mingw.zip"
mkdir $env:RUNNER_TEMP/libcurl
tar.exe -xvf $env:RUNNER_TEMP/curl.zip --strip-components=1 -C $env:RUNNER_TEMP/libcurl
- name: Build
id: cmake_build
run: |
mkdir build
cd build
cmake .. -DLLAMA_BUILD_SERVER=ON -DCMAKE_BUILD_TYPE=Release ;
cmake .. -DLLAMA_CURL=ON -DCURL_LIBRARY="$env:RUNNER_TEMP/libcurl/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:RUNNER_TEMP/libcurl/include"
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS} --target server
- name: Python setup
@ -120,6 +131,11 @@ jobs:
run: |
pip install -r examples/server/tests/requirements.txt
- name: Copy Libcurl
id: prepare_libcurl
run: |
cp $env:RUNNER_TEMP/libcurl/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
- name: Tests
id: server_integration_tests
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}

View file

@ -99,6 +99,7 @@ option(LLAMA_CUDA_F16 "llama: use 16 bit floats for some
set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K")
set(LLAMA_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
"llama: max. batch size for using peer access")
option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
option(LLAMA_HIP_UMA "llama: use HIP unified memory architecture" OFF)
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)

View file

@ -553,7 +553,7 @@ endif
endif # LLAMA_METAL
ifdef LLAMA_METAL
ggml-metal.o: ggml-metal.m ggml-metal.h
ggml-metal.o: ggml-metal.m ggml-metal.h ggml.h
$(CC) $(CFLAGS) -c $< -o $@
ifdef LLAMA_METAL_EMBED_LIBRARY
@ -595,6 +595,11 @@ include scripts/get-flags.mk
CUDA_CXXFLAGS := $(BASE_CXXFLAGS) $(GF_CXXFLAGS) -Wno-pedantic
endif
ifdef LLAMA_CURL
override CXXFLAGS := $(CXXFLAGS) -DLLAMA_USE_CURL
override LDFLAGS := $(LDFLAGS) -lcurl
endif
#
# Print build information
#

View file

@ -112,6 +112,7 @@ Typically finetunes of the base models below are supported as well.
- [x] [CodeShell](https://github.com/WisdomShell/codeshell)
- [x] [Gemma](https://ai.google.dev/gemma)
- [x] [Mamba](https://github.com/state-spaces/mamba)
- [x] [Command-R](https://huggingface.co/CohereForAI/c4ai-command-r-v01)
**Multimodal models:**
@ -133,6 +134,7 @@ Typically finetunes of the base models below are supported as well.
- Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp)
- JS/TS (llama.cpp server client): [lgrammel/modelfusion](https://modelfusion.dev/integration/model-provider/llamacpp)
- JavaScript/Wasm (works in browser): [tangledgroup/llama-cpp-wasm](https://github.com/tangledgroup/llama-cpp-wasm)
- Typescript/Wasm (nicer API, available on npm): [ngxson/wllama](https://github.com/ngxson/wllama)
- Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb)
- Rust (nicer API): [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp)
- Rust (more direct bindings): [utilityai/llama-cpp-rs](https://github.com/utilityai/llama-cpp-rs)

View file

@ -68,6 +68,17 @@ if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
set(LLAMA_COMMON_EXTRA_LIBS build_info)
# Use curl to download model url
if (LLAMA_CURL)
find_package(CURL REQUIRED)
add_definitions(-DLLAMA_USE_CURL)
include_directories(${CURL_INCLUDE_DIRS})
find_library(CURL_LIBRARY curl REQUIRED)
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARY})
endif ()
target_include_directories(${TARGET} PUBLIC .)
target_compile_features(${TARGET} PUBLIC cxx_std_11)
target_link_libraries(${TARGET} PRIVATE build_info PUBLIC llama)
target_link_libraries(${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama)

File diff suppressed because it is too large Load diff

View file

@ -37,10 +37,13 @@ extern char const *LLAMA_COMMIT;
extern char const *LLAMA_COMPILER;
extern char const *LLAMA_BUILD_TARGET;
struct llama_control_vector_load_info;
int32_t get_num_physical_cores();
//
// CLI argument parsing
//
int32_t get_num_physical_cores();
struct gpt_params {
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
@ -86,6 +89,7 @@ struct gpt_params {
struct llama_sampling_params sparams;
std::string model = "models/7B/ggml-model-f16.gguf"; // model path
std::string model_url = ""; // model url to download
std::string model_draft = ""; // draft model for speculative decoding
std::string model_alias = "unknown"; // model alias
std::string prompt = "";
@ -103,6 +107,11 @@ struct gpt_params {
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
std::string lora_base = ""; // base model path for the lora adapter
std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
int32_t control_vector_layer_start = -1; // layer range for control vector
int32_t control_vector_layer_end = -1; // layer range for control vector
int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
// (which is more convenient to use for plotting)
@ -183,6 +192,9 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model,
struct llama_model_params params);
// Batch utils
void llama_batch_clear(struct llama_batch & batch);
@ -269,3 +281,24 @@ void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40
void llama_embd_normalize(const float * inp, float * out, int n);
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
//
// Control vector utils
//
struct llama_control_vector_data {
int n_embd;
// stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
std::vector<float> data;
};
struct llama_control_vector_load_info {
float strength;
std::string fname;
};
// Load control vectors, scale each by strength, and add them together.
// On error, returns {-1, empty}
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);

View file

@ -1634,7 +1634,7 @@ in chat mode so that the conversation can end normally.")
self.post_write_tensors(tensor_map, name, data_torch)
@Model.register("BertModel")
@Model.register("BertModel", "CamembertModel")
class BertModel(Model):
model_arch = gguf.MODEL_ARCH.BERT
@ -1965,6 +1965,23 @@ class MambaModel(Model):
self.gguf_writer.add_tensor(new_name, data)
@Model.register("CohereForCausalLM")
class CommandR2Model(Model):
model_arch = gguf.MODEL_ARCH.COMMAND_R
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# max_position_embeddings = 8192 in config.json but model was actually
# trained on 128k context length
self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
###### CONVERSION LOGIC ######

View file

@ -1167,9 +1167,9 @@ class OutputFile:
def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) + ".weight"].data_type
if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
if output_type_str == "f32" or (output_type_str is None and wq_type in (DT_F32, DT_BF16)):
return GGMLFileType.AllF32
if output_type_str == "f16" or (output_type_str is None and wq_type in (DT_F16, DT_BF16)):
if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16):
return GGMLFileType.MostlyF16
if output_type_str == "q8_0":
return GGMLFileType.MostlyQ8_0

62
examples/gritlm/README.md Normal file
View file

@ -0,0 +1,62 @@
## Generative Representational Instruction Tuning (GRIT) Example
[gritlm] a model which can generate embeddings as well as "normal" text
generation depending on the instructions in the prompt.
* Paper: https://arxiv.org/pdf/2402.09906.pdf
### Retrieval-Augmented Generation (RAG) use case
One use case for `gritlm` is to use it with RAG. If we recall how RAG works is
that we take documents that we want to use as context, to ground the large
language model (LLM), and we create token embeddings for them. We then store
these token embeddings in a vector database.
When we perform a query, prompt the LLM, we will first create token embeddings
for the query and then search the vector database to retrieve the most
similar vectors, and return those documents so they can be passed to the LLM as
context. Then the query and the context will be passed to the LLM which will
have to _again_ create token embeddings for the query. But because gritlm is used
the first query can be cached and the second query tokenization generation does
not have to be performed at all.
### Running the example
Download a Grit model:
```console
$ scripts/hf.sh --repo cohesionet/GritLM-7B_gguf --file gritlm-7b_q4_1.gguf
```
Run the example using the downloaded model:
```console
$ ./gritlm -m gritlm-7b_q4_1.gguf
Cosine similarity between "Bitcoin: A Peer-to-Peer Electronic Cash System" and "A purely peer-to-peer version of electronic cash w" is: 0.605
Cosine similarity between "Bitcoin: A Peer-to-Peer Electronic Cash System" and "All text-based language problems can be reduced to" is: 0.103
Cosine similarity between "Generative Representational Instruction Tuning" and "A purely peer-to-peer version of electronic cash w" is: 0.112
Cosine similarity between "Generative Representational Instruction Tuning" and "All text-based language problems can be reduced to" is: 0.547
Oh, brave adventurer, who dared to climb
The lofty peak of Mt. Fuji in the night,
When shadows lurk and ghosts do roam,
And darkness reigns, a fearsome sight.
Thou didst set out, with heart aglow,
To conquer this mountain, so high,
And reach the summit, where the stars do glow,
And the moon shines bright, up in the sky.
Through the mist and fog, thou didst press on,
With steadfast courage, and a steadfast will,
Through the darkness, thou didst not be gone,
But didst climb on, with a steadfast skill.
At last, thou didst reach the summit's crest,
And gazed upon the world below,
And saw the beauty of the night's best,
And felt the peace, that only nature knows.
Oh, brave adventurer, who dared to climb
The lofty peak of Mt. Fuji in the night,
Thou art a hero, in the eyes of all,
For thou didst conquer this mountain, so bright.
```
[gritlm]: https://github.com/ContextualAI/gritlm

View file

@ -56,13 +56,31 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
const struct ggml_tensor * src0 = t->src[0];
const struct ggml_tensor * src1 = t->src[1];
std::string wname;
{
// remove any prefix and suffixes from the name
// CUDA0#blk.0.attn_k.weight#0 => blk.0.attn_k.weight
const char * p = strchr(src0->name, '#');
if (p != NULL) {
p = p + 1;
const char * q = strchr(p, '#');
if (q != NULL) {
wname = std::string(p, q - p);
} else {
wname = p;
}
} else {
wname = src0->name;
}
}
// when ask is true, the scheduler wants to know if we are interested in data from this tensor
// if we return true, a follow-up call will be made with ask=false in which we can do the actual collection
if (ask) {
if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications
if (t->op != GGML_OP_MUL_MAT) return false;
if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false;
if (!(strncmp(src0->name, "blk.", 4) == 0 || (m_params.collect_output_weight && strcmp(src0->name, "output.weight") == 0))) return false;
if (!(wname.substr(0, 4) == "blk." || (m_params.collect_output_weight && wname == "output.weight"))) return false;
return true;
}
@ -94,12 +112,12 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
// this is necessary to guarantee equal number of "ncall" for each tensor
for (int ex = 0; ex < n_as; ++ex) {
src0 = t->src[2 + ex];
auto& e = m_stats[src0->name];
auto& e = m_stats[wname];
if (e.values.empty()) {
e.values.resize(src1->ne[0], 0);
}
else if (e.values.size() != (size_t)src1->ne[0]) {
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", src0->name, (int)e.values.size(), (int)src1->ne[0]);
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
exit(1); //GGML_ASSERT(false);
}
// NOTE: since we select top-k experts, the number of calls for the expert tensors will be k times larger
@ -107,7 +125,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
//if (idx == t->src[0]->ne[0] - 1) ++e.ncall;
++e.ncall;
if (m_params.verbosity > 1) {
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, src0->name, ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
}
for (int row = 0; row < (int)src1->ne[1]; ++row) {
const int excur = m_ids[row*n_as + idx];
@ -129,17 +147,17 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
}
}
} else {
auto& e = m_stats[src0->name];
auto& e = m_stats[wname];
if (e.values.empty()) {
e.values.resize(src1->ne[0], 0);
}
else if (e.values.size() != (size_t)src1->ne[0]) {
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", src0->name, (int)e.values.size(), (int)src1->ne[0]);
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
exit(1); //GGML_ASSERT(false);
}
++e.ncall;
if (m_params.verbosity > 1) {
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, src0->name, ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
}
for (int row = 0; row < (int)src1->ne[1]; ++row) {
const float * x = data + row * src1->ne[0];

View file

@ -8,6 +8,7 @@
#include <cstdio>
#include <cstring>
#include <ctime>
#include <cstdlib>
#include <iterator>
#include <map>
#include <numeric>
@ -113,10 +114,10 @@ static std::string get_cpu_info() {
static std::string get_gpu_info() {
std::string id;
#ifdef GGML_USE_CUBLAS
int count = ggml_cuda_get_device_count();
int count = ggml_backend_cuda_get_device_count();
for (int i = 0; i < count; i++) {
char buf[128];
ggml_cuda_get_device_description(i, buf, sizeof(buf));
ggml_backend_cuda_get_device_description(i, buf, sizeof(buf));
id += buf;
if (i < count - 1) {
id += "/";
@ -1123,15 +1124,19 @@ struct sql_printer : public printer {
static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
llama_set_n_threads(ctx, n_threads, n_threads);
//std::vector<llama_token> tokens(n_prompt, llama_token_bos(llama_get_model(ctx)));
//llama_decode(ctx, llama_batch_get_one(tokens.data(), n_prompt, n_past, 0));
//GGML_UNUSED(n_batch);
const llama_model * model = llama_get_model(ctx);
const int32_t n_vocab = llama_n_vocab(model);
std::vector<llama_token> tokens(n_batch);
std::vector<llama_token> tokens(n_batch, llama_token_bos(llama_get_model(ctx)));
int n_processed = 0;
while (n_processed < n_prompt) {
int n_tokens = std::min(n_prompt - n_processed, n_batch);
tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
for (int i = 1; i < n_tokens; i++) {
tokens[i] = std::rand() % n_vocab;
}
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
n_processed += n_tokens;
}
@ -1142,11 +1147,15 @@ static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_bat
static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
llama_set_n_threads(ctx, n_threads, n_threads);
llama_token token = llama_token_bos(llama_get_model(ctx));
const llama_model * model = llama_get_model(ctx);
const int32_t n_vocab = llama_n_vocab(model);
llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
for (int i = 0; i < n_gen; i++) {
llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
llama_synchronize(ctx);
token = std::rand() % n_vocab;
}
}

View file

@ -497,7 +497,6 @@ struct clip_ctx {
// memory buffers to evaluate the model
ggml_backend_buffer_t params_buffer = NULL;
ggml_backend_buffer_t compute_buffer = NULL;
ggml_backend_t backend = NULL;
ggml_gallocr_t compute_alloc = NULL;
@ -1235,16 +1234,16 @@ struct clip_image_f32 * clip_image_f32_init() {
void clip_image_u8_free(struct clip_image_u8 * img) { delete img; }
void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
void clip_image_u8_batch_free(struct clip_image_u8_batch & batch) {
if (batch.size > 0) {
delete[] batch.data;
batch.size = 0;
void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) {
if (batch->size > 0) {
delete[] batch->data;
batch->size = 0;
}
}
void clip_image_f32_batch_free(struct clip_image_f32_batch & batch) {
if (batch.size > 0) {
delete[] batch.data;
batch.size = 0;
void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) {
if (batch->size > 0) {
delete[] batch->data;
batch->size = 0;
}
}
@ -1497,7 +1496,7 @@ static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & im
// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
// res_imgs memory is being allocated here, previous allocations will be freed if found
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch & res_imgs) {
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
bool pad_to_square = true;
if (!ctx->has_vision_encoder) {
printf("This gguf file seems to have no vision encoder\n");
@ -1509,11 +1508,11 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
pad_to_square = false;
}
// free the previous res_imgs if any set
if (res_imgs.size > 0) {
if (res_imgs->size > 0) {
clip_image_f32_batch_free(res_imgs);
}
res_imgs.data = nullptr;
res_imgs.size = 0;
res_imgs->data = nullptr;
res_imgs->size = 0;
// the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
// see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
@ -1568,11 +1567,11 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
bicubic_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
patches.insert(patches.begin(), image_original_resize);
// clip_image_f32_batch_init(patches.size());
res_imgs.size = patches.size();
res_imgs.data = new clip_image_f32[res_imgs.size];
res_imgs->size = patches.size();
res_imgs->data = new clip_image_f32[res_imgs->size];
int num=0;
for (auto& patch : patches) {
normalize_image_u8_to_f32(patch, &res_imgs.data[num], ctx->image_mean, ctx->image_std);
normalize_image_u8_to_f32(patch, &res_imgs->data[num], ctx->image_mean, ctx->image_std);
num++;
}
@ -1660,9 +1659,9 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
// }
// res_imgs.push_back(res);
res_imgs.size = 1;
res_imgs.data = new clip_image_f32[res_imgs.size];
res_imgs.data[0] = *res;
res_imgs->size = 1;
res_imgs->data = new clip_image_f32[res_imgs->size];
res_imgs->data[0] = *res;
clip_image_f32_free(res);
return true;
@ -1676,6 +1675,9 @@ void clip_free(clip_ctx * ctx) {
ggml_free(ctx->ctx_data);
gguf_free(ctx->ctx_gguf);
ggml_backend_buffer_free(ctx->params_buffer);
ggml_backend_free(ctx->backend);
ggml_gallocr_free(ctx->compute_alloc);
delete ctx;
}

View file

@ -60,8 +60,8 @@ CLIP_API struct clip_image_f32 * clip_image_f32_init();
CLIP_API void clip_image_u8_free (struct clip_image_u8 * img);
CLIP_API void clip_image_f32_free(struct clip_image_f32 * img);
CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch & batch);
CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch & batch);
CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch * batch);
CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch * batch);
CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
@ -69,7 +69,7 @@ CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8
CLIP_API bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img);
/** preprocess img and store the result in res_imgs, pad_to_square may be overriden to false depending on model configuration */
CLIP_API bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch & res_imgs );
CLIP_API bool clip_image_preprocess(struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32_batch * res_imgs );
CLIP_API struct ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx);

View file

@ -223,7 +223,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
clip_image_f32_batch img_res_v;
img_res_v.size = 0;
img_res_v.data = nullptr;
if (!clip_image_preprocess(ctx_clip, img, img_res_v)) {
if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
fprintf(stderr, "%s: unable to preprocess image\n", __func__);
delete[] img_res_v.data;
return false;

View file

@ -29,9 +29,9 @@ struct llava_image_embed {
};
/** sanity check for clip <-> llava embed size match */
LLAVA_API bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip);
LLAVA_API bool llava_validate_embed_size(const struct llama_context * ctx_llama, const struct clip_ctx * ctx_clip);
LLAVA_API bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out);
LLAVA_API bool llava_image_embed_make_with_clip_img(struct clip_ctx * ctx_clip, int n_threads, const struct clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out);
/** build an image embed from image file bytes */
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length);

View file

@ -67,6 +67,7 @@ main.exe -m models\7B\ggml-model.bin --ignore-eos -n -1 --random-prompt
In this section, we cover the most commonly used options for running the `main` program with the LLaMA models:
- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`).
- `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file (e.g https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q4_0.gguf).
- `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses.
- `-ins, --instruct`: Run the program in instruction mode, which is particularly useful when working with Alpaca models.
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text.

View file

@ -20,6 +20,7 @@ The project is under active development, and we are [looking for feedback and co
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation.
- `--threads-http N`: number of threads in the http server pool to process requests (default: `max(std::thread::hardware_concurrency() - 1, --parallel N + 2)`)
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
- `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file (e.g https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q4_0.gguf).
- `-a ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096.
- `-ngl N`, `--n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.

View file

@ -2195,6 +2195,8 @@ static void server_print_usage(const char * argv0, const gpt_params & params, co
}
printf(" -m FNAME, --model FNAME\n");
printf(" model path (default: %s)\n", params.model.c_str());
printf(" -mu MODEL_URL, --model-url MODEL_URL\n");
printf(" model download url (default: %s)\n", params.model_url.c_str());
printf(" -a ALIAS, --alias ALIAS\n");
printf(" set an alias for the model, will be added as `model` field in completion response\n");
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
@ -2317,6 +2319,12 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
break;
}
params.model = argv[i];
} else if (arg == "-mu" || arg == "--model-url") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.model_url = argv[i];
} else if (arg == "-a" || arg == "--alias") {
if (++i >= argc) {
invalid_param = true;

View file

@ -57,7 +57,7 @@ Feature or Scenario must be annotated with `@llama.cpp` to be included in the de
To run a scenario annotated with `@bug`, start:
```shell
DEBUG=ON ./tests.sh --no-skipped --tags bug
DEBUG=ON ./tests.sh --no-skipped --tags bug --stop
```
After changing logic in `steps.py`, ensure that `@bug` and `@wrong_usage` scenario are updated.

View file

@ -4,7 +4,8 @@ Feature: llama.cpp server
Background: Server startup
Given a server listening on localhost:8080
And a model file bert-bge-small/ggml-model-f16.gguf from HF repo ggml-org/models
And a model url https://huggingface.co/ggml-org/models/resolve/main/bert-bge-small/ggml-model-f16.gguf
And a model file ggml-model-f16.gguf
And a model alias bert-bge-small
And 42 as server seed
And 2 slots

View file

@ -1,10 +1,12 @@
import errno
import os
import socket
import subprocess
import time
from contextlib import closing
import signal
import socket
import sys
import time
import traceback
from contextlib import closing
import psutil
def before_scenario(context, scenario):
@ -20,7 +22,8 @@ def before_scenario(context, scenario):
def after_scenario(context, scenario):
if context.server_process is None:
try:
if 'server_process' not in context or context.server_process is None:
return
if scenario.status == "failed":
if 'GITHUB_ACTIONS' in os.environ:
@ -47,6 +50,12 @@ def after_scenario(context, scenario):
attempts += 1
if attempts > 5:
server_kill_hard(context)
except:
exc = sys.exception()
print("error in after scenario: \n")
print(exc)
print("*** print_tb: \n")
traceback.print_tb(exc.__traceback__, file=sys.stdout)
def server_graceful_shutdown(context):
@ -67,11 +76,11 @@ def server_kill_hard(context):
path = context.server_path
print(f"Server dangling exits, hard killing force {pid}={path}...\n")
if os.name == 'nt':
process = subprocess.check_output(['taskkill', '/F', '/pid', str(pid)]).decode()
print(process)
else:
os.kill(-pid, signal.SIGKILL)
try:
psutil.Process(pid).kill()
except psutil.NoSuchProcess:
return False
return True
def is_server_listening(server_fqdn, server_port):
@ -84,17 +93,9 @@ def is_server_listening(server_fqdn, server_port):
def pid_exists(pid):
"""Check whether pid exists in the current process table."""
if pid < 0:
return False
if os.name == 'nt':
output = subprocess.check_output(['TASKLIST', '/FI', f'pid eq {pid}']).decode()
print(output)
return "No tasks are running" not in output
else:
try:
os.kill(pid, 0)
except OSError as e:
return e.errno == errno.EPERM
else:
psutil.Process(pid)
except psutil.NoSuchProcess:
return False
return True

View file

@ -4,7 +4,8 @@ Feature: llama.cpp server
Background: Server startup
Given a server listening on localhost:8080
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
And a model url https://huggingface.co/ggml-org/models/resolve/main/tinyllamas/stories260K.gguf
And a model file stories260K.gguf
And a model alias tinyllama-2
And 42 as server seed
# KV Cache corresponds to the total amount of tokens

View file

@ -5,6 +5,8 @@ import os
import re
import socket
import subprocess
import sys
import threading
import time
from contextlib import closing
from re import RegexFlag
@ -32,6 +34,8 @@ def step_server_config(context, server_fqdn, server_port):
context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
context.model_alias = None
context.model_file = None
context.model_url = None
context.n_batch = None
context.n_ubatch = None
context.n_ctx = None
@ -65,6 +69,16 @@ def step_download_hf_model(context, hf_file, hf_repo):
print(f"model file: {context.model_file}\n")
@step('a model file {model_file}')
def step_model_file(context, model_file):
context.model_file = model_file
@step('a model url {model_url}')
def step_model_url(context, model_url):
context.model_url = model_url
@step('a model alias {model_alias}')
def step_model_alias(context, model_alias):
context.model_alias = model_alias
@ -141,7 +155,8 @@ def step_start_server(context):
async def step_wait_for_the_server_to_be_started(context, expecting_status):
match expecting_status:
case 'healthy':
await wait_for_health_status(context, context.base_url, 200, 'ok')
await wait_for_health_status(context, context.base_url, 200, 'ok',
timeout=30)
case 'ready' | 'idle':
await wait_for_health_status(context, context.base_url, 200, 'ok',
@ -1038,8 +1053,11 @@ def start_server_background(context):
server_args = [
'--host', server_listen_addr,
'--port', context.server_port,
'--model', context.model_file
]
if context.model_file:
server_args.extend(['--model', context.model_file])
if context.model_url:
server_args.extend(['--model-url', context.model_url])
if context.n_batch:
server_args.extend(['--batch-size', context.n_batch])
if context.n_ubatch:
@ -1079,8 +1097,23 @@ def start_server_background(context):
pkwargs = {
'creationflags': flags,
'stdout': subprocess.PIPE,
'stderr': subprocess.PIPE
}
context.server_process = subprocess.Popen(
[str(arg) for arg in [context.server_path, *server_args]],
**pkwargs)
def log_stdout(process):
for line in iter(process.stdout.readline, b''):
print(line.decode('utf-8'), end='')
thread_stdout = threading.Thread(target=log_stdout, args=(context.server_process,))
thread_stdout.start()
def log_stderr(process):
for line in iter(process.stderr.readline, b''):
print(line.decode('utf-8'), end='', file=sys.stderr)
thread_stderr = threading.Thread(target=log_stderr, args=(context.server_process,))
thread_stderr.start()
print(f"server pid={context.server_process.pid}, behave pid={os.getpid()}")

View file

@ -3,4 +3,5 @@ behave~=1.2.6
huggingface_hub~=0.20.3
numpy~=1.24.4
openai~=0.25.0
psutil~=5.9.8
prometheus-client~=0.20.0

View file

@ -13,8 +13,11 @@ source /opt/intel/oneapi/setvars.sh
#for FP32
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
#build example/main only
#build example/main
#cmake --build . --config Release --target main
#build example/llama-bench
#cmake --build . --config Release --target llama-bench
#build all binary
cmake --build . --config Release -v

View file

@ -9,18 +9,28 @@ source /opt/intel/oneapi/setvars.sh
if [ $# -gt 0 ]; then
GGML_SYCL_DEVICE=$1
GGML_SYCL_SINGLE_GPU=1
else
GGML_SYCL_DEVICE=0
fi
echo "use $GGML_SYCL_DEVICE as main GPU"
#export GGML_SYCL_DEBUG=1
#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer.
#use all GPUs with same max compute units
if [ $GGML_SYCL_SINGLE_GPU -eq 1 ]; then
echo "use $GGML_SYCL_DEVICE as main GPU"
#use signle GPU only
ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0 -mg $GGML_SYCL_DEVICE -sm none
else
#use multiple GPUs with same max compute units
ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0
fi
#use main GPU only
#ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0 -mg $GGML_SYCL_DEVICE -sm none
#use multiple GPUs with same max compute units
#ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0

6
flake.lock generated
View file

@ -20,11 +20,11 @@
},
"nixpkgs": {
"locked": {
"lastModified": 1709703039,
"narHash": "sha256-6hqgQ8OK6gsMu1VtcGKBxKQInRLHtzulDo9Z5jxHEFY=",
"lastModified": 1710451336,
"narHash": "sha256-pP86Pcfu3BrAvRO7R64x7hs+GaQrjFes+mEPowCfkxY=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "9df3e30ce24fd28c7b3e2de0d986769db5d6225d",
"rev": "d691274a972b3165335d261cc4671335f5c67de9",
"type": "github"
},
"original": {

View file

@ -548,7 +548,11 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view(node)) {
// TODO: better way to add external dependencies
// GGML_OP_NONE does not appear normally in the graph nodes, but is used by ggml-backend to add dependencies to
// control when some tensors are allocated and freed. in this case, the dependencies are in `src`, but the node
// itself is never used and should not be considered a dependency
if (ggml_is_view(node) && node->op != GGML_OP_NONE) {
struct ggml_tensor * view_src = node->view_src;
ggml_gallocr_hash_get(galloc, view_src)->n_views += 1;
}
@ -565,8 +569,8 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
ggml_gallocr_hash_get(galloc, src)->n_children += 1;
// allocate explicit inputs and leafs
if (src->flags & GGML_TENSOR_FLAG_INPUT || src->op == GGML_OP_NONE) {
// allocate explicit inputs
if (src->flags & GGML_TENSOR_FLAG_INPUT) {
ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i));
}
}

View file

@ -103,6 +103,11 @@ extern "C" {
// check if the backend supports an operation
bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
// check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer
// these should be expensive operations with large batch sizes that may benefit from running on this backend
// even if the weight has to be copied from the CPU temporarily
bool (*GGML_CALL offload_op)(ggml_backend_t backend, const struct ggml_tensor * op);
// (optional) event synchronization
ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend);
void (*GGML_CALL event_free) (ggml_backend_event_t event);

View file

@ -278,7 +278,7 @@ enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_
return err;
}
bool ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
return backend->iface.graph_compute(backend, cgraph);
}
@ -286,6 +286,13 @@ bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor *
return backend->iface.supports_op(backend, op);
}
bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
if (backend->iface.offload_op != NULL) {
return backend->iface.offload_op(backend, op);
}
return false;
}
// backend copy
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
@ -761,6 +768,10 @@ GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(gg
if (cpu_plan->cplan.work_size > 0) {
cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
if (cpu_plan->cplan.work_data == NULL) {
free(cpu_plan);
return NULL;
}
}
cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
@ -834,6 +845,7 @@ static struct ggml_backend_i cpu_backend_i = {
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
/* .supports_op = */ ggml_backend_cpu_supports_op,
/* .offload_op = */ NULL,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_record = */ NULL,
@ -999,11 +1011,11 @@ static bool ggml_is_view_op(enum ggml_op op) {
#endif
#ifndef GGML_SCHED_MAX_SPLITS
#define GGML_SCHED_MAX_SPLITS 256
#define GGML_SCHED_MAX_SPLITS 2048
#endif
#ifndef GGML_SCHED_MAX_SPLIT_INPUTS
#define GGML_SCHED_MAX_SPLIT_INPUTS 16
#define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
#endif
#ifndef GGML_SCHED_MAX_COPIES
@ -1043,8 +1055,9 @@ struct ggml_backend_sched {
struct ggml_cgraph * graph;
// graph splits
struct ggml_backend_sched_split splits[GGML_SCHED_MAX_SPLITS];
struct ggml_backend_sched_split * splits;
int n_splits;
int splits_capacity;
// pipeline parallelism support
int n_copies;
@ -1114,40 +1127,48 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
// TODO: use supports_op to check if the backend supports the op
// assign pre-allocated nodes to their backend
// dst
int cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor);
if (cur_backend != -1) {
int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor);
if (cur_backend_id != -1) {
SET_CAUSE(tensor, "1.dst");
return cur_backend;
return cur_backend_id;
}
// view_src
if (tensor->view_src != NULL) {
cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
if (cur_backend != -1) {
cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
if (cur_backend_id != -1) {
SET_CAUSE(tensor, "1.vsrc");
return cur_backend;
return cur_backend_id;
}
}
// input
// graph input
if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
cur_backend = sched->n_backends - 1; // last backend (assumed CPU)
cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
SET_CAUSE(tensor, "1.inp");
return cur_backend;
return cur_backend_id;
}
// assign nodes that use weights to the backend of the weights
// operations with weights are preferably run on the same backend as the weights
for (int i = 0; i < GGML_MAX_SRC; i++) {
const struct ggml_tensor * src = tensor->src[i];
if (src == NULL) {
continue;
}
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
int src_backend = ggml_backend_sched_backend_from_buffer(sched, src);
// operations with weights are always run on the same backend as the weights
int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src);
// check if a backend with higher prio wants to offload the op
if (src_backend_id == sched->n_backends - 1) {
for (int b = 0; b < src_backend_id; b++) {
if (ggml_backend_offload_op(sched->backends[b], tensor)) {
SET_CAUSE(tensor, "1.off");
return b;
}
}
}
SET_CAUSE(tensor, "1.wgt%d", i);
return src_backend;
return src_backend_id;
}
}
@ -1227,28 +1248,31 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
// pass 1: assign backends to ops with pre-allocated inputs
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
if (tensor_backend_id(leaf) != -1) {
int * leaf_backend_id = &tensor_backend_id(leaf);
if (*leaf_backend_id != -1) {
// do not overwrite user assignments
continue;
}
tensor_backend_id(leaf) = ggml_backend_sched_backend_id_from_cur(sched, leaf);
*leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
}
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (tensor_backend_id(node) != -1) {
int * node_backend_id = &tensor_backend_id(node);
if (*node_backend_id != -1) {
// do not overwrite user assignments
continue;
}
tensor_backend_id(node) = ggml_backend_sched_backend_id_from_cur(sched, node);
*node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
// src
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
continue;
}
if (tensor_backend_id(src) == -1) {
tensor_backend_id(src) = ggml_backend_sched_backend_id_from_cur(sched, src);
int * src_backend_id = &tensor_backend_id(src);
if (*src_backend_id == -1) {
*src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
}
}
}
@ -1270,21 +1294,20 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
if (ggml_is_view_op(node->op)) {
continue;
}
int tensor_backend_id = tensor_backend_id(node);
if (tensor_backend_id != -1) {
if (tensor_backend_id == sched->n_backends - 1) {
int * node_backend_id = &tensor_backend_id(node);
if (*node_backend_id != -1) {
if (*node_backend_id == sched->n_backends - 1) {
// skip cpu (lowest prio backend)
cur_backend_id = -1;
} else {
cur_backend_id = tensor_backend_id;
cur_backend_id = *node_backend_id;
}
} else {
tensor_backend_id(node) = cur_backend_id;
*node_backend_id = cur_backend_id;
SET_CAUSE(node, "2.2");
}
}
}
// pass 2.1 expand gpu up
{
int cur_backend_id = -1;
@ -1293,22 +1316,20 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
if (ggml_is_view_op(node->op)) {
continue;
}
int tensor_backend_id = tensor_backend_id(node);
if (tensor_backend_id != -1) {
if (tensor_backend_id == sched->n_backends - 1) {
int * node_backend_id = &tensor_backend_id(node);
if (*node_backend_id != -1) {
if (*node_backend_id == sched->n_backends - 1) {
// skip cpu (lowest prio backend)
cur_backend_id = -1;
} else {
cur_backend_id = tensor_backend_id;
cur_backend_id = *node_backend_id;
}
} else {
tensor_backend_id(node) = cur_backend_id;
*node_backend_id = cur_backend_id;
SET_CAUSE(node, "2.1");
}
}
}
// pass 2.4 expand rest down
{
int cur_backend_id = -1;
@ -1317,11 +1338,11 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
if (ggml_is_view_op(node->op)) {
continue;
}
int tensor_backend_id = tensor_backend_id(node);
if (tensor_backend_id != -1) {
cur_backend_id = tensor_backend_id;
int * node_backend_id = &tensor_backend_id(node);
if (*node_backend_id != -1) {
cur_backend_id = *node_backend_id;
} else {
tensor_backend_id(node) = cur_backend_id;
*node_backend_id = cur_backend_id;
SET_CAUSE(node, "2.4");
}
}
@ -1334,11 +1355,11 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
if (ggml_is_view_op(node->op)) {
continue;
}
int tensor_backend_id = tensor_backend_id(node);
if (tensor_backend_id != -1) {
cur_backend_id = tensor_backend_id;
int * node_backend_id = &tensor_backend_id(node);
if (*node_backend_id != -1) {
cur_backend_id = *node_backend_id;
} else {
tensor_backend_id(node) = cur_backend_id;
*node_backend_id = cur_backend_id;
SET_CAUSE(node, "2.3");
}
}
@ -1351,9 +1372,9 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
// pass 3: assign backends to remaining src from dst and view_src
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
int cur_backend_id = tensor_backend_id(node);
if (node->view_src != NULL && cur_backend_id == -1) {
cur_backend_id = tensor_backend_id(node) = tensor_backend_id(node->view_src);
int * cur_backend_id = &tensor_backend_id(node);
if (node->view_src != NULL && *cur_backend_id == -1) {
*cur_backend_id = tensor_backend_id(node->view_src);
SET_CAUSE(node, "3.vsrc");
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
@ -1361,14 +1382,14 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
if (src == NULL) {
continue;
}
int src_backend_id = tensor_backend_id(src);
if (src_backend_id == -1) {
int * src_backend_id = &tensor_backend_id(src);
if (*src_backend_id == -1) {
if (src->view_src != NULL) {
// views are always on the same backend as the source
tensor_backend_id(src) = tensor_backend_id(src->view_src);
*src_backend_id = tensor_backend_id(src->view_src);
SET_CAUSE(src, "3.vsrc");
} else {
tensor_backend_id(src) = cur_backend_id;
*src_backend_id = *cur_backend_id;
SET_CAUSE(src, "3.cur");
}
}
@ -1380,19 +1401,20 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
// pass 4: split graph, find tensors that need to be copied
{
int cur_split = 0;
int i_split = 0;
struct ggml_backend_sched_split * split = &sched->splits[0];
// find the backend of the first split, skipping view ops
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (!ggml_is_view_op(node->op)) {
sched->splits[0].backend_id = tensor_backend_id(node);
split->backend_id = tensor_backend_id(node);
break;
}
}
sched->splits[0].i_start = 0;
sched->splits[0].n_inputs = 0;
memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
int cur_backend_id = sched->splits[0].backend_id;
split->i_start = 0;
split->n_inputs = 0;
memset(split->inputs, 0, sizeof(split->inputs)); //HACK
int cur_backend_id = split->backend_id;
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
@ -1400,18 +1422,54 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
continue;
}
int tensor_backend_id = tensor_backend_id(node);
const int node_backend_id = tensor_backend_id(node);
GGML_ASSERT(tensor_backend_id != -1); // all nodes should be assigned by now
GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now
if (tensor_backend_id != cur_backend_id) {
sched->splits[cur_split].i_end = i;
cur_split++;
GGML_ASSERT(cur_split < GGML_SCHED_MAX_SPLITS);
sched->splits[cur_split].backend_id = tensor_backend_id;
sched->splits[cur_split].i_start = i;
sched->splits[cur_split].n_inputs = 0;
cur_backend_id = tensor_backend_id;
// check if we should start a new split based on the sources of the current node
bool need_new_split = false;
if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
continue;
}
// check if a weight is on a different backend
// by starting a new split, the memory of the previously offloaded weights can be reused
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
int src_backend_id = tensor_backend_id(src);
if (src_backend_id != -1 && src_backend_id != cur_backend_id) {
need_new_split = true;
break;
}
}
// check if the split has too many inputs
if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
const size_t id = hash_id(src);
int src_backend_id = sched->tensor_backend_id[id];
if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL) {
//printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
need_new_split = true;
break;
}
}
}
}
if (node_backend_id != cur_backend_id || need_new_split) {
split->i_end = i;
i_split++;
if (i_split >= sched->splits_capacity) {
sched->splits_capacity *= 2;
sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
GGML_ASSERT(sched->splits != NULL);
}
GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS);
split = &sched->splits[i_split];
split->backend_id = node_backend_id;
split->i_start = i;
split->n_inputs = 0;
cur_backend_id = node_backend_id;
}
// find inputs that are not on the same backend
@ -1421,10 +1479,10 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
continue;
}
int src_backend_id = tensor_backend_id(src);
const int src_backend_id = tensor_backend_id(src);
assert(src_backend_id != -1); // all inputs should be assigned by now
if (src->flags & GGML_TENSOR_FLAG_INPUT) {
if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
size_t id = hash_id(src);
if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
ggml_backend_t backend = sched->backends[src_backend_id];
@ -1441,7 +1499,6 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
}
sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
tensor_backend_id(tensor_copy) = src_backend_id;
SET_CAUSE(tensor_copy, "4.cpy");
}
int n_graph_inputs = sched->n_graph_inputs++;
@ -1450,9 +1507,9 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
}
}
if (src_backend_id != tensor_backend_id) {
if (src_backend_id != node_backend_id) {
// create a copy of the input in the split's backend
size_t id = hash_id(src);
const size_t id = hash_id(src);
if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
ggml_backend_t backend = sched->backends[cur_backend_id];
for (int c = 0; c < sched->n_copies; c++) {
@ -1463,76 +1520,42 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
}
sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
tensor_backend_id(tensor_copy) = cur_backend_id;
SET_CAUSE(tensor_copy, "4.cpy");
}
int n_inputs = sched->splits[cur_split].n_inputs++;
int n_inputs = split->n_inputs++;
GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
sched->splits[cur_split].inputs[n_inputs] = src;
split->inputs[n_inputs] = src;
}
node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
}
}
}
sched->splits[cur_split].i_end = graph->n_nodes;
sched->n_splits = cur_split + 1;
split->i_end = graph->n_nodes;
sched->n_splits = i_split + 1;
}
#ifdef DEBUG_PASS4
fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
#endif
#ifndef NDEBUG
// sanity check: all sources should have the same backend as the node
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
if (tensor_backend == NULL) {
fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
}
if (node->view_src != NULL && tensor_backend != ggml_backend_sched_get_tensor_backend(sched, node->view_src)) {
fprintf(stderr, "!!!!!!! %s has backend %s, view_src %s has backend %s\n",
node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
node->view_src->name, ggml_backend_sched_get_tensor_backend(sched, node->view_src) ?
ggml_backend_name(ggml_backend_sched_get_tensor_backend(sched, node->view_src)) : "NULL");
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
continue;
}
ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
if (src_backend != tensor_backend /* && src_backend != NULL */) {
fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
j, src->name, src_backend ? ggml_backend_name(src_backend) : "NULL");
}
if (src->view_src != NULL && src_backend != ggml_backend_sched_get_tensor_backend(sched, src->view_src)) {
fprintf(stderr, "!!!!!!! [src] %s has backend %s, view_src %s has backend %s\n",
src->name, src_backend ? ggml_backend_name(src_backend) : "NULL",
src->view_src->name, ggml_backend_sched_get_tensor_backend(sched, src->view_src) ?
ggml_backend_name(ggml_backend_sched_get_tensor_backend(sched, src->view_src)) : "NULL");
}
}
}
fflush(stderr);
#endif
// create copies of the graph for each split
// TODO: avoid this copy
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS, false);
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2, false);
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &sched->splits[i];
split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
for (int j = 0; j < split->n_inputs; j++) {
assert(graph_copy->size > (graph_copy->n_nodes + 1));
struct ggml_tensor * input = split->inputs[j];
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split->backend_id][sched->cur_copy];
const size_t input_id = hash_id(input);
struct ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy];
// add a dependency to the input source so that it is not freed before the copy is done
struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
input_dep->src[0] = input;
sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(input);
sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id];
graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
// add a dependency to the input copy so that it is allocated at the start of the split
@ -1541,6 +1564,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
}
for (int j = split->i_start; j < split->i_end; j++) {
assert(graph_copy->size > graph_copy->n_nodes);
sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
}
@ -1625,13 +1649,12 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
}
ggml_backend_tensor_copy(input, input_cpy);
} else {
// wait for the split backend to finish using the input before overwriting it
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
} else {
ggml_backend_synchronize(split_backend);
ggml_backend_synchronize(input_backend);
}
ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
}
}
@ -1701,17 +1724,21 @@ ggml_backend_sched_t ggml_backend_sched_new(
struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1);
// initialize hash table
sched->hash_set = ggml_hash_set_new(graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS);
sched->hash_set = ggml_hash_set_new(graph_size);
sched->tensor_backend_id = calloc(sizeof(sched->tensor_backend_id[0]), sched->hash_set.size);
sched->tensor_copies = calloc(sizeof(sched->tensor_copies[0]), sched->hash_set.size);
sched->node_backend_ids = calloc(sizeof(sched->node_backend_ids[0]), graph_size);
sched->leaf_backend_ids = calloc(sizeof(sched->leaf_backend_ids[0]), graph_size);
const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
sched->node_backend_ids = calloc(sizeof(sched->node_backend_ids[0]), nodes_size);
sched->leaf_backend_ids = calloc(sizeof(sched->leaf_backend_ids[0]), nodes_size);
sched->n_backends = n_backends;
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
GGML_ASSERT(sched->n_copies <= GGML_SCHED_MAX_COPIES);
const int initial_splits_capacity = 16;
sched->splits = calloc(sizeof(sched->splits[0]), initial_splits_capacity);
sched->splits_capacity = initial_splits_capacity;
for (int b = 0; b < n_backends; b++) {
sched->backends[b] = backends[b];
@ -1742,6 +1769,7 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
}
ggml_gallocr_free(sched->galloc);
ggml_free(sched->ctx);
free(sched->splits);
free(sched->hash_set.keys);
free(sched->tensor_backend_id);
free(sched->tensor_copies);
@ -1762,6 +1790,8 @@ void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
}
bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes);
ggml_backend_sched_split_graph(sched, measure_graph);
// TODO: extract this to a separate function
@ -1776,7 +1806,7 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
}
bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS);
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes);
ggml_backend_sched_split_graph(sched, graph);

View file

@ -72,9 +72,9 @@ extern "C" {
GGML_API enum ggml_status ggml_backend_graph_plan_compute (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API bool ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op);
GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op);
// tensor copy between different backends
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);

View file

@ -82,6 +82,10 @@
#define cudaGetDeviceProperties hipGetDeviceProperties
#define cudaGetErrorString hipGetErrorString
#define cudaGetLastError hipGetLastError
#define cudaHostRegister hipHostRegister
#define cudaHostRegisterPortable hipHostRegisterPortable
#define cudaHostRegisterReadOnly hipHostRegisterReadOnly
#define cudaHostUnregister hipHostUnregister
#define cudaLaunchHostFunc hipLaunchHostFunc
#ifdef GGML_HIP_UMA
#define cudaMalloc hipMallocManaged
@ -7787,11 +7791,7 @@ struct cuda_pool_alloc {
static bool g_cublas_loaded = false;
GGML_CALL bool ggml_cublas_loaded(void) {
return g_cublas_loaded;
}
GGML_CALL void ggml_init_cublas() {
static void ggml_init_cublas() {
static bool initialized = false;
if (!initialized) {
@ -7880,7 +7880,7 @@ GGML_CALL void ggml_init_cublas() {
}
}
GGML_CALL void * ggml_cuda_host_malloc(size_t size) {
static void * ggml_cuda_host_malloc(size_t size) {
if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
return nullptr;
}
@ -7890,7 +7890,7 @@ GGML_CALL void * ggml_cuda_host_malloc(size_t size) {
if (err != cudaSuccess) {
// clear the error
cudaGetLastError();
fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
fprintf(stderr, "%s: warning: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
size/1024.0/1024.0, cudaGetErrorString(err));
return nullptr;
}
@ -7898,7 +7898,7 @@ GGML_CALL void * ggml_cuda_host_malloc(size_t size) {
return ptr;
}
GGML_CALL void ggml_cuda_host_free(void * ptr) {
static void ggml_cuda_host_free(void * ptr) {
CUDA_CHECK(cudaFreeHost(ptr));
}
@ -9036,21 +9036,13 @@ static void ggml_cuda_op_soft_max(
// positions tensor
float * src2_dd = nullptr;
cuda_pool_alloc<float> src2_f;
ggml_tensor * src2 = dst->src[2];
const bool use_src2 = src2 != nullptr;
if (use_src2) {
const bool src2_on_device = src2->backend == GGML_BACKEND_TYPE_GPU;
if (src2_on_device) {
ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) src2->extra;
src2_dd = (float *) src2_extra->data_device[g_main_device];
} else {
src2_dd = src2_f.alloc(ggml_nelements(src2));
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src2_dd, src2, 0, 0, 0, 1, main_stream));
}
}
soft_max_f32_cuda(src0_dd, src1 ? src1_dd : nullptr, src2_dd, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias, main_stream);
@ -9107,55 +9099,24 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s
ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_TYPE_GPU;
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU;
// dd = data device
float * src0_ddf = nullptr;
float * src1_ddf = nullptr;
float * dst_ddf = nullptr;
cuda_pool_alloc<float> src0_f;
cuda_pool_alloc<float> src1_f;
cuda_pool_alloc<float> dst_f;
ggml_cuda_set_device(g_main_device);
cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
if (src0_on_device) {
src0_ddf = (float *) src0_extra->data_device[g_main_device];
} else {
src0_ddf = src0_f.alloc(ggml_nelements(src0));
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf, src0, 0, 0, 0, nrows0, main_stream));
}
if (use_src1) {
if (src1_on_device) {
src1_ddf = (float *) src1_extra->data_device[g_main_device];
} else {
src1_ddf = src1_f.alloc(ggml_nelements(src1));
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf, src1, 0, 0, 0, nrows1, main_stream));
}
}
if (dst_on_device) {
dst_ddf = (float *) dst_extra->data_device[g_main_device];
} else {
dst_ddf = dst_f.alloc(ggml_nelements(dst));
}
// do the computation
op(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
CUDA_CHECK(cudaGetLastError());
// copy dst to host if necessary
if (!dst_on_device) {
CUDA_CHECK(cudaMemcpyAsync(dst->data, dst_ddf, ggml_nbytes(dst), cudaMemcpyDeviceToHost, main_stream));
}
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
CUDA_CHECK(cudaDeviceSynchronize());
}
}
static void ggml_cuda_set_peer_access(const int n_tokens) {
@ -9251,7 +9212,6 @@ static void ggml_cuda_op_mul_mat(
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
const bool src0_is_contiguous = ggml_is_contiguous(src0);
const bool src1_is_contiguous = ggml_is_contiguous(src1);
@ -9322,13 +9282,13 @@ static void ggml_cuda_op_mul_mat(
used_devices++;
const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
const bool src1_on_device = id == g_main_device; // TODO: check from buffer
const bool dst_on_device = id == g_main_device;
ggml_cuda_set_device(id);
cudaStream_t stream = g_cudaStreams[id][0];
if (src0_on_device && src0_is_contiguous) {
if (src0_is_contiguous) {
dev[id].src0_dd = (char *) src0_extra->data_device[id];
} else {
dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ggml_nbytes(src0));
@ -9374,8 +9334,8 @@ static void ggml_cuda_op_mul_mat(
continue;
}
const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
const bool src1_on_device = id == g_main_device; // TODO: check from buffer
const bool dst_on_device = id == g_main_device;
const int64_t row_diff = dev[id].row_high - dev[id].row_low;
ggml_cuda_set_device(id);
@ -9400,12 +9360,12 @@ static void ggml_cuda_op_mul_mat(
// the main device memory buffer can be on VRAM scratch, with space for all partial results
// in that case an offset on dst_ddf_i is needed
if (dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device) {
if (id == g_main_device) {
dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
}
// copy src0, src1 to device if necessary
if (src1->backend == GGML_BACKEND_TYPE_GPU && src1_is_contiguous) {
if (src1_is_contiguous) {
if (id != g_main_device) {
if (convert_src1_to_q8_1) {
char * src1_ddq_i_source = dev[g_main_device].src1_ddq + src1_ddq_i_offset;
@ -9418,19 +9378,19 @@ static void ggml_cuda_op_mul_mat(
src1_ncols*ne10*sizeof(float), stream));
}
}
} else if (src1->backend == GGML_BACKEND_TYPE_CPU || (src1_on_device && !src1_is_contiguous)) {
} else if (src1_on_device && !src1_is_contiguous) {
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
} else {
GGML_ASSERT(false);
}
if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_TYPE_CPU || !src1_is_contiguous)) {
if (convert_src1_to_q8_1 && !src1_is_contiguous) {
quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
CUDA_CHECK(cudaGetLastError());
}
if (src1_col_0 == 0 && (!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) {
if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream));
}
@ -9441,17 +9401,7 @@ static void ggml_cuda_op_mul_mat(
// copy dst to host or other device if necessary
if (!dst_on_device) {
void * dst_off_device;
cudaMemcpyKind kind;
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
dst_off_device = dst->data;
kind = cudaMemcpyDeviceToHost;
} else if (dst->backend == GGML_BACKEND_TYPE_GPU) {
dst_off_device = dst_extra->data_device[g_main_device];
kind = cudaMemcpyDeviceToDevice;
} else {
GGML_ASSERT(false);
}
void * dst_off_device = dst_extra->data_device[g_main_device];
if (split) {
// src0 = weight matrix is saved as a transposed matrix for better memory layout.
// dst is NOT transposed.
@ -9462,7 +9412,6 @@ static void ggml_cuda_op_mul_mat(
GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
dhf_dst_i += src1_col_0*ne0 + dev[id].row_low;
#if !defined(GGML_USE_HIPBLAS)
if (kind == cudaMemcpyDeviceToDevice) {
// cudaMemcpy2DAsync may fail with copies between vmm pools of different devices
cudaMemcpy3DPeerParms p = {};
p.dstDevice = g_main_device;
@ -9471,19 +9420,18 @@ static void ggml_cuda_op_mul_mat(
p.srcPtr = make_cudaPitchedPtr(dst_dd_i, row_diff*sizeof(float), row_diff, src1_ncols);
p.extent = make_cudaExtent(row_diff*sizeof(float), src1_ncols, 1);
CUDA_CHECK(cudaMemcpy3DPeerAsync(&p, stream));
} else
#endif
{
#else
// HIP does not support cudaMemcpy3DPeerAsync or vmm pools
CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float),
dst_dd_i, row_diff*sizeof(float),
row_diff*sizeof(float), src1_ncols,
kind, stream));
}
cudaMemcpyDeviceToDevice, stream));
#endif
} else {
float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
dhf_dst_i += src1_col_0*ne0;
CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), kind, stream));
CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), cudaMemcpyDeviceToDevice, stream));
}
}
@ -9510,11 +9458,6 @@ static void ggml_cuda_op_mul_mat(
}
}
}
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
ggml_cuda_set_device(g_main_device);
CUDA_CHECK(cudaDeviceSynchronize());
}
}
static void ggml_cuda_repeat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@ -9599,36 +9542,19 @@ static void ggml_cuda_pad(const ggml_tensor * src0, const ggml_tensor * src1, gg
static void ggml_cuda_arange(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU;
// dd = data device
float * src0_ddf = nullptr;
float * src1_ddf = nullptr;
float * dst_ddf = nullptr;
cuda_pool_alloc<float> dst_f;
ggml_cuda_set_device(g_main_device);
cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
if (dst_on_device) {
dst_ddf = (float *) dst_extra->data_device[g_main_device];
} else {
dst_ddf = dst_f.alloc(ggml_nelements(dst));
}
// do the computation
ggml_cuda_op_arange(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
CUDA_CHECK(cudaGetLastError());
// copy dst to host if necessary
if (!dst_on_device) {
CUDA_CHECK(cudaMemcpyAsync(dst->data, dst_ddf, ggml_nbytes(dst), cudaMemcpyDeviceToHost, main_stream));
}
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
CUDA_CHECK(cudaDeviceSynchronize());
}
}
static void ggml_cuda_timestep_embedding(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@ -9639,21 +9565,6 @@ static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rms_norm);
}
GGML_CALL bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
if (!g_cublas_loaded) return false;
const int64_t ne10 = src1->ne[0];
const int64_t ne0 = dst->ne[0];
const int64_t ne1 = dst->ne[1];
// TODO: find the optimal values for these
return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
src1->type == GGML_TYPE_F32 &&
dst->type == GGML_TYPE_F32 &&
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
}
static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
@ -9891,11 +9802,6 @@ static void ggml_cuda_mul_mat_batched_cublas(const ggml_tensor * src0, const ggm
}
static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool all_on_device =
(src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT) &&
(src1->backend == GGML_BACKEND_TYPE_GPU) &&
( dst->backend == GGML_BACKEND_TYPE_GPU);
const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
int64_t min_compute_capability = INT_MAX;
@ -9972,13 +9878,13 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
//printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
//printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
if (!split && all_on_device && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
// KQ single-batch
ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
} else if (!split && all_on_device && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
} else if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
// KQV single-batch
ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
} else if (!split && all_on_device && fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
} else if (!split && fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
// KQ + KQV multi-batch
ggml_cuda_mul_mat_batched_cublas(src0, src1, dst);
} else if (use_dequantize_mul_mat_vec) {
@ -10178,6 +10084,7 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
ggml_cuda_mul_mat_id_cublas(dst);
// TODO: mmq/mmv support
#endif
cudaStream_t stream = g_cudaStreams[g_main_device][0];
const size_t nb11 = src1->nb[1];
const size_t nb1 = dst->nb[1];
@ -10187,16 +10094,9 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
const int32_t n_as = ((int32_t *) dst->op_params)[1];
std::vector<char> ids_host(ggml_nbytes(ids));
cudaStream_t stream = g_cudaStreams[g_main_device][0];
if (ids->backend == GGML_BACKEND_TYPE_GPU) {
const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
} else {
memcpy(ids_host.data(), ids->data, ggml_nbytes(ids));
}
const ggml_tensor_extra_gpu * src1_extra = (const ggml_tensor_extra_gpu *) src1->extra;
const ggml_tensor_extra_gpu * dst_extra = (const ggml_tensor_extra_gpu *) dst->extra;
@ -10213,20 +10113,11 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
src1_row.extra = &src1_row_extra;
dst_row.extra = &dst_row_extra;
char * src1_original = src1->backend == GGML_BACKEND_TYPE_CPU ?
(char *) src1->data : (char *) src1_extra->data_device[g_main_device];
char * dst_original = dst->backend == GGML_BACKEND_TYPE_CPU ?
(char *) dst->data : (char *) dst_extra->data_device[g_main_device];
char * src1_original = (char *) src1_extra->data_device[g_main_device];
char * dst_original = (char *) dst_extra->data_device[g_main_device];
if (src1->ne[1] == 1) {
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
GGML_ASSERT(dst->backend == GGML_BACKEND_TYPE_GPU);
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
//int32_t row_id;
//CUDA_CHECK(cudaMemcpyAsync(&row_id, ids_dev + i01*ids->nb[1] + id*ids->nb[0], sizeof(int32_t), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
//CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
GGML_ASSERT(row_id >= 0 && row_id < n_as);
@ -10248,11 +10139,6 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
src1_row_extra.data_device[g_main_device] = src1_contiguous.get();
dst_row_extra.data_device[g_main_device] = dst_contiguous.get();
const cudaMemcpyKind src1_kind = src1->backend == GGML_BACKEND_TYPE_CPU ?
cudaMemcpyHostToDevice : cudaMemcpyDeviceToDevice;
const cudaMemcpyKind dst_kind = dst->backend == GGML_BACKEND_TYPE_CPU ?
cudaMemcpyDeviceToHost : cudaMemcpyDeviceToDevice;
for (int32_t row_id = 0; row_id < n_as; ++row_id) {
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
@ -10267,7 +10153,7 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
GGML_ASSERT(row_id >= 0 && row_id < n_as);
CUDA_CHECK(cudaMemcpyAsync(src1_contiguous.get() + num_src1_rows*nb11, src1_original + i01*nb11,
nb11, src1_kind, stream));
nb11, cudaMemcpyDeviceToDevice, stream));
num_src1_rows++;
}
@ -10299,15 +10185,11 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
GGML_ASSERT(row_id >= 0 && row_id < n_as);
CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous.get() + num_src1_rows*nb1,
nb1, dst_kind, stream));
nb1, cudaMemcpyDeviceToDevice, stream));
num_src1_rows++;
}
}
}
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
CUDA_CHECK(cudaStreamSynchronize(stream));
}
}
static void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@ -10435,7 +10317,7 @@ static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_spl
return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
}
GGML_CALL static void ggml_cuda_set_main_device(const int main_device) {
static void ggml_cuda_set_main_device(const int main_device) {
if (main_device >= g_device_count) {
fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n",
main_device, g_device_count, g_main_device);
@ -10450,18 +10332,9 @@ GGML_CALL static void ggml_cuda_set_main_device(const int main_device) {
}
}
GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
static bool ggml_cuda_compute_forward(struct ggml_tensor * tensor) {
if (!g_cublas_loaded) return false;
ggml_cuda_func_t func;
const bool any_on_device = tensor->backend == GGML_BACKEND_TYPE_GPU
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_TYPE_GPU);
if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) {
return false;
}
if (tensor->op == GGML_OP_MUL_MAT) {
if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
#ifndef NDEBUG
@ -10471,6 +10344,8 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st
}
}
ggml_cuda_func_t func;
switch (tensor->op) {
case GGML_OP_REPEAT:
func = ggml_cuda_repeat;
@ -10548,15 +10423,9 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st
func = ggml_cuda_rms_norm;
break;
case GGML_OP_MUL_MAT:
if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
return false;
}
func = ggml_cuda_mul_mat;
break;
case GGML_OP_MUL_MAT_ID:
if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src[2], tensor->src[1], tensor)) {
return false;
}
func = ggml_cuda_mul_mat_id;
break;
case GGML_OP_SCALE:
@ -10613,17 +10482,11 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st
ggml_cuda_set_peer_access(tensor->src[1]->ne[1]);
}
if (params->ith != 0) {
return true;
}
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return true;
}
func(tensor->src[0], tensor->src[1], tensor);
return true;
}
GGML_CALL int ggml_cuda_get_device_count() {
static int ggml_cuda_get_device_count() {
int device_count;
if (cudaGetDeviceCount(&device_count) != cudaSuccess) {
return 0;
@ -10631,7 +10494,7 @@ GGML_CALL int ggml_cuda_get_device_count() {
return device_count;
}
GGML_CALL void ggml_cuda_get_device_description(int device, char * description, size_t description_size) {
static void ggml_cuda_get_device_description(int device, char * description, size_t description_size) {
cudaDeviceProp prop;
CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
snprintf(description, description_size, "%s", prop.name);
@ -10736,6 +10599,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t
size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
if (padded_size > original_size && tensor->view_src == nullptr) {
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
}
}
@ -10873,6 +10737,8 @@ static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
};
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
ggml_init_cublas();
// FIXME: this is not thread safe
if (device >= ggml_backend_cuda_get_device_count()) {
return nullptr;
@ -11157,6 +11023,8 @@ static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface
};
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
ggml_init_cublas();
// FIXME: this is not thread safe
static std::map<std::array<float, GGML_CUDA_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
@ -11348,9 +11216,6 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
ggml_cuda_set_main_device(cuda_ctx->device);
ggml_compute_params params = {};
params.type = GGML_TASK_TYPE_COMPUTE;
params.ith = 0;
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
@ -11372,7 +11237,7 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
}
#endif
bool ok = ggml_cuda_compute_forward(&params, node);
bool ok = ggml_cuda_compute_forward(node);
if (!ok) {
fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
}
@ -11509,6 +11374,14 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
UNUSED(backend);
}
GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
const int min_batch_size = 32;
return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS;
UNUSED(backend);
}
static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
@ -11541,6 +11414,7 @@ static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_ev
if (ggml_backend_is_cuda(event->backend)) {
CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams[cuda_ctx->device][0], (cudaEvent_t)event->context, 0));
} else {
#if 0
// untested
auto wait_fn = [](void * user_data) {
ggml_backend_event_t event = (ggml_backend_event_t)user_data;
@ -11548,6 +11422,8 @@ static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_ev
};
CUDA_CHECK(cudaLaunchHostFunc(g_cudaStreams[cuda_ctx->device][0], wait_fn, event));
#endif
GGML_ASSERT(false);
}
}
@ -11568,6 +11444,7 @@ static ggml_backend_i ggml_backend_cuda_interface = {
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_cuda_graph_compute,
/* .supports_op = */ ggml_backend_cuda_supports_op,
/* .offload_op = */ ggml_backend_cuda_offload_op,
/* .event_new = */ ggml_backend_cuda_event_new,
/* .event_free = */ ggml_backend_cuda_event_free,
/* .event_record = */ ggml_backend_cuda_event_record,
@ -11581,7 +11458,7 @@ static ggml_guid_t ggml_backend_cuda_guid() {
}
GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
ggml_init_cublas(); // TODO: remove from ggml.c
ggml_init_cublas();
if (device < 0 || device >= ggml_cuda_get_device_count()) {
fprintf(stderr, "%s: error: invalid device %d\n", __func__, device);
@ -11624,6 +11501,31 @@ GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, si
CUDA_CHECK(cudaMemGetInfo(free, total));
}
GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
return false;
}
cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
if (err != cudaSuccess) {
// clear the error
cudaGetLastError();
fprintf(stderr, "%s: warning: failed to register %.2f MiB of pinned memory: %s\n", __func__,
size/1024.0/1024.0, cudaGetErrorString(err));
return false;
}
return true;
}
GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
cudaError_t err = cudaHostUnregister(buffer);
if (err != cudaSuccess) {
// clear the error
cudaGetLastError();
}
}
// backend registry
GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) {
ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data);

View file

@ -17,29 +17,17 @@ extern "C" {
#define GGML_CUDA_MAX_DEVICES 16
// Always success. To check if CUDA is actually loaded, use `ggml_cublas_loaded`.
GGML_API GGML_CALL void ggml_init_cublas(void);
// Returns `true` if there are available CUDA devices and cublas loads successfully; otherwise, it returns `false`.
GGML_API GGML_CALL bool ggml_cublas_loaded(void);
GGML_API GGML_CALL void * ggml_cuda_host_malloc(size_t size);
GGML_API GGML_CALL void ggml_cuda_host_free(void * ptr);
GGML_API GGML_CALL bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
GGML_API GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
GGML_API GGML_CALL int ggml_cuda_get_device_count(void);
GGML_API GGML_CALL void ggml_cuda_get_device_description(int device, char * description, size_t description_size);
// backend API
GGML_API GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device);
GGML_API GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend);
// device buffer
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
// split tensor buffer that splits matrices by rows across multiple devices
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
@ -47,6 +35,9 @@ GGML_API GGML_CALL int ggml_backend_cuda_get_device_count(void);
GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
GGML_API GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
GGML_API GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer);
#ifdef __cplusplus
}
#endif

View file

@ -1951,6 +1951,7 @@ static struct ggml_backend_i kompute_backend_i = {
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_kompute_graph_compute,
/* .supports_op = */ ggml_backend_kompute_supports_op,
/* .offload_op = */ NULL,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_record = */ NULL,

View file

@ -2837,6 +2837,7 @@ static struct ggml_backend_i ggml_backend_metal_i = {
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_metal_graph_compute,
/* .supports_op = */ ggml_backend_metal_supports_op,
/* .offload_op = */ NULL,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_record = */ NULL,

View file

@ -16,6 +16,7 @@
#include <cinttypes>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <float.h>
#include <limits>
#include <stdint.h>
@ -24,10 +25,9 @@
#include <cmath>
#include <iostream>
#include <fstream>
#include <stdio.h>
#include <stdlib.h>
#include <regex>
#include <sycl/sycl.hpp>
#include <sycl/half_type.hpp>
@ -82,6 +82,30 @@ Following definition copied from DPCT head files, which are used by ggml-sycl.cp
#define __dpct_noinline__ __attribute__((noinline))
#endif
std::string get_device_type_name(const sycl::device &Device) {
auto DeviceType = Device.get_info<sycl::info::device::device_type>();
switch (DeviceType) {
case sycl::info::device_type::cpu:
return "cpu";
case sycl::info::device_type::gpu:
return "gpu";
case sycl::info::device_type::host:
return "host";
case sycl::info::device_type::accelerator:
return "acc";
default:
return "unknown";
}
}
std::string get_device_backend_and_type(const sycl::device &device) {
std::stringstream device_type;
sycl::backend backend = device.get_backend();
device_type << backend << ":" << get_device_type_name(device);
return device_type.str();
}
namespace dpct
{
typedef sycl::queue *queue_ptr;
@ -942,17 +966,65 @@ namespace dpct
private:
mutable std::recursive_mutex m_mutex;
static bool compare_dev(sycl::device &device1, sycl::device &device2)
{
dpct::device_info prop1;
dpct::get_device_info(prop1, device1);
dpct::device_info prop2;
dpct::get_device_info(prop2, device2);
return prop1.get_max_compute_units() > prop2.get_max_compute_units();
}
static int convert_backend_index(std::string & backend) {
if (backend == "ext_oneapi_level_zero:gpu") return 0;
if (backend == "opencl:gpu") return 1;
if (backend == "opencl:cpu") return 2;
if (backend == "opencl:acc") return 3;
printf("convert_backend_index: can't handle backend=%s\n", backend.c_str());
GGML_ASSERT(false);
}
static bool compare_backend(std::string &backend1, std::string &backend2) {
return convert_backend_index(backend1) < convert_backend_index(backend2);
}
dev_mgr()
{
sycl::device default_device =
sycl::device(sycl::default_selector_v);
_devs.push_back(std::make_shared<device_ext>(default_device));
std::vector<sycl::device> sycl_all_devs =
sycl::device::get_devices(sycl::info::device_type::all);
std::vector<sycl::device> sycl_all_devs;
// Collect other devices except for the default device.
if (default_device.is_cpu())
_cpu_device = 0;
auto Platforms = sycl::platform::get_platforms();
// Keep track of the number of devices per backend
std::map<sycl::backend, size_t> DeviceNums;
std::map<std::string, std::vector<sycl::device>> backend_devices;
while (!Platforms.empty()) {
auto Platform = Platforms.back();
Platforms.pop_back();
auto devices = Platform.get_devices();
std::string backend_type = get_device_backend_and_type(devices[0]);
for (const auto &device : devices) {
backend_devices[backend_type].push_back(device);
}
}
std::vector<std::string> keys;
for(auto it = backend_devices.begin(); it != backend_devices.end(); ++it) {
keys.push_back(it->first);
}
std::sort(keys.begin(), keys.end(), compare_backend);
for (auto &key : keys) {
std::vector<sycl::device> devs = backend_devices[key];
std::sort(devs.begin(), devs.end(), compare_dev);
for (const auto &dev : devs) {
sycl_all_devs.push_back(dev);
}
}
for (auto &dev : sycl_all_devs)
{
if (dev == default_device)
@ -3202,6 +3274,11 @@ static int g_work_group_size = 0;
#define GGML_SYCL_MMV_Y 1
#endif
enum ggml_sycl_backend_gpu_mode {
SYCL_UNSET_GPU_MODE = -1,
SYCL_SINGLE_GPU_MODE = 0,
SYCL_MUL_GPU_MODE
};
static_assert(sizeof(sycl::half) == sizeof(ggml_fp16_t), "wrong fp16 size");
@ -3401,12 +3478,31 @@ class sycl_gpu_mgr {
int work_group_size = 0;
std::string gpus_list = "";
/*
Use all GPUs with same top max compute units
*/
sycl_gpu_mgr() {
detect_sycl_gpu_list_with_max_cu();
get_allow_gpus();
create_context_with_gpus();
}
/*
Only use the assigned GPU
*/
sycl_gpu_mgr(int main_gpu_id) {
sycl::device device = dpct::dev_mgr::instance().get_device(main_gpu_id);
dpct::device_info prop;
dpct::get_device_info(prop, device);
gpus.push_back(main_gpu_id);
devices.push_back(device);
work_group_size = prop.get_max_work_group_size();
max_compute_units = prop.get_max_compute_units();
get_allow_gpus();
create_context_with_gpus();
}
void create_context_with_gpus() {
sycl::context ctx = sycl::context(devices);
assert(gpus.size() > 0);
@ -3422,7 +3518,7 @@ class sycl_gpu_mgr {
gpus_list += std::to_string(gpus[i]);
gpus_list += ",";
}
if (gpus_list.length() > 2) {
if (gpus_list.length() > 1) {
gpus_list.pop_back();
}
}
@ -3451,7 +3547,7 @@ class sycl_gpu_mgr {
dpct::device_info prop;
dpct::get_device_info(prop, device);
if (max_compute_units == prop.get_max_compute_units() &&
prop.get_major_version() == 1) {
is_ext_oneapi_device(device)) {
gpus.push_back(id);
devices.push_back(device);
work_group_size = prop.get_max_work_group_size();
@ -3471,8 +3567,8 @@ class sycl_gpu_mgr {
if (gpus[i] == id)
return i;
}
assert(false);
return -1;
printf("miss to get device index by id=%d\n", id);
GGML_ASSERT(false);
}
int get_next_index(int id) {
@ -3481,8 +3577,16 @@ class sycl_gpu_mgr {
if (gpus[i] == id)
return i;
}
assert(false);
return -1;
GGML_ASSERT(false);
}
bool is_ext_oneapi_device(const sycl::device &dev) {
sycl::backend dev_backend = dev.get_backend();
if (dev_backend == sycl::backend::ext_oneapi_level_zero ||
dev_backend == sycl::backend::ext_oneapi_cuda ||
dev_backend == sycl::backend::ext_oneapi_hip)
return true;
return false;
}
};
@ -3491,11 +3595,14 @@ static int g_device_count = -1;
static int g_all_sycl_device_count = -1;
static int g_main_device = -1;
static int g_main_device_id = -1;
static bool g_ggml_backend_sycl_buffer_type_initialized = false;
static std::array<float, GGML_SYCL_MAX_DEVICES> g_default_tensor_split = {};
static float g_tensor_split[GGML_SYCL_MAX_DEVICES] = {0};
static ggml_sycl_backend_gpu_mode g_ggml_sycl_backend_gpu_mode = SYCL_UNSET_GPU_MODE;
struct sycl_device_capabilities {
int cc; // compute capability
bool vmm; // virtual memory support
@ -12999,17 +13106,20 @@ bool ggml_sycl_loaded(void) {
return g_sycl_loaded;
}
void print_device_detail(int id) {
void print_device_detail(int id, sycl::device &device, std::string device_type) {
dpct::device_info prop;
SYCL_CHECK(CHECK_TRY_ERROR(
dpct::get_device_info(prop, dpct::dev_mgr::instance().get_device(id))));
sycl::device cur_device = dpct::dev_mgr::instance().get_device(id);
dpct::get_device_info(prop, device)));
std::string version;
version += std::to_string(prop.get_major_version());
version += ".";
version += std::to_string(prop.get_minor_version());
fprintf(stderr, "|%2d|%45s|%18s|%17d|%14d|%13d|%15lu|\n", id,
device_type = std::regex_replace(device_type, std::regex("ext_oneapi_"), "");
fprintf(stderr, "|%2d|%18s|%45s|%10s|%11d|%8d|%7d|%15lu|\n", id, device_type.c_str(),
prop.get_name(), version.c_str(), prop.get_max_compute_units(),
prop.get_max_work_group_size(), prop.get_max_sub_group_size(),
prop.get_global_mem_size());
@ -13017,16 +13127,32 @@ void print_device_detail(int id) {
void ggml_backend_sycl_print_sycl_devices() {
int device_count = dpct::dev_mgr::instance().device_count();
std::map<std::string, size_t> DeviceNums;
fprintf(stderr, "found %d SYCL devices:\n", device_count);
fprintf(stderr, "|ID| Name |compute capability|Max compute units|Max work group|Max sub group|Global mem size|\n");
fprintf(stderr, "|--|---------------------------------------------|------------------|-----------------|--------------|-------------|---------------|\n");
fprintf(stderr, "| | | |Compute |Max compute|Max work|Max sub| |\n");
fprintf(stderr, "|ID| Device Type| Name|capability|units |group |group |Global mem size|\n");
fprintf(stderr, "|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|\n");
for (int id = 0; id < device_count; ++id) {
print_device_detail(id);
sycl::device device = dpct::dev_mgr::instance().get_device(id);
sycl::backend backend = device.get_backend();
std::string backend_type = get_device_backend_and_type(device);
int type_id=DeviceNums[backend_type]++;
std::stringstream device_type;
device_type << "[" << backend_type << ":" << std::to_string(type_id) << "]";
print_device_detail(id, device, device_type.str());
}
}
void print_gpu_device_list() {
fprintf(stderr, "detect %d SYCL GPUs: [%s] with Max compute units:%d\n",
GGML_ASSERT(g_sycl_gpu_mgr);
char* hint=NULL;
if (g_ggml_sycl_backend_gpu_mode == SYCL_SINGLE_GPU_MODE) {
hint = "use %d SYCL GPUs: [%s] with Max compute units:%d\n";
} else {
hint = "detect %d SYCL GPUs: [%s] with top Max compute units:%d\n";
}
fprintf(stderr, hint,
g_sycl_gpu_mgr->get_gpu_count(),
g_sycl_gpu_mgr->gpus_list.c_str(),
g_sycl_gpu_mgr->max_compute_units);
@ -13065,23 +13191,6 @@ void ggml_init_sycl() try {
#else
fprintf(stderr, "%s: GGML_SYCL_F16: no\n", __func__);
#endif
if (CHECK_TRY_ERROR(g_all_sycl_device_count =
dpct::dev_mgr::instance().device_count()) != 0) {
initialized = true;
g_sycl_loaded = false;
return;
}
GGML_ASSERT(g_all_sycl_device_count <= GGML_SYCL_MAX_DEVICES);
ggml_backend_sycl_print_sycl_devices();
if (!g_sycl_gpu_mgr) g_sycl_gpu_mgr = new sycl_gpu_mgr();
g_device_count = g_sycl_gpu_mgr->get_gpu_count();
g_work_group_size = g_sycl_gpu_mgr->work_group_size;
print_gpu_device_list();
int64_t total_vram = 0;
/* NOT REMOVE, keep it for next optimize for XMX.
#if defined(SYCL_USE_XMX)
@ -13090,6 +13199,33 @@ void ggml_init_sycl() try {
fprintf(stderr, "%s: SYCL_USE_XMX: no\n", __func__);
#endif
*/
if (CHECK_TRY_ERROR(g_all_sycl_device_count =
dpct::dev_mgr::instance().device_count()) != 0) {
initialized = true;
g_sycl_loaded = false;
return;
}
GGML_ASSERT(g_all_sycl_device_count <= GGML_SYCL_MAX_DEVICES);
ggml_backend_sycl_print_sycl_devices();
initialized = true;
g_sycl_loaded = true;
}
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
void ggml_init_by_gpus(int device_count) try {
g_device_count = device_count;
g_work_group_size = g_sycl_gpu_mgr->work_group_size;
int64_t total_vram = 0;
print_gpu_device_list();
for (int id = 0; id < GGML_SYCL_MAX_DEVICES; ++id) {
g_device_caps[id].vmm = 0;
g_device_caps[id].device_id = -1;
@ -13132,10 +13268,6 @@ void ggml_init_sycl() try {
// create sycl handle
SYCL_CHECK(CHECK_TRY_ERROR(g_sycl_handles[i] = stream));
}
initialized = true;
g_sycl_loaded = true;
}
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
@ -16542,22 +16674,24 @@ static ggml_backend_buffer_type_i ggml_backend_sycl_buffer_type_interface = {
/* .is_host = */ nullptr,
};
ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device) {
ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device_index) {
if (device_index>=g_device_count or device_index<0) {
printf("ggml_backend_sycl_buffer_type error: device_index:%d is out of range [0, %d], miss to call ggml_backend_sycl_set_single_device()\n",
device_index, g_device_count-1);
GGML_ASSERT(device_index<g_device_count);
}
static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_types[GGML_SYCL_MAX_DEVICES];
static bool ggml_backend_sycl_buffer_type_initialized = false;
if (!ggml_backend_sycl_buffer_type_initialized) {
if (!g_ggml_backend_sycl_buffer_type_initialized) {
for (int i = 0; i < g_device_count; i++) {
ggml_backend_sycl_buffer_types[i] = {
/* .iface = */ ggml_backend_sycl_buffer_type_interface,
/* .context = */ new ggml_backend_sycl_buffer_type_context{i, GGML_SYCL_NAME + std::to_string(g_sycl_gpu_mgr->gpus[i])},
};
}
ggml_backend_sycl_buffer_type_initialized = true;
g_ggml_backend_sycl_buffer_type_initialized = true;
}
return &ggml_backend_sycl_buffer_types[device];
return &ggml_backend_sycl_buffer_types[device_index];
}
// sycl split buffer type
@ -17256,6 +17390,7 @@ static ggml_backend_i ggml_backend_sycl_interface = {
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_sycl_graph_compute,
/* .supports_op = */ ggml_backend_sycl_supports_op,
/* .offload_op = */ NULL,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_record = */ NULL,
@ -17310,11 +17445,42 @@ GGML_API GGML_CALL int ggml_backend_sycl_get_device_index(int device_id) {
return g_sycl_gpu_mgr->get_index(device_id);
}
GGML_API GGML_CALL int ggml_backend_sycl_get_device_id(int device_index) {
return g_sycl_gpu_mgr->gpus[device_index];
}
GGML_API GGML_CALL void ggml_backend_sycl_set_single_device_mode(int main_gpu_id) {
GGML_ASSERT(main_gpu_id<g_all_sycl_device_count);
fprintf(stderr, "ggml_backend_sycl_set_single_device: use single device: [%d]\n", main_gpu_id);
if (g_sycl_gpu_mgr) {
delete g_sycl_gpu_mgr;
}
g_sycl_gpu_mgr = new sycl_gpu_mgr(main_gpu_id);
g_ggml_sycl_backend_gpu_mode = SYCL_SINGLE_GPU_MODE;
ggml_init_by_gpus(g_sycl_gpu_mgr->get_gpu_count());
g_ggml_backend_sycl_buffer_type_initialized = false;
}
GGML_API GGML_CALL void ggml_backend_sycl_set_mul_device_mode() {
if (g_ggml_sycl_backend_gpu_mode == SYCL_MUL_GPU_MODE) {
return;
}
fprintf(stderr, "ggml_backend_sycl_set_mul_device_mode: true\n");
if (g_sycl_gpu_mgr) {
delete g_sycl_gpu_mgr;
}
g_sycl_gpu_mgr = new sycl_gpu_mgr();
g_ggml_sycl_backend_gpu_mode = SYCL_MUL_GPU_MODE;
ggml_init_by_gpus(g_sycl_gpu_mgr->get_gpu_count());
g_ggml_backend_sycl_buffer_type_initialized = false;
}
extern "C" int ggml_backend_sycl_reg_devices();
int ggml_backend_sycl_reg_devices() {
if (!g_sycl_gpu_mgr) g_sycl_gpu_mgr = new sycl_gpu_mgr();
g_device_count = g_sycl_gpu_mgr->get_gpu_count();
ggml_backend_sycl_set_mul_device_mode();
assert(g_device_count>0);
for (int i = 0; i < g_device_count; i++) {
int id = g_sycl_gpu_mgr->gpus[i];

View file

@ -29,6 +29,11 @@ GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_typ
GGML_API GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
GGML_API GGML_CALL int ggml_backend_sycl_get_device_index(int device_id);
// TODO: these are temporary
// ref: https://github.com/ggerganov/llama.cpp/pull/6022#issuecomment-1992615670
GGML_API GGML_CALL int ggml_backend_sycl_get_device_id(int device_index);
GGML_API GGML_CALL void ggml_backend_sycl_set_single_device_mode(int main_gpu_id);
GGML_API GGML_CALL void ggml_backend_sycl_set_mul_device_mode();
#ifdef __cplusplus
}
#endif

View file

@ -710,6 +710,12 @@ static uint32_t ggml_vk_find_queue_family_index(std::vector<vk::QueueFamilyPrope
}
}
// All commands that are allowed on a queue that supports transfer operations are also allowed on a queue that supports either graphics or compute operations.
// Thus, if the capabilities of a queue family include VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT, then reporting the VK_QUEUE_TRANSFER_BIT capability separately for that queue family is optional.
if (compute_index >= 0) {
return compute_index;
}
std::cerr << "ggml_vulkan: No suitable queue family index found." << std::endl;
for(auto &q_family : queue_family_props) {
@ -5693,6 +5699,7 @@ static ggml_backend_i ggml_backend_vk_interface = {
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_vk_graph_compute,
/* .supports_op = */ ggml_backend_vk_supports_op,
/* .offload_op = */ NULL,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_record = */ NULL,

131
ggml.c
View file

@ -282,8 +282,6 @@ inline static void * ggml_calloc(size_t num, size_t size) {
#else
#include <cblas.h>
#endif
#elif defined(GGML_USE_CUBLAS)
#include "ggml-cuda.h"
#elif defined(GGML_USE_CLBLAST)
#include "ggml-opencl.h"
#elif defined(GGML_USE_VULKAN)
@ -470,6 +468,19 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.type_size = sizeof(int32_t),
.is_quantized = false,
},
[GGML_TYPE_I64] = {
.type_name = "i64",
.blck_size = 1,
.type_size = sizeof(int64_t),
.is_quantized = false,
},
[GGML_TYPE_F64] = {
.type_name = "f64",
.blck_size = 1,
.type_size = sizeof(double),
.is_quantized = false,
.nrows = 1,
},
[GGML_TYPE_F32] = {
.type_name = "f32",
.blck_size = 1,
@ -918,6 +929,101 @@ inline static float vaddvq_f32(float32x4_t v) {
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
#endif
#elif defined(__AVX512F__)
#define GGML_SIMD
// F32 AVX512
#define GGML_F32_STEP 64
#define GGML_F32_EPR 16
#define GGML_F32x16 __m512
#define GGML_F32x16_ZERO _mm512_setzero_ps()
#define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
#define GGML_F32x16_LOAD _mm512_loadu_ps
#define GGML_F32x16_STORE _mm512_storeu_ps
// _mm512_fmadd_ps is defined in AVX512F so no guard is required
#define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
#define GGML_F32x16_ADD _mm512_add_ps
#define GGML_F32x16_MUL _mm512_mul_ps
#define GGML_F32x16_REDUCE(res, x) \
do { \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
res = _mm512_reduce_add_ps(x[0]); \
} while (0)
// TODO: is this optimal ?
#define GGML_F32_VEC GGML_F32x16
#define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x16_SET1
#define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
#define GGML_F32_VEC_STORE GGML_F32x16_STORE
#define GGML_F32_VEC_FMA GGML_F32x16_FMA
#define GGML_F32_VEC_ADD GGML_F32x16_ADD
#define GGML_F32_VEC_MUL GGML_F32x16_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
// F16 AVX512
// F16 AVX
#define GGML_F16_STEP 64
#define GGML_F16_EPR 16
// AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
#define GGML_F32Cx16 __m512
#define GGML_F32Cx16_ZERO _mm512_setzero_ps()
#define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
// unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
// so F16C guard isn't required
#define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((__m256i *)(x)))
#define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
#define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
#define GGML_F32Cx16_ADD _mm512_add_ps
#define GGML_F32Cx16_MUL _mm512_mul_ps
#define GGML_F32Cx16_REDUCE(res, x) \
do { \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
res = _mm512_reduce_add_ps(x[0]); \
} while (0)
#define GGML_F16_VEC GGML_F32Cx16
#define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
#elif defined(__AVX__)
#define GGML_SIMD
@ -2532,9 +2638,7 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
}
#if defined(GGML_USE_CUBLAS)
ggml_init_cublas();
#elif defined(GGML_USE_CLBLAST)
#if defined(GGML_USE_CLBLAST)
ggml_cl_init();
#elif defined(GGML_USE_VULKAN)
ggml_vk_init_cpu_assist();
@ -10997,7 +11101,6 @@ static void ggml_compute_forward_out_prod_f32(
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
// TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
// TODO: #if defined(GGML_USE_CLBLAST)
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
@ -11197,7 +11300,6 @@ static void ggml_compute_forward_out_prod_q_f32(
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
// TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
// TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
if (params->type == GGML_TASK_TYPE_INIT) {
@ -12418,6 +12520,8 @@ static void ggml_compute_forward_alibi(
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
case GGML_TYPE_I64:
case GGML_TYPE_F64:
case GGML_TYPE_COUNT:
{
GGML_ASSERT(false);
@ -12504,6 +12608,8 @@ static void ggml_compute_forward_clamp(
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
case GGML_TYPE_I64:
case GGML_TYPE_F64:
case GGML_TYPE_COUNT:
{
GGML_ASSERT(false);
@ -15939,14 +16045,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
return;
}
#ifdef GGML_USE_CUBLAS
bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
if (skip_cpu) {
return;
}
GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
#elif defined(GGML_USE_VULKAN)
#if defined(GGML_USE_VULKAN)
const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
#ifdef GGML_VULKAN_CHECK_RESULTS
if (skip_cpu) {
@ -15958,7 +16057,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
}
GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
#endif // GGML_USE_CUBLAS
#endif // GGML_USE_VULKAN
#ifdef GGML_USE_SYCL
bool skip_cpu = ggml_sycl_compute_forward(params, tensor);

2
ggml.h
View file

@ -366,6 +366,8 @@ extern "C" {
GGML_TYPE_I8 = 24,
GGML_TYPE_I16 = 25,
GGML_TYPE_I32 = 26,
GGML_TYPE_I64 = 27,
GGML_TYPE_F64 = 28,
GGML_TYPE_COUNT,
};

View file

@ -42,6 +42,7 @@ class Keys:
EXPERT_COUNT = "{arch}.expert_count"
EXPERT_USED_COUNT = "{arch}.expert_used_count"
POOLING_TYPE = "{arch}.pooling_type"
LOGIT_SCALE = "{arch}.logit_scale"
class Attention:
HEAD_COUNT = "{arch}.attention.head_count"
@ -121,6 +122,7 @@ class MODEL_ARCH(IntEnum):
GEMMA = auto()
STARCODER2 = auto()
MAMBA = auto()
COMMAND_R = auto()
class MODEL_TENSOR(IntEnum):
@ -187,6 +189,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.GEMMA: "gemma",
MODEL_ARCH.STARCODER2: "starcoder2",
MODEL_ARCH.MAMBA: "mamba",
MODEL_ARCH.COMMAND_R: "command-r",
}
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@ -579,6 +582,18 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.SSM_D,
MODEL_TENSOR.SSM_OUT,
],
MODEL_ARCH.COMMAND_R: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
# TODO
}
@ -665,6 +680,8 @@ class GGMLQuantizationType(IntEnum):
I8 = 24
I16 = 25
I32 = 26
I64 = 27
F64 = 28
class GGUFEndian(IntEnum):
@ -734,6 +751,8 @@ GGML_QUANT_SIZES = {
GGMLQuantizationType.I8: (1, 1),
GGMLQuantizationType.I16: (1, 2),
GGMLQuantizationType.I32: (1, 4),
GGMLQuantizationType.I64: (1, 8),
GGMLQuantizationType.F64: (1, 8),
}

View file

@ -242,12 +242,15 @@ class GGUFReader:
n_bytes = n_elems * type_size // block_size
data_offs = int(start_offs + offset_tensor[0])
item_type: npt.DTypeLike
if ggml_type == GGMLQuantizationType.F32:
item_count = n_elems
item_type = np.float32
elif ggml_type == GGMLQuantizationType.F16:
if ggml_type == GGMLQuantizationType.F16:
item_count = n_elems
item_type = np.float16
elif ggml_type == GGMLQuantizationType.F32:
item_count = n_elems
item_type = np.float32
elif ggml_type == GGMLQuantizationType.F64:
item_count = n_elems
item_type = np.float64
elif ggml_type == GGMLQuantizationType.I8:
item_count = n_elems
item_type = np.int8
@ -257,6 +260,9 @@ class GGUFReader:
elif ggml_type == GGMLQuantizationType.I32:
item_count = n_elems
item_type = np.int32
elif ggml_type == GGMLQuantizationType.I64:
item_count = n_elems
item_type = np.int64
else:
item_count = n_bytes
item_type = np.uint8

View file

@ -204,18 +204,22 @@ class GGUFWriter:
for i in range(n_dims):
self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
if raw_dtype is None:
if tensor_dtype == np.float32:
dtype = GGMLQuantizationType.F32
elif tensor_dtype == np.float16:
if tensor_dtype == np.float16:
dtype = GGMLQuantizationType.F16
elif tensor_dtype == np.float32:
dtype = GGMLQuantizationType.F32
elif tensor_dtype == np.float64:
dtype = GGMLQuantizationType.F64
elif tensor_dtype == np.int8:
dtype = GGMLQuantizationType.I8
elif tensor_dtype == np.int16:
dtype = GGMLQuantizationType.I16
elif tensor_dtype == np.int32:
dtype = GGMLQuantizationType.I32
elif tensor_dtype == np.int64:
dtype = GGMLQuantizationType.I64
else:
raise ValueError("Only F32, F16, I8, I16, I32 tensors are supported for now")
raise ValueError("Only F16, F32, F64, I8, I16, I32, I64 tensors are supported for now")
else:
dtype = raw_dtype
self.ti_data += self._pack("I", dtype)
@ -357,6 +361,9 @@ class GGUFWriter:
def add_clamp_kqv(self, value: float) -> None:
self.add_float32(Keys.Attention.CLAMP_KQV.format(arch=self.arch), value)
def add_logit_scale(self, value: float) -> None:
self.add_float32(Keys.LLM.LOGIT_SCALE.format(arch=self.arch), value)
def add_expert_count(self, count: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_COUNT.format(arch=self.arch), count)

402
llama.cpp
View file

@ -214,6 +214,7 @@ enum llm_arch {
LLM_ARCH_GEMMA,
LLM_ARCH_STARCODER2,
LLM_ARCH_MAMBA,
LLM_ARCH_COMMAND_R,
LLM_ARCH_UNKNOWN,
};
@ -243,6 +244,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_GEMMA, "gemma" },
{ LLM_ARCH_STARCODER2, "starcoder2" },
{ LLM_ARCH_MAMBA, "mamba" },
{ LLM_ARCH_COMMAND_R, "command-r" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@ -268,6 +270,7 @@ enum llm_kv {
LLM_KV_EXPERT_COUNT,
LLM_KV_EXPERT_USED_COUNT,
LLM_KV_POOLING_TYPE,
LLM_KV_LOGIT_SCALE,
LLM_KV_ATTENTION_HEAD_COUNT,
LLM_KV_ATTENTION_HEAD_COUNT_KV,
@ -332,6 +335,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_EXPERT_COUNT, "%s.expert_count" },
{ LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
{ LLM_KV_POOLING_TYPE , "%s.pooling_type" },
{ LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
@ -536,6 +540,7 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output"},
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
@ -838,6 +843,21 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
},
},
{
LLM_ARCH_COMMAND_R,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_UNKNOWN,
{
@ -1608,6 +1628,7 @@ enum e_model {
MODEL_20B,
MODEL_30B,
MODEL_34B,
MODEL_35B,
MODEL_40B,
MODEL_65B,
MODEL_70B,
@ -1654,6 +1675,7 @@ struct llama_hparams {
float f_clamp_kqv = 0.0f;
float f_max_alibi_bias = 0.0f;
float f_logit_scale = 0.0f;
bool causal_attn = true;
bool need_kq_pos = false;
@ -1885,6 +1907,31 @@ struct llama_kv_cache {
}
};
struct llama_control_vector {
std::vector<struct ggml_tensor *> tensors; // per layer
std::vector<struct ggml_context *> ctxs;
std::vector<ggml_backend_buffer_t> bufs;
int32_t layer_start = -1;
int32_t layer_end = -1;
ggml_tensor * tensor_for(int il) const {
if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
return nullptr;
}
return tensors[il];
}
~llama_control_vector() {
for (struct ggml_context * ctx : ctxs) {
ggml_free(ctx);
}
for (ggml_backend_buffer_t buf : bufs) {
ggml_backend_buffer_free(buf);
}
}
};
struct llama_vocab {
using id = int32_t;
using token = std::string;
@ -2010,6 +2057,11 @@ struct llama_model {
ggml_free(ctx);
}
for (ggml_backend_buffer_t buf : bufs) {
#ifdef GGML_USE_CUBLAS
if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
}
#endif
ggml_backend_buffer_free(buf);
}
}
@ -2104,6 +2156,8 @@ struct llama_context {
struct ggml_tensor * inp_s_seq; // I32 [kv_size, n_batch]
// control vectors
struct llama_control_vector cvec;
};
//
@ -3245,6 +3299,7 @@ static const char * llama_model_type_name(e_model type) {
case MODEL_20B: return "20B";
case MODEL_30B: return "30B";
case MODEL_34B: return "34B";
case MODEL_35B: return "35B";
case MODEL_40B: return "40B";
case MODEL_65B: return "65B";
case MODEL_70B: return "70B";
@ -3642,6 +3697,15 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_COMMAND_R:
{
ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
switch (hparams.n_layer) {
case 40: model.type = e_model::MODEL_35B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
default: (void)0;
}
@ -3963,6 +4027,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
@ -4281,9 +4346,9 @@ static bool llm_load_tensors(
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_OUTPUT, "weight").c_str()) >= 0) {
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
} else {
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
if (!model.output) {
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
ml.n_created--; // artificial tensor
ml.size_data += ggml_nbytes(model.output);
@ -4488,11 +4553,13 @@ static bool llm_load_tensors(
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
// same as tok_embd, duplicated to allow offloading
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
if (!model.output) {
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
ml.n_created--; // artificial tensor
ml.size_data += ggml_nbytes(model.output);
}
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
@ -4964,6 +5031,37 @@ static bool llm_load_tensors(
layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
}
} break;
case LLM_ARCH_COMMAND_R:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
// init output from the input tok embed
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
ml.n_created--; // artificial tensor
ml.size_data += ggml_nbytes(model.output);
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
}
} break;
default:
throw std::runtime_error("unknown architecture");
}
@ -4988,8 +5086,13 @@ static bool llm_load_tensors(
size_t first, last;
ml.get_mapping_range(&first, &last, ctx);
buf = ggml_backend_cpu_buffer_from_ptr((char *) ml.mapping->addr + first, last - first);
#ifdef GGML_USE_MPI
buf = ggml_backend_mpi_wrap_buffer(buf);
#ifdef GGML_USE_CUBLAS
if (n_layer >= n_gpu_layers) {
ggml_backend_cuda_register_host_buffer(
ggml_backend_buffer_get_base(buf),
ggml_backend_buffer_get_size(buf));
}
#endif
}
#ifdef GGML_USE_METAL
@ -5013,6 +5116,10 @@ static bool llm_load_tensors(
if (buf == nullptr) {
throw std::runtime_error("failed to allocate buffer");
}
#ifdef GGML_USE_MPI
buf = ggml_backend_mpi_wrap_buffer(buf);
#endif
// indicate that this buffer contains weights
// this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
ggml_backend_buffer_set_usage(buf, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
@ -5114,6 +5221,16 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
}
#endif
#ifdef GGML_USE_SYCL
if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
ggml_backend_sycl_set_single_device_mode(params.main_gpu);
//SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
} else {
ggml_backend_sycl_set_mul_device_mode();
}
#endif
if (!llm_load_tensors(
ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.node_layer_weights, params.use_mlock,
params.progress_callback, params.progress_callback_user_data
@ -5909,6 +6026,12 @@ struct llm_build_context {
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
if (layer_dir != nullptr) {
cur = ggml_add(ctx0, cur, layer_dir);
}
cb(cur, "l_out", il);
// input for next layer
@ -5944,7 +6067,7 @@ struct llm_build_context {
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
@ -5995,7 +6118,6 @@ struct llm_build_context {
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, NULL,
Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
@ -8183,7 +8305,6 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
@ -8363,6 +8484,121 @@ struct llm_build_context {
return gf;
}
struct ggml_cgraph * build_command_r() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
const float f_logit_scale = hparams.f_logit_scale;
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM, cb, il);
cb(cur, "attn_norm", il);
struct ggml_tensor * ffn_inp = cur;
// self-attention
{
// compute Q and K and RoPE them
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_rope_custom(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_custom(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
struct ggml_tensor * attn_out = cur;
// feed-forward network
{
cur = llm_build_ffn(ctx0, ffn_inp,
model.layers[il].ffn_up, NULL,
model.layers[il].ffn_gate, NULL,
model.layers[il].ffn_down, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
}
// add together residual + FFN + self-attention
cur = ggml_add(ctx0, cur, inpL);
cur = ggml_add(ctx0, cur, attn_out);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
cur = ggml_mul_mat(ctx0, model.output, cur);
if (f_logit_scale) {
cur = ggml_scale(ctx0, cur, f_logit_scale);
}
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
};
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
@ -8438,7 +8674,9 @@ static struct ggml_cgraph * llama_build_graph(
}
// norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
// to fix this, we assign the norm layer manually to the backend of its layer
// FIXME: fix in ggml_backend_sched
const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
if (batch.n_tokens < 32 || full_offload) {
if (il != -1 && strcmp(name, "norm") == 0) {
for (auto * backend : lctx.backends) {
if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
@ -8447,6 +8685,7 @@ static struct ggml_cgraph * llama_build_graph(
}
}
}
}
};
struct ggml_cgraph * result = NULL;
@ -8545,6 +8784,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm.build_mamba();
} break;
case LLM_ARCH_COMMAND_R:
{
result = llm.build_command_r();
} break;
default:
GGML_ASSERT(false);
}
@ -12958,9 +13201,8 @@ struct llama_context * llama_new_context_with_model(
ctx->backends.push_back(ctx->backend_metal);
}
#elif defined(GGML_USE_CUBLAS)
if (model->n_gpu_layers > 0) {
// with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
// with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
@ -12980,7 +13222,6 @@ struct llama_context * llama_new_context_with_model(
ctx->backends.push_back(backend);
}
}
}
#elif defined(GGML_USE_VULKAN)
if (model->n_gpu_layers > 0) {
for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
@ -12997,23 +13238,22 @@ struct llama_context * llama_new_context_with_model(
if (model->n_gpu_layers > 0) {
// with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
int main_gpu_index = ggml_backend_sycl_get_device_index(model->main_gpu);
ggml_backend_t backend = ggml_backend_sycl_init(main_gpu_index);
ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d)backend\n", __func__, model->main_gpu, main_gpu_index);
int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
llama_free(ctx);
return nullptr;
}
ctx->backends.push_back(backend);
} else {
// LLAMA_SPLIT_LAYER requires a backend for each GPU
int id_list[GGML_SYCL_MAX_DEVICES];
ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
int device_id = id_list[i];
ggml_backend_t backend = ggml_backend_sycl_init(i);
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d)backend\n", __func__, device_id, i);
int id_list[GGML_SYCL_MAX_DEVICES];
ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
llama_free(ctx);
return nullptr;
}
@ -13156,14 +13396,17 @@ struct llama_context * llama_new_context_with_model(
ggml_backend_t backend = ctx->backends[i];
ggml_backend_buffer_type_t buft = backend_buft[i];
size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
if (size > 1) {
LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
ggml_backend_buft_name(buft),
size / 1024.0 / 1024.0);
}
}
// note: the number of splits during measure is higher than during inference due to the kv shift
int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
LLAMA_LOG_INFO("%s: graph splits: %d\n", __func__, n_splits);
LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
}
}
@ -13225,6 +13468,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_ORION:
case LLM_ARCH_INTERNLM2:
case LLM_ARCH_MINICPM:
case LLM_ARCH_COMMAND_R:
return LLAMA_ROPE_TYPE_NORM;
// the pairs of head values are offset by n_rot/2
@ -13261,6 +13505,10 @@ int32_t llama_n_embd(const struct llama_model * model) {
return model->hparams.n_embd;
}
int32_t llama_n_layer(const struct llama_model * model) {
return model->hparams.n_layer;
}
float llama_rope_freq_scale_train(const struct llama_model * model) {
return model->hparams.rope_freq_scale_train;
}
@ -13360,6 +13608,96 @@ int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const
}
}
static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
GGML_ASSERT(cvec.tensors.empty());
GGML_ASSERT(cvec.ctxs.empty());
GGML_ASSERT(cvec.bufs.empty());
// count layer buffer types
std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
for (int64_t i = 0; i < model.hparams.n_layer; i++) {
buft_layer_count[model.buft_layer[i].buft]++;
}
// allocate contexts
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
for (auto & it : buft_layer_count) {
int n_layers = it.second;
struct ggml_init_params params = {
/*.mem_size =*/ n_layers * ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * ctx = ggml_init(params);
if (!ctx) {
LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
return 1;
}
ctx_map[it.first] = ctx;
}
// make tensors
cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
for (size_t il = 1; il < model.hparams.n_layer; il++) {
struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
cvec.tensors.push_back(tensor);
}
// allocate tensors / buffers and zero
for (auto it : ctx_map) {
ggml_backend_buffer_type_t buft = it.first;
ggml_context * ctx = it.second;
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
if (!buf) {
LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
return false;
}
ggml_backend_buffer_clear(buf, 0);
cvec.ctxs.push_back(ctx);
cvec.bufs.push_back(buf);
}
return true;
}
int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
const llama_model & model = lctx->model;
llama_control_vector & cvec = lctx->cvec;
if (data == nullptr) {
// disable the current control vector (but leave allocated for later)
cvec.layer_start = -1;
cvec.layer_end = -1;
return 0;
}
if (n_embd != (int) model.hparams.n_embd) {
LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
return 1;
}
if (cvec.tensors.empty()) {
if (!llama_control_vector_init(cvec, model)) {
return 1;
}
}
cvec.layer_start = il_start;
cvec.layer_end = il_end;
for (size_t il = 1; il < model.hparams.n_layer; il++) {
assert(cvec.tensors[il] != nullptr);
const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
if (off + n_embd <= len) {
ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
}
}
return 0;
}
struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
struct llama_kv_cache_view result = {
/*.n_cells = */ 0,
@ -14347,6 +14685,26 @@ static int32_t llama_chat_apply_template_internal(
if (add_ass) {
ss << "<start_of_turn>model\n";
}
} else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
// OrionStarAI/Orion-14B-Chat
std::string system_prompt = "";
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
// there is no system message support, we will merge it with user prompt
system_prompt = message->content;
continue;
} else if (role == "user") {
ss << "Human: ";
if (!system_prompt.empty()) {
ss << system_prompt << "\n\n";
system_prompt = "";
}
ss << message->content << "\n\nAssistant: </s>";
} else {
ss << message->content << "</s>";
}
}
} else {
// template not supported
return -1;

15
llama.h
View file

@ -395,6 +395,7 @@ extern "C" {
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
// Get the model's RoPE frequency scaling factor
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
@ -447,6 +448,20 @@ extern "C" {
const char * path_base_model,
int32_t n_threads);
// Apply a loaded control vector to a llama_context, or if data is NULL, clear
// the currently loaded vector.
// n_embd should be the size of a single layer's control, and data should point
// to an n_embd x n_layers buffer starting from layer 1.
// il_start and il_end are the layer range the vector should apply to (both inclusive)
// See llama_control_vector_load in common to load a control vector.
LLAMA_API int32_t llama_control_vector_apply(
struct llama_context * lctx,
const float * data,
size_t len,
int32_t n_embd,
int32_t il_start,
int32_t il_end);
//
// KV cache
//

View file

@ -31,6 +31,8 @@ int main(void) {
"{% for message in messages %}{{bos_token + message['role'] + '\\n' + message['content'] + eos_token + '\\n'}}{% endfor %}{% if add_generation_prompt %}{{ bos_token + 'assistant\\n' }}{% endif %}",
// google/gemma-7b-it
"{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\\n' + message['content'] | trim + '<end_of_turn>\\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\\n'}}{% endif %}",
// OrionStarAI/Orion-14B-Chat
"{% for message in messages %}{% if loop.first %}{{ bos_token }}{% endif %}{% if message['role'] == 'user' %}{{ 'Human: ' + message['content'] + '\\n\\nAssistant: ' + eos_token }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token }}{% endif %}{% endfor %}",
};
std::vector<std::string> expected_output = {
// teknium/OpenHermes-2.5-Mistral-7B
@ -45,6 +47,8 @@ int main(void) {
"system\nYou are a helpful assistant</s>\n<s>user\nHello</s>\n<s>assistant\nHi there</s>\n<s>user\nWho are you</s>\n<s>assistant\n I am an assistant </s>\n<s>user\nAnother question</s>\n<s>assistant\n",
// google/gemma-7b-it
"<start_of_turn>user\nYou are a helpful assistant\n\nHello<end_of_turn>\n<start_of_turn>model\nHi there<end_of_turn>\n<start_of_turn>user\nWho are you<end_of_turn>\n<start_of_turn>model\nI am an assistant<end_of_turn>\n<start_of_turn>user\nAnother question<end_of_turn>\n<start_of_turn>model\n",
// OrionStarAI/Orion-14B-Chat
"Human: You are a helpful assistant\n\nHello\n\nAssistant: </s>Hi there</s>Human: Who are you\n\nAssistant: </s> I am an assistant </s>Human: Another question\n\nAssistant: </s>",
};
std::vector<char> formatted_chat(1024);
int32_t res;