diff --git a/examples/finetune/finetune.cpp b/examples/finetune/finetune.cpp index b0c03a749..296d2d621 100644 --- a/examples/finetune/finetune.cpp +++ b/examples/finetune/finetune.cpp @@ -29,7 +29,6 @@ struct my_llama_hparams { uint32_t n_head = 32; uint32_t n_head_kv = 32; uint32_t n_layer = 32; - uint32_t n_rot = 64; uint32_t n_gqa() const { return n_head/n_head_kv; @@ -203,7 +202,6 @@ static void print_params(struct my_llama_hparams * params) { printf("%s: n_ff: %u\n", __func__, params->n_ff); printf("%s: n_head: %u\n", __func__, params->n_head); printf("%s: n_layer: %u\n", __func__, params->n_layer); - printf("%s: n_rot: %u\n", __func__, params->n_rot); } static void print_lora_params(struct my_llama_lora_hparams * params) { @@ -247,7 +245,6 @@ static void init_model(struct llama_model * input, struct my_llama_model * model hparams.n_head = llama_model_n_head(input); hparams.n_head_kv = llama_model_n_head_kv(input); hparams.n_layer = llama_model_n_layer(input); - hparams.n_rot = llama_model_n_rot(input); model->tok_embeddings = llama_get_model_tensor(input, tn(LLM_TENSOR_TOKEN_EMBD)); model->norm = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT_NORM)); @@ -535,8 +532,8 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs( const int n_layer = hparams.n_layer; const int n_head = hparams.n_head; const int n_head_kv = hparams.n_head_kv; - const int n_rot = hparams.n_rot; const int n_ff = hparams.n_ff; + const int n_rot = hparams.n_embd_head(); const int n_embd_head = hparams.n_embd_head(); const int n_embd_gqa = hparams.n_embd_gqa(); const float rms_norm_eps = lora->hparams.f_norm_rms_eps; @@ -544,7 +541,6 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs( const float rope_freq_scale = lora->hparams.rope_freq_scale; GGML_ASSERT((size_t) n_layer == lora->layers.size()); - GGML_ASSERT(n_embd_head == n_rot); auto set_name = [](struct ggml_tensor * t, const char * n) { ggml_set_name(t, n); @@ -823,9 +819,6 @@ static void load_llama_lora_gguf(struct gguf_context * fctx, struct ggml_context model->hparams.n_head_kv = model->hparams.n_head; GGUF_GET_KEY(fctx, model->hparams.n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV)); - model->hparams.n_rot = model->hparams.n_embd / model->hparams.n_head; - GGUF_GET_KEY(fctx, model->hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT)); - float rope_freq_scale = 1.0f; GGUF_GET_KEY(fctx, lora->hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS)); GGUF_GET_KEY(fctx, lora->hparams.rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE)); @@ -899,7 +892,7 @@ static void save_llama_lora_gguf(struct gguf_context * fctx, struct my_llama_mod gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT), model->hparams.n_head); gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV), model->hparams.n_head_kv); gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT), model->hparams.n_layer); - gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT), model->hparams.n_rot); + gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT), model->hparams.n_embd_head()); gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), lora->hparams.f_norm_rms_eps); gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE), lora->hparams.rope_freq_base); gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR), lora->hparams.rope_freq_scale);