This commit is contained in:
Yi-Ying He 2025-02-10 17:34:13 +08:00 committed by GitHub
commit 1e2d54ae45
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
27 changed files with 1630 additions and 15 deletions

View file

@ -443,7 +443,7 @@ struct llava_embd_batch {
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
llava_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
llava_embd_batch(float * embd, int32_t n_embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
pos .resize(n_tokens);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
@ -455,6 +455,7 @@ struct llava_embd_batch {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
/*n_embd =*/ n_embd,
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
@ -478,7 +479,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
n_eval = n_batch;
}
float * embd = image_embed->embed+i*n_embd;
llava_embd_batch llava_batch = llava_embd_batch(embd, n_eval, *n_past, 0);
llava_embd_batch llava_batch = llava_embd_batch(embd, n_embd, n_eval, *n_past, 0);
if (llama_decode(ctx_llama, llava_batch.batch)) {
LOG_ERR("%s : failed to eval\n", __func__);
return false;

902
examples/mllama/mllama.cpp Normal file
View file

@ -0,0 +1,902 @@
// NOTE: This is modified from clip.cpp for Mllama only
#include "mllama.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include "ggml-cpu.h"
#include "ggml.h"
#include "gguf.h"
#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#ifdef GGML_USE_CANN
#include "ggml-cann.h"
#endif
#ifdef GGML_USE_VULKAN
#include "ggml-vulkan.h"
#endif
#include <algorithm>
#include <cmath>
#include <cstdarg>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <stdexcept>
#include <vector>
#define REQUIRE(x) \
do { \
if (!(x)) { \
throw std::runtime_error("REQUIRE failed: " #x); \
} \
} while (0)
#define LOG(fmt, ...) fprintf(stderr, "%s: " fmt "\n", __func__, ##__VA_ARGS__)
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#if __GLIBCXX__
#include <cstdio>
#include <ext/stdio_filebuf.h>
#include <fcntl.h>
#endif
#endif
struct mllama_image {
int width;
int height;
int num_channels = 3;
int num_tiles = 4;
int aspect_ratio_id;
std::vector<float> data;
};
static std::string format(const char *fmt, ...) {
va_list args;
va_start(args, fmt);
std::vector<char> b(128);
int n = vsnprintf(b.data(), b.size(), fmt, args);
REQUIRE(n >= 0 && n < static_cast<int>(b.size()));
va_end(args);
return std::string(b.data(), b.size());
}
//
// utilities to get data from a gguf file
//
static int get_key_index(const gguf_context *ctx, const char *key) {
int key_index = gguf_find_key(ctx, key);
REQUIRE(key_index != -1);
return key_index;
}
static std::vector<uint32_t> get_u32_array(const gguf_context *ctx, const std::string &key) {
const int i = get_key_index(ctx, key.c_str());
const int n = gguf_get_arr_n(ctx, i);
const uint32_t *data = (uint32_t *)gguf_get_arr_data(ctx, i);
std::vector<uint32_t> s(n);
for (size_t j = 0; j < s.size(); j++) {
s[j] = data[j];
}
return s;
}
static uint32_t get_u32(const gguf_context *ctx, const std::string &key) {
return gguf_get_val_u32(ctx, get_key_index(ctx, key.c_str()));
}
static float get_f32(const gguf_context *ctx, const std::string &key) {
return gguf_get_val_f32(ctx, get_key_index(ctx, key.c_str()));
}
static std::string get_ftype(int ftype) {
return ggml_type_name(static_cast<ggml_type>(ftype));
}
//
// mllama layers
//
struct mllama_hparams {
uint32_t image_size;
uint32_t patch_size;
uint32_t hidden_size;
uint32_t n_intermediate;
uint32_t projection_dim;
uint32_t n_head;
uint32_t n_layer;
uint32_t n_global_layer;
uint32_t n_tiles;
float eps;
std::vector<bool> intermediate_layers;
};
struct mllama_layer {
// attention
struct ggml_tensor *k_w;
struct ggml_tensor *k_b;
struct ggml_tensor *q_w;
struct ggml_tensor *q_b;
struct ggml_tensor *v_w;
struct ggml_tensor *v_b;
struct ggml_tensor *o_w;
struct ggml_tensor *o_b;
struct ggml_tensor *attn_gate;
// layernorm 1
struct ggml_tensor *ln_1_w;
struct ggml_tensor *ln_1_b;
// ff
struct ggml_tensor *ff_i_w;
struct ggml_tensor *ff_i_b;
struct ggml_tensor *ff_o_w;
struct ggml_tensor *ff_o_b;
struct ggml_tensor *ff_gate;
// layernorm 2
struct ggml_tensor *ln_2_w;
struct ggml_tensor *ln_2_b;
};
struct mllama_vision_model {
struct mllama_hparams hparams;
// embeddings
struct ggml_tensor *class_embedding;
struct ggml_tensor *patch_embeddings;
struct ggml_tensor *position_embeddings;
struct ggml_tensor *position_embeddings_gate;
struct ggml_tensor *tile_position_embeddings;
struct ggml_tensor *tile_position_embeddings_gate;
struct ggml_tensor *pre_tile_position_embeddings;
struct ggml_tensor *pre_tile_position_embeddings_gate;
struct ggml_tensor *post_tile_position_embeddings;
struct ggml_tensor *post_tile_position_embeddings_gate;
struct ggml_tensor *pre_ln_w;
struct ggml_tensor *pre_ln_b;
std::vector<mllama_layer> layers;
std::vector<mllama_layer> global_layers;
struct ggml_tensor *post_ln_w;
struct ggml_tensor *post_ln_b;
struct ggml_tensor *mm_0_w;
struct ggml_tensor *mm_0_b;
};
struct mllama_ctx {
struct mllama_vision_model vision_model;
uint32_t ftype = 1;
struct gguf_context *ctx_gguf;
struct ggml_context *ctx_data;
std::vector<uint8_t> buf_compute_meta;
// memory buffers to evaluate the model
ggml_backend_buffer_t params_buffer = nullptr;
ggml_backend_t backend = nullptr;
ggml_gallocr_t compute_alloc = nullptr;
};
static ggml_tensor *mllama_image_build_encoder_layer(
struct ggml_context *ctx0, const size_t il, const struct mllama_layer &layer, struct ggml_tensor *embeddings,
const float eps, const int hidden_size, const int batch_size, const int n_head, const int d_head) {
struct ggml_tensor *cur = embeddings;
{
// layernorm1
cur = ggml_norm(ctx0, cur, eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.ln_1_w), layer.ln_1_b);
ggml_set_name(cur, format("%d pre layernorm", il).c_str());
}
{
// self-attention
struct ggml_tensor *Q = ggml_mul_mat(ctx0, layer.q_w, cur);
if (layer.q_b != nullptr) {
Q = ggml_add(ctx0, Q, layer.q_b);
}
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, Q->ne[1], batch_size);
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
ggml_set_name(Q, format("%d query", il).c_str());
struct ggml_tensor *K = ggml_mul_mat(ctx0, layer.k_w, cur);
if (layer.k_b != nullptr) {
K = ggml_add(ctx0, K, layer.k_b);
}
K = ggml_reshape_4d(ctx0, K, d_head, n_head, K->ne[1], batch_size);
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
ggml_set_name(K, format("%d key", il).c_str());
struct ggml_tensor *V = ggml_mul_mat(ctx0, layer.v_w, cur);
if (layer.v_b != nullptr) {
V = ggml_add(ctx0, V, layer.v_b);
}
V = ggml_reshape_4d(ctx0, V, d_head, n_head, V->ne[1], batch_size);
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
ggml_set_name(V, format("%d value", il).c_str());
struct ggml_tensor *KQ = ggml_mul_mat(ctx0, K, Q);
KQ = ggml_scale_inplace(ctx0, KQ, 1.0f / sqrtf((float)d_head));
KQ = ggml_soft_max_inplace(ctx0, KQ);
ggml_set_name(KQ, format("%d KQ", il).c_str());
struct ggml_tensor *KQV = ggml_mul_mat(ctx0, V, KQ);
KQV = ggml_reshape_4d(ctx0, KQV, d_head, KQV->ne[1], n_head, batch_size);
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
KQV = ggml_cont_3d(ctx0, KQV, hidden_size, KQV->ne[2], batch_size);
ggml_set_name(KQV, format("%d KQV", il).c_str());
cur = ggml_mul_mat(ctx0, layer.o_w, KQV);
if (layer.o_b != nullptr) {
cur = ggml_add(ctx0, cur, layer.o_b);
}
ggml_set_name(cur, format("%d self attention", il).c_str());
if (layer.attn_gate != nullptr) {
cur = ggml_mul_inplace(ctx0, cur, layer.attn_gate);
ggml_set_name(cur, format("%d self attention gate", il).c_str());
}
}
cur = ggml_add(ctx0, cur, embeddings);
ggml_set_name(cur, format("%d residual", il).c_str());
embeddings = cur;
{
// layernorm2
cur = ggml_norm(ctx0, cur, eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.ln_2_w), layer.ln_2_b);
ggml_set_name(cur, format("%d post layernorm", il).c_str());
}
{
// feed forward
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, layer.ff_i_w, cur), layer.ff_i_b);
cur = ggml_gelu_inplace(ctx0, cur);
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, layer.ff_o_w, cur), layer.ff_o_b);
ggml_set_name(cur, format("%d feed forward", il).c_str());
if (layer.ff_gate != nullptr) {
cur = ggml_mul_inplace(ctx0, cur, layer.ff_gate);
ggml_set_name(cur, format("%d feed forward gate", il).c_str());
}
}
// residual 2
cur = ggml_add(ctx0, cur, embeddings);
ggml_set_name(cur, format("%d residual", il).c_str());
embeddings = cur;
return embeddings;
}
static ggml_cgraph *mllama_image_build_graph(mllama_ctx *ctx, const mllama_image_batch *imgs) {
const auto &model = ctx->vision_model;
const auto &hparams = model.hparams;
const int image_size = hparams.image_size;
const int image_size_width = image_size;
const int image_size_height = image_size;
const int patch_size = hparams.patch_size;
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
const int num_positions = num_patches + (model.class_embedding == nullptr ? 0 : 1);
const int hidden_size = hparams.hidden_size;
const int n_head = hparams.n_head;
const int d_head = hidden_size / n_head;
const int batch_size = imgs->size;
REQUIRE(batch_size == 1);
int num_tiles = 4;
int num_channels = 3;
if (imgs->data != nullptr) {
num_tiles = imgs->data[0].num_tiles > 0 ? imgs->data[0].num_tiles : num_tiles;
num_channels = imgs->data[0].num_channels > 0 ? imgs->data[0].num_channels : num_channels;
}
struct ggml_init_params params = {
ctx->buf_compute_meta.size(), // mem_size
ctx->buf_compute_meta.data(), // mem_buffer
true, // no_alloc
};
struct ggml_context *ctx0 = ggml_init(params);
struct ggml_cgraph *gf = ggml_new_graph(ctx0);
struct ggml_tensor *inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, num_channels, num_tiles);
ggml_set_name(inp_raw, "inp_raw");
ggml_set_input(inp_raw);
struct ggml_tensor *inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, num_tiles);
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
struct ggml_tensor *aspect_ratios = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, imgs->size);
ggml_set_name(aspect_ratios, "aspect_ratios");
ggml_set_input(aspect_ratios);
if (model.pre_tile_position_embeddings != nullptr) {
struct ggml_tensor *pre_tile_position_embeddings = ggml_get_rows(ctx0, model.pre_tile_position_embeddings, aspect_ratios);
ggml_set_name(pre_tile_position_embeddings, "pre_tile_position_embeddings");
pre_tile_position_embeddings = ggml_reshape_3d(ctx0, pre_tile_position_embeddings, hidden_size, 1, num_tiles);
if (model.pre_tile_position_embeddings_gate != nullptr) {
pre_tile_position_embeddings = ggml_mul_inplace(ctx0, pre_tile_position_embeddings, model.pre_tile_position_embeddings_gate);
}
inp = ggml_add(ctx0, inp, pre_tile_position_embeddings);
}
struct ggml_tensor *embeddings = inp;
if (model.class_embedding != nullptr) {
// concat class_embeddings and patch_embeddings
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, num_tiles);
ggml_set_name(embeddings, "embeddings");
ggml_set_input(embeddings);
for (int i = 0; i < num_tiles; ++i) {
// repeat class embeddings for each tile
embeddings = ggml_acc_inplace(ctx0, embeddings, model.class_embedding, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], i * embeddings->nb[2]);
}
embeddings = ggml_acc_inplace(ctx0, embeddings, inp, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
}
struct ggml_tensor *positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
ggml_set_name(positions, "positions");
ggml_set_input(positions);
struct ggml_tensor *position_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
if (model.position_embeddings_gate != nullptr) {
position_embd = ggml_mul_inplace(ctx0, position_embd, model.position_embeddings_gate);
}
embeddings = ggml_add(ctx0, embeddings, position_embd);
if (model.tile_position_embeddings != nullptr) {
struct ggml_tensor *tile_position_embeddings = ggml_get_rows(ctx0, model.tile_position_embeddings, aspect_ratios);
ggml_set_name(tile_position_embeddings, "tile_position_embeddings");
tile_position_embeddings = ggml_reshape_3d(ctx0, tile_position_embeddings, hidden_size, num_positions, num_tiles);
if (model.tile_position_embeddings_gate != nullptr) {
tile_position_embeddings = ggml_mul_inplace(ctx0, tile_position_embeddings, model.tile_position_embeddings_gate);
}
embeddings = ggml_add(ctx0, embeddings, tile_position_embeddings);
}
// pre-layernorm
if (model.pre_ln_w != nullptr) {
embeddings = ggml_mul(ctx0, ggml_norm(ctx0, embeddings, hparams.eps), model.pre_ln_w);
if (model.pre_ln_b != nullptr) {
embeddings = ggml_add(ctx0, embeddings, model.pre_ln_b);
}
ggml_set_name(embeddings, "pre layernorm");
}
const int num_padding_patches = 8 - (embeddings->ne[1] % 8) % 8;
embeddings = ggml_pad(ctx0, embeddings, 0, num_padding_patches, 0, 0);
embeddings = ggml_view_3d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1] * embeddings->ne[2], batch_size, embeddings->nb[1], embeddings->nb[2] * embeddings->ne[3], 0);
std::vector<struct ggml_tensor *> intermediate_embeddings;
// encoder
for (size_t il = 0; il < model.layers.size(); il++) {
if (hparams.intermediate_layers[il]) {
intermediate_embeddings.push_back(embeddings);
}
embeddings = mllama_image_build_encoder_layer(
ctx0, il, model.layers[il], embeddings,
hparams.eps, hidden_size, batch_size, n_head, d_head);
}
// post-layernorm
if (model.post_ln_w != nullptr) {
embeddings = ggml_mul(ctx0, ggml_norm(ctx0, embeddings, hparams.eps), model.post_ln_w);
if (model.post_ln_b != nullptr) {
embeddings = ggml_add(ctx0, embeddings, model.post_ln_b);
}
ggml_set_name(embeddings, "post layernorm");
}
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_positions + num_padding_patches, num_tiles);
if (model.post_tile_position_embeddings != nullptr) {
struct ggml_tensor *post_tile_position_embeddings = ggml_get_rows(ctx0, model.post_tile_position_embeddings, aspect_ratios);
ggml_set_name(post_tile_position_embeddings, "post_tile_position_embeddings");
post_tile_position_embeddings = ggml_reshape_3d(ctx0, post_tile_position_embeddings, hidden_size, 1, num_tiles);
if (model.post_tile_position_embeddings_gate != nullptr) {
post_tile_position_embeddings = ggml_mul(ctx0, post_tile_position_embeddings, model.post_tile_position_embeddings_gate);
}
embeddings = ggml_add(ctx0, embeddings, post_tile_position_embeddings);
}
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_tiles * (num_positions + num_padding_patches), 1);
// global encoder
for (size_t il = 0; il < model.global_layers.size(); il++) {
embeddings = mllama_image_build_encoder_layer(
ctx0, il, model.global_layers[il], embeddings,
hparams.eps, hidden_size, batch_size, n_head, d_head);
}
struct ggml_tensor *stacked_embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 0, hidden_size, (num_positions + num_padding_patches) * num_tiles);
for (size_t i = 0; i < intermediate_embeddings.size(); ++i) {
stacked_embeddings = ggml_concat(ctx0, stacked_embeddings, ggml_reshape_3d(ctx0, intermediate_embeddings[i], 1, intermediate_embeddings[i]->ne[0], intermediate_embeddings[i]->ne[1]), 0);
}
stacked_embeddings = ggml_reshape_4d(ctx0, stacked_embeddings, intermediate_embeddings.size() * hidden_size, num_positions + num_padding_patches, num_tiles, batch_size);
stacked_embeddings = ggml_unpad(ctx0, stacked_embeddings, 0, num_padding_patches, 0, 0);
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_positions + num_padding_patches, num_tiles);
embeddings = ggml_unpad(ctx0, embeddings, 0, num_padding_patches, 0, 0);
embeddings = ggml_concat(ctx0, embeddings, stacked_embeddings, 0);
// mllama projector
embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_0_w, embeddings), model.mm_0_b);
ggml_set_name(embeddings, "multi modal projector");
// build the graph
ggml_build_forward_expand(gf, embeddings);
ggml_free(ctx0);
return gf;
}
static struct ggml_tensor *mllama_tensor_load(struct ggml_context *ctx, const char *name, const bool optional) {
struct ggml_tensor *cur = ggml_get_tensor(ctx, name);
REQUIRE(cur != nullptr || optional);
return cur;
}
static std::vector<struct mllama_layer> mllama_layers_load(struct ggml_context *ctx, const char *prefix, const int n) {
std::vector<struct mllama_layer> layers(n);
for (size_t i = 0; i < layers.size(); i++) {
auto &layer = layers[i];
layer.ln_1_w = mllama_tensor_load(ctx, format("%s.blk.%d.ln1.weight", prefix, i).c_str(), false);
layer.ln_1_b = mllama_tensor_load(ctx, format("%s.blk.%d.ln1.bias", prefix, i).c_str(), false);
layer.ln_2_w = mllama_tensor_load(ctx, format("%s.blk.%d.ln2.weight", prefix, i).c_str(), false);
layer.ln_2_b = mllama_tensor_load(ctx, format("%s.blk.%d.ln2.bias", prefix, i).c_str(), false);
layer.k_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_k.weight", prefix, i).c_str(), false);
layer.k_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_k.bias", prefix, i).c_str(), true);
layer.q_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_q.weight", prefix, i).c_str(), false);
layer.q_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_q.bias", prefix, i).c_str(), true);
layer.v_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_v.weight", prefix, i).c_str(), false);
layer.v_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_v.bias", prefix, i).c_str(), true);
layer.o_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_out.weight", prefix, i).c_str(), false);
layer.o_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_out.bias", prefix, i).c_str(), true);
layer.ff_i_w = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_down.weight", prefix, i).c_str(), false);
layer.ff_i_b = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_down.bias", prefix, i).c_str(), false);
layer.ff_o_w = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_up.weight", prefix, i).c_str(), false);
layer.ff_o_b = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_up.bias", prefix, i).c_str(), false);
layer.attn_gate = mllama_tensor_load(ctx, format("%s.blk.%d.attn_gate", prefix, i).c_str(), true);
layer.ff_gate = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_gate", prefix, i).c_str(), true);
}
return layers;
}
// read and create ggml_context containing the tensors and their data
struct mllama_ctx *mllama_model_load(const char *fname, const int verbosity = 1) {
struct ggml_context *meta = nullptr;
struct gguf_init_params params = {
true, // no_alloc
&meta, // ctx
};
struct gguf_context *ctx = gguf_init_from_file(fname, params);
REQUIRE(ctx != nullptr);
if (verbosity >= 1) {
const int n_tensors = gguf_get_n_tensors(ctx);
const int n_kv = gguf_get_n_kv(ctx);
const std::string ftype = get_ftype(get_u32(ctx, "general.file_type"));
const int idx_desc = get_key_index(ctx, "general.description");
const std::string description = gguf_get_val_str(ctx, idx_desc);
const int idx_name = gguf_find_key(ctx, "general.name");
if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
const std::string name = gguf_get_val_str(ctx, idx_name);
LOG("model name: %s", name.c_str());
}
LOG("description: %s", description.c_str());
LOG("GGUF version: %d", gguf_get_version(ctx));
LOG("alignment: %zu", gguf_get_alignment(ctx));
LOG("n_tensors: %d", n_tensors);
LOG("n_kv: %d", n_kv);
LOG("ftype: %s", ftype.c_str());
LOG("");
}
const int n_tensors = gguf_get_n_tensors(ctx);
mllama_ctx *new_mllama = new mllama_ctx{};
#ifdef GGML_USE_CUDA
new_mllama->backend = ggml_backend_cuda_init(0);
LOG("vision using CUDA backend");
#endif
#ifdef GGML_USE_METAL
new_mllama->backend = ggml_backend_metal_init();
LOG("vision using Metal backend");
#endif
#ifdef GGML_USE_CANN
new_mllama->backend = ggml_backend_cann_init(0);
LOG("vision using CANN backend");
#endif
#ifdef GGML_USE_VULKAN
new_mllama->backend = ggml_backend_vk_init(0);
LOG("vision using Vulkan backend");
#endif
if (!new_mllama->backend) {
new_mllama->backend = ggml_backend_cpu_init();
LOG("vision using CPU backend");
}
// load tensors
{
std::vector<uint8_t> read_buf;
struct ggml_init_params params = {
(n_tensors + 1) * ggml_tensor_overhead(), // mem_size
nullptr, // mem_buffer
true, // no_alloc
};
new_mllama->ctx_data = ggml_init(params);
if (!new_mllama->ctx_data) {
LOG("ggml_init() failed");
mllama_free(new_mllama);
gguf_free(ctx);
return nullptr;
}
#ifdef _WIN32
int wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, NULL, 0);
if (!wlen) {
return NULL;
}
wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, wbuf, wlen);
if (!wlen) {
free(wbuf);
return NULL;
}
#if __GLIBCXX__
int fd = _wopen(wbuf, _O_RDONLY | _O_BINARY);
__gnu_cxx::stdio_filebuf<char> buffer(fd, std::ios_base::in);
std::istream fin(&buffer);
#else // MSVC
// unused in our current build
auto fin = std::ifstream(wbuf, std::ios::binary);
#endif
free(wbuf);
#else
auto fin = std::ifstream(fname, std::ios::binary);
#endif
if (!fin) {
LOG("cannot open model file for loading tensors\n");
mllama_free(new_mllama);
gguf_free(ctx);
return nullptr;
}
// add tensors to context
for (int i = 0; i < n_tensors; ++i) {
const char *name = gguf_get_tensor_name(ctx, i);
struct ggml_tensor *t = ggml_get_tensor(meta, name);
struct ggml_tensor *cur = ggml_dup_tensor(new_mllama->ctx_data, t);
ggml_set_name(cur, name);
}
// alloc memory and offload data
new_mllama->params_buffer = ggml_backend_alloc_ctx_tensors(new_mllama->ctx_data, new_mllama->backend);
for (int i = 0; i < n_tensors; ++i) {
const char *name = gguf_get_tensor_name(ctx, i);
struct ggml_tensor *cur = ggml_get_tensor(new_mllama->ctx_data, name);
const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
fin.seekg(offset, std::ios::beg);
if (!fin) {
LOG("failed to seek for tensor %s\n", name);
mllama_free(new_mllama);
gguf_free(ctx);
return nullptr;
}
int num_bytes = ggml_nbytes(cur);
if (ggml_backend_buffer_is_host(new_mllama->params_buffer)) {
// for the CPU and Metal backend, we can read directly into the tensor
fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
} else {
// read into a temporary buffer first, then copy to device memory
read_buf.resize(num_bytes);
fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
}
}
#if defined(_WIN32) && defined(__GLIBCXX__)
close(fd);
#else
fin.close();
#endif
}
// vision model
// load vision model
auto &vision_model = new_mllama->vision_model;
auto &hparams = vision_model.hparams;
hparams.hidden_size = get_u32(ctx, "mllama.vision.embedding_length");
hparams.n_head = get_u32(ctx, "mllama.vision.attention.head_count");
hparams.n_intermediate = get_u32(ctx, "mllama.vision.feed_forward_length");
hparams.n_layer = get_u32(ctx, "mllama.vision.block_count");
hparams.n_global_layer = get_u32(ctx, "mllama.vision.global.block_count");
hparams.n_tiles = get_u32(ctx, "mllama.vision.max_num_tiles");
hparams.image_size = get_u32(ctx, "mllama.vision.image_size");
hparams.patch_size = get_u32(ctx, "mllama.vision.patch_size");
hparams.projection_dim = get_u32(ctx, "mllama.vision.projection_dim");
hparams.eps = get_f32(ctx, "mllama.vision.attention.layer_norm_epsilon");
std::vector<uint32_t> intermediate_layers_indices = get_u32_array(ctx, "mllama.vision.intermediate_layers_indices");
hparams.intermediate_layers.resize(hparams.n_layer);
for (size_t i = 0; i < intermediate_layers_indices.size(); i++) {
hparams.intermediate_layers[intermediate_layers_indices[i]] = true;
}
if (verbosity >= 2) {
LOG("");
LOG("vision model hparams");
LOG("image_size %d", hparams.image_size);
LOG("patch_size %d", hparams.patch_size);
LOG("v_hidden_size %d", hparams.hidden_size);
LOG("v_n_intermediate %d", hparams.n_intermediate);
LOG("v_projection_dim %d", hparams.projection_dim);
LOG("v_n_head %d", hparams.n_head);
LOG("v_n_layer %d", hparams.n_layer);
LOG("v_n_global_layer %d", hparams.n_global_layer);
LOG("v_eps %f", hparams.eps);
}
vision_model.class_embedding = mllama_tensor_load(new_mllama->ctx_data, "v.class_embd", true);
vision_model.patch_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.patch_embd.weight", true);
vision_model.position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.position_embd.weight", true);
vision_model.position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.position_embd.gate", true);
vision_model.pre_ln_w = mllama_tensor_load(new_mllama->ctx_data, "v.pre_ln.weight", true);
vision_model.pre_ln_b = mllama_tensor_load(new_mllama->ctx_data, "v.pre_ln.bias", true);
vision_model.post_ln_w = mllama_tensor_load(new_mllama->ctx_data, "v.post_ln.weight", true);
vision_model.post_ln_b = mllama_tensor_load(new_mllama->ctx_data, "v.post_ln.bias", true);
vision_model.tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.tile_position_embd.weight", true);
vision_model.tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.tile_position_embd.gate", true);
vision_model.pre_tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.pre_tile_position_embd.weight", true);
vision_model.pre_tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.pre_tile_position_embd.gate", true);
vision_model.post_tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.post_tile_position_embd.weight", true);
vision_model.post_tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.post_tile_position_embd.gate", true);
vision_model.mm_0_w = mllama_tensor_load(new_mllama->ctx_data, "mm.0.weight", false);
vision_model.mm_0_b = mllama_tensor_load(new_mllama->ctx_data, "mm.0.bias", false);
vision_model.layers = mllama_layers_load(new_mllama->ctx_data, "v", hparams.n_layer);
vision_model.global_layers = mllama_layers_load(new_mllama->ctx_data, "v.global", hparams.n_global_layer);
ggml_free(meta);
new_mllama->ctx_gguf = ctx;
{
// measure mem requirement and allocate
new_mllama->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
new_mllama->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_mllama->backend));
struct mllama_image_batch batch;
batch.size = 1;
ggml_cgraph *gf = mllama_image_build_graph(new_mllama, &batch);
ggml_gallocr_reserve(new_mllama->compute_alloc, gf);
size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_mllama->compute_alloc, 0);
LOG("compute allocated memory: %.2f MB", compute_memory_buffer_size / 1024.0 / 1024.0);
}
return new_mllama;
}
struct mllama_image *mllama_image_init() {
return new mllama_image();
}
void mllama_image_free(struct mllama_image *img) { delete img; }
void mllama_image_batch_free(struct mllama_image_batch *batch) {
if (batch->size > 0) {
delete[] batch->data;
batch->size = 0;
}
}
bool mllama_image_load_from_data(const void *data, const int n, const int width, const int height, const int num_channels, const int num_tiles, const int aspect_ratio_id, struct mllama_image *img) {
img->width = width;
img->height = height;
img->num_channels = num_channels;
img->num_tiles = num_tiles;
img->aspect_ratio_id = aspect_ratio_id;
img->data.resize(n);
memcpy(img->data.data(), data, n);
return true;
}
inline int mllama(int x, int lower, int upper) {
return std::max(lower, std::min(x, upper));
}
void mllama_free(mllama_ctx *ctx) {
ggml_free(ctx->ctx_data);
gguf_free(ctx->ctx_gguf);
ggml_backend_buffer_free(ctx->params_buffer);
ggml_backend_free(ctx->backend);
ggml_gallocr_free(ctx->compute_alloc);
delete ctx;
}
bool mllama_image_encode(struct mllama_ctx *ctx, const int n_threads, mllama_image *img, float *vec) {
mllama_image_batch imgs{};
imgs.size = 1;
imgs.data = img;
return mllama_image_batch_encode(ctx, n_threads, &imgs, vec);
}
bool mllama_image_batch_encode(mllama_ctx *ctx, const int n_threads, const mllama_image_batch *imgs, float *vec) {
int batch_size = imgs->size;
REQUIRE(batch_size == 1);
// build the inference graph
ggml_cgraph *gf = mllama_image_build_graph(ctx, imgs);
ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
// set inputs
const auto &model = ctx->vision_model;
const auto &hparams = model.hparams;
const int image_size = hparams.image_size;
int image_size_width = image_size;
int image_size_height = image_size;
const int patch_size = hparams.patch_size;
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
const int num_positions = num_patches + (model.class_embedding == nullptr ? 0 : 1);
{
struct ggml_tensor *inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
ggml_backend_tensor_set(inp_raw, imgs->data[0].data.data(), 0, ggml_nbytes(inp_raw));
}
{
struct ggml_tensor *embeddings = ggml_graph_get_tensor(gf, "embeddings");
if (embeddings != nullptr) {
void *zeros = malloc(ggml_nbytes(embeddings));
memset(zeros, 0, ggml_nbytes(embeddings));
ggml_backend_tensor_set(embeddings, zeros, 0, ggml_nbytes(embeddings));
free(zeros);
}
}
{
struct ggml_tensor *positions = ggml_graph_get_tensor(gf, "positions");
if (positions != nullptr) {
int *positions_data = (int *)malloc(ggml_nbytes(positions));
for (int i = 0; i < num_positions; i++) {
positions_data[i] = i;
}
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
free(positions_data);
}
}
{
struct ggml_tensor *aspect_ratios = ggml_graph_get_tensor(gf, "aspect_ratios");
if (aspect_ratios != nullptr) {
int *aspect_ratios_data = (int *)malloc(ggml_nbytes(aspect_ratios));
aspect_ratios_data[0] = imgs->data[0].aspect_ratio_id;
ggml_backend_tensor_set(aspect_ratios, aspect_ratios_data, 0, ggml_nbytes(aspect_ratios));
free(aspect_ratios_data);
}
}
if (ggml_backend_is_cpu(ctx->backend)) {
ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
}
ggml_backend_graph_compute(ctx->backend, gf);
// the last node is the embedding tensor
struct ggml_tensor *embeddings = ggml_graph_node(gf, ggml_graph_n_nodes(gf) - 1);
// copy the embeddings to the location passed by the user
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
return true;
}
int32_t mllama_image_size(const struct mllama_ctx *ctx) {
return ctx->vision_model.hparams.image_size;
}
int32_t mllama_patch_size(const struct mllama_ctx *ctx) {
return ctx->vision_model.hparams.patch_size;
}
int32_t mllama_hidden_size(const struct mllama_ctx *ctx) {
return ctx->vision_model.hparams.hidden_size;
}
int mllama_n_patches(const struct mllama_ctx *ctx) {
const auto &hparams = ctx->vision_model.hparams;
return (hparams.image_size / hparams.patch_size) * (hparams.image_size / hparams.patch_size);
}
int mllama_n_positions(const struct mllama_ctx *ctx) {
return mllama_n_patches(ctx) + (ctx->vision_model.class_embedding == nullptr ? 0 : 1);
}
int mllama_n_tiles(const struct mllama_ctx *ctx) {
return ctx->vision_model.hparams.n_tiles;
}
int mllama_n_embd(const struct mllama_ctx *ctx) {
return ctx->vision_model.hparams.projection_dim;
}
size_t mllama_n_embd_bytes(const struct mllama_ctx *ctx) {
return mllama_n_positions(ctx) * mllama_n_embd(ctx) * mllama_n_tiles(ctx) * sizeof(float);
}

61
examples/mllama/mllama.h Normal file
View file

@ -0,0 +1,61 @@
#ifndef MLLAMA_H
#define MLLAMA_H
#include <stddef.h>
#include <stdint.h>
#ifdef LLAMA_SHARED
#if defined(_WIN32) && !defined(__MINGW32__)
#ifdef LLAMA_BUILD
#define MLLAMA_API __declspec(dllexport)
#else
#define MLLAMA_API __declspec(dllimport)
#endif
#else
#define MLLAMA_API __attribute__((visibility("default")))
#endif
#else
#define MLLAMA_API
#endif
#ifdef __cplusplus
extern "C" {
#endif
struct mllama_ctx;
struct mllama_image_batch {
struct mllama_image *data;
size_t size;
};
MLLAMA_API struct mllama_ctx *mllama_model_load(const char *fname, int verbosity);
MLLAMA_API struct mllama_ctx *mllama_model_load_cpu(const char *fname, int verbosity);
MLLAMA_API void mllama_free(struct mllama_ctx *ctx);
MLLAMA_API int32_t mllama_image_size(const struct mllama_ctx *ctx);
MLLAMA_API int32_t mllama_patch_size(const struct mllama_ctx *ctx);
MLLAMA_API int32_t mllama_hidden_size(const struct mllama_ctx *ctx);
MLLAMA_API int mllama_n_patches(const struct mllama_ctx *ctx);
MLLAMA_API int mllama_n_positions(const struct mllama_ctx *ctx);
MLLAMA_API int mllama_n_tiles(const struct mllama_ctx *ctx);
MLLAMA_API int mllama_n_embd(const struct mllama_ctx *ctx);
MLLAMA_API size_t mllama_n_embd_bytes(const struct mllama_ctx *ctx);
MLLAMA_API struct mllama_image *mllama_image_init();
MLLAMA_API void mllama_image_free(struct mllama_image *img);
MLLAMA_API void mllama_image_batch_free(struct mllama_image_batch *batch);
MLLAMA_API bool mllama_image_load_from_data(const void *data, const int n, const int nx, const int ny, const int nc, const int nt, const int aspect_ratio_id, struct mllama_image *img);
MLLAMA_API bool mllama_image_encode(struct mllama_ctx *ctx, int n_threads, struct mllama_image *img, float *vec);
MLLAMA_API bool mllama_image_batch_encode(struct mllama_ctx *ctx, int n_threads, const struct mllama_image_batch *imgs, float *vec);
#ifdef __cplusplus
}
#endif
#endif // MLLAMA_H

View file

@ -487,6 +487,7 @@ extern "C" {
GGML_OP_UPSCALE, // nearest interpolate
GGML_OP_PAD,
GGML_OP_PAD_REFLECT_1D,
GGML_OP_UNPAD,
GGML_OP_ARANGE,
GGML_OP_TIMESTEP_EMBEDDING,
GGML_OP_ARGSORT,
@ -1743,6 +1744,15 @@ extern "C" {
int p0,
int p1);
// unpad each dimension: [x, ..., x, y, ..., y] -> [x, ..., x]
GGML_API struct ggml_tensor * ggml_unpad(
struct ggml_context * ctx,
struct ggml_tensor * a,
int p0,
int p1,
int p2,
int p3);
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
// timesteps: [N,]
// return: [N, dim]

View file

@ -242,7 +242,8 @@ void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor *
void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
// TODO: mllama will assert here.
// GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
if (backend->iface.get_tensor_async == NULL) {
ggml_backend_tensor_get(tensor, data, offset, size);
@ -276,7 +277,8 @@ void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, siz
GGML_ASSERT(buf != NULL && "tensor buffer not set");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
// TODO: mllama will assert here.
// GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
buf->iface.get_tensor(buf, tensor, data, offset, size);
}

View file

@ -10654,6 +10654,59 @@ static void ggml_compute_forward_pad_reflect_1d(
}
}
static void ggml_compute_forward_unpad_f32(
const struct ggml_compute_params *params,
struct ggml_tensor *dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT( dst->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
float * dst_ptr = (float *) dst->data;
// TODO: optimize
for (int64_t i2 = 0; i2 < ne2; ++i2) {
for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
for (int64_t i0 = 0; i0 < ne0; ++i0) {
for (int64_t i3 = 0; i3 < ne3; ++i3) {
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
dst_ptr[dst_idx] = *src_ptr;
}
}
}
}
}
}
static void ggml_compute_forward_unpad(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_unpad_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_arange
static void ggml_compute_forward_arange_f32(
@ -12947,6 +13000,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_pad_reflect_1d(params, tensor);
} break;
case GGML_OP_UNPAD:
{
ggml_compute_forward_unpad(params, tensor);
} break;
case GGML_OP_ARANGE:
{
ggml_compute_forward_arange(params, tensor);
@ -13294,6 +13351,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_OP_UPSCALE:
case GGML_OP_PAD:
case GGML_OP_PAD_REFLECT_1D:
case GGML_OP_UNPAD:
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_ARGSORT:

View file

@ -2200,6 +2200,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_PAD:
ggml_cuda_op_pad(ctx, dst);
break;
case GGML_OP_UNPAD:
ggml_cuda_op_unpad(ctx, dst);
break;
case GGML_OP_ARANGE:
ggml_cuda_op_arange(ctx, dst);
break;
@ -3183,6 +3186,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
return ggml_is_contiguous(op->src[0]);
case GGML_OP_UPSCALE:
case GGML_OP_PAD:
case GGML_OP_UNPAD:
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_LEAKY_RELU:

View file

@ -47,3 +47,49 @@ void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
}
static __global__ void unpad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
// blockIdx.z: idx of ne2*ne3, aka ne02*ne03
// blockIdx.y: idx of ne1
// blockIDx.x: idx of ne0 / BLOCK_SIZE
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
if (nidx >= ne0) {
return;
}
// operation
int offset_dst =
nidx +
blockIdx.y * ne0 +
blockIdx.z * ne0 * gridDim.y;
if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
int offset_src =
nidx +
blockIdx.y * ne00 +
blockIdx.z * ne00 * ne01;
dst[offset_dst] = x[offset_src];
}
}
static void unpad_f32_cuda(const float * x, float * dst,
const int ne00, const int ne01, const int ne02, const int ne03,
const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
dim3 gridDim(num_blocks, ne1, ne2*ne3);
unpad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
}
void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
unpad_f32_cuda(src0_d, dst_d,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
}

View file

@ -3,3 +3,4 @@
#define CUDA_PAD_BLOCK_SIZE 256
void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View file

@ -331,6 +331,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
GGML_METAL_KERNEL_TYPE_PAD_F32,
GGML_METAL_KERNEL_TYPE_PAD_REFLECT_1D_F32,
GGML_METAL_KERNEL_TYPE_UNPAD_F32,
GGML_METAL_KERNEL_TYPE_ARANGE_F32,
GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32,
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
@ -936,6 +937,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_REFLECT_1D_F32, pad_reflect_1d_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UNPAD_F32, unpad_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
@ -1234,6 +1236,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_OP_UPSCALE:
case GGML_OP_PAD:
case GGML_OP_PAD_REFLECT_1D:
case GGML_OP_UNPAD:
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_ARGSORT:
@ -3437,6 +3440,36 @@ static void ggml_metal_encode_node(
const int nth = MIN(1024, ne0);
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_UNPAD:
{
GGML_ASSERT(src0->type == GGML_TYPE_F32);
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UNPAD_F32].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
const int nth = MIN(1024, ne0);
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_ARANGE:

View file

@ -2944,6 +2944,51 @@ kernel void kernel_pad_reflect_1d_f32(
}
}
kernel void kernel_unpad_f32(
device const char * src0,
device char * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i3 = tgpig.z;
const int64_t i2 = tgpig.y;
const int64_t i1 = tgpig.x;
const int64_t i03 = i3;
const int64_t i02 = i2;
const int64_t i01 = i1;
device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
if (i1 < ne01 && i2 < ne02 && i3 < ne03) {
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
if (i0 < ne00) {
dst_ptr[i0] = src0_ptr[i0];
}
}
return;
}
}
kernel void kernel_arange_f32(
device char * dst,
constant int64_t & ne0,

View file

@ -958,6 +958,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"UPSCALE",
"PAD",
"PAD_REFLECT_1D",
"UNPAD",
"ARANGE",
"TIMESTEP_EMBEDDING",
"ARGSORT",
@ -992,7 +993,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"OPT_STEP_ADAMW",
};
static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83");
static_assert(GGML_OP_COUNT == 84, "GGML_OP_COUNT != 84");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
@ -1055,6 +1056,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"upscale(x)",
"pad(x)",
"pad_reflect_1d(x)",
"unpad(x)",
"arange(start, stop, step)",
"timestep_embedding(timesteps, dim, max_period)",
"argsort(x)",
@ -1089,7 +1091,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"adamw(x)",
};
static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83");
static_assert(GGML_OP_COUNT == 84, "GGML_OP_COUNT != 84");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@ -4221,6 +4223,25 @@ struct ggml_tensor * ggml_pad_reflect_1d(
return result;
}
// ggml_unpad
struct ggml_tensor * ggml_unpad(
struct ggml_context * ctx,
struct ggml_tensor * a,
int p0, int p1, int p2, int p3) {
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
a->ne[0] - p0,
a->ne[1] - p1,
a->ne[2] - p2,
a->ne[3] - p3);
result->op = GGML_OP_UNPAD;
result->src[0] = a;
return result;
}
// ggml_arange
struct ggml_tensor * ggml_arange(

View file

@ -249,6 +249,7 @@ extern "C" {
llama_token * token;
float * embd;
int32_t n_embd;
llama_pos * pos;
int32_t * n_seq_id;
llama_seq_id ** seq_id;
@ -343,6 +344,7 @@ extern "C" {
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
bool no_perf; // whether to measure performance timings
bool cross_attn; // whether to use cross attention
// Abort callback
// if it returns true, execution of llama_decode() will be aborted
@ -443,6 +445,9 @@ extern "C" {
struct llama_context_params params),
"use llama_init_from_model instead");
// TODO: this should most likely be passed in as part of a batch and not set on the context for all batches.
LLAMA_API void llama_set_cross_attention(struct llama_context * ctx, bool cross_attn_state);
// Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx);

View file

@ -6,6 +6,7 @@
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_LLAMA, "llama" },
{ LLM_ARCH_MLLAMA, "mllama" },
{ LLM_ARCH_DECI, "deci" },
{ LLM_ARCH_FALCON, "falcon" },
{ LLM_ARCH_GROK, "grok" },
@ -125,6 +126,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
{ LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
@ -223,6 +225,40 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
LLM_ARCH_MLLAMA,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
{ LLM_TENSOR_CROSS_ATTN_K_NORM, "blk.%d.cross_attn_k_norm" },
{ LLM_TENSOR_CROSS_ATTN_K_PROJ, "blk.%d.cross_attn_k_proj" },
{ LLM_TENSOR_CROSS_ATTN_O_PROJ, "blk.%d.cross_attn_o_proj" },
{ LLM_TENSOR_CROSS_ATTN_Q_NORM, "blk.%d.cross_attn_q_norm" },
{ LLM_TENSOR_CROSS_ATTN_Q_PROJ, "blk.%d.cross_attn_q_proj" },
{ LLM_TENSOR_CROSS_ATTN_V_PROJ, "blk.%d.cross_attn_v_proj" },
{ LLM_TENSOR_CROSS_ATTN_ATTN_GATE, "blk.%d.cross_attn_attn_gate" },
{ LLM_TENSOR_CROSS_ATTN_MLP_GATE, "blk.%d.cross_attn_mlp_gate" },
},
},
{
LLM_ARCH_DECI,
{
@ -1445,6 +1481,14 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_CONVNEXT_PW1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_CONVNEXT_PW2, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_CONVNEXT_GAMMA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_CROSS_ATTN_K_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_CROSS_ATTN_K_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_CROSS_ATTN_O_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_CROSS_ATTN_Q_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_CROSS_ATTN_Q_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_CROSS_ATTN_V_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_CROSS_ATTN_ATTN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_CROSS_ATTN_MLP_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
};
LLM_KV::LLM_KV(llm_arch arch, const char * suffix) : arch(arch), suffix(suffix) {}

View file

@ -10,6 +10,7 @@
enum llm_arch {
LLM_ARCH_LLAMA,
LLM_ARCH_MLLAMA,
LLM_ARCH_DECI,
LLM_ARCH_FALCON,
LLM_ARCH_BAICHUAN,
@ -129,6 +130,7 @@ enum llm_kv {
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
LLM_KV_ATTENTION_SLIDING_WINDOW,
LLM_KV_ATTENTION_SCALE,
LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS,
LLM_KV_ROPE_DIMENSION_COUNT,
LLM_KV_ROPE_DIMENSION_SECTIONS,
@ -327,6 +329,14 @@ enum llm_tensor {
LLM_TENSOR_POS_NET_ATTN_K,
LLM_TENSOR_POS_NET_ATTN_V,
LLM_TENSOR_POS_NET_ATTN_OUT,
LLM_TENSOR_CROSS_ATTN_K_NORM,
LLM_TENSOR_CROSS_ATTN_K_PROJ,
LLM_TENSOR_CROSS_ATTN_O_PROJ,
LLM_TENSOR_CROSS_ATTN_Q_NORM,
LLM_TENSOR_CROSS_ATTN_Q_PROJ,
LLM_TENSOR_CROSS_ATTN_V_PROJ,
LLM_TENSOR_CROSS_ATTN_ATTN_GATE,
LLM_TENSOR_CROSS_ATTN_MLP_GATE,
};
enum llm_tensor_layer {

View file

@ -316,6 +316,7 @@ struct llama_batch llama_batch_get_one(
/*n_tokens =*/ n_tokens,
/*tokens =*/ tokens,
/*embd =*/ nullptr,
/*n_embd =*/ 0,
/*pos =*/ nullptr,
/*n_seq_id =*/ nullptr,
/*seq_id =*/ nullptr,
@ -328,6 +329,7 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
/*n_tokens =*/ 0,
/*tokens =*/ nullptr,
/*embd =*/ nullptr,
/*n_embd =*/ 0,
/*pos =*/ nullptr,
/*n_seq_id =*/ nullptr,
/*seq_id =*/ nullptr,
@ -336,6 +338,7 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
if (embd) {
batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
batch.n_embd = embd;
} else {
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
}

View file

@ -74,10 +74,19 @@ void llama_set_inputs(llama_context & lctx, const llama_ubatch & ubatch) {
}
if (ubatch.embd) {
const int64_t n_embd = hparams.n_embd;
const int64_t n_tokens = ubatch.n_tokens;
if (lctx.inp_cross_attn_state && lctx.inp_cross_attn_state->buffer) {
ggml_backend_tensor_set(lctx.inp_cross_attn_state, ubatch.embd, 0, ggml_nbytes(lctx.inp_cross_attn_state));
// zero out inp_embd since it's not used
float * inp_embd_data = (float *)lctx.inp_embd->data;
for (int i = 0; i < ggml_nelements(lctx.inp_embd); ++i) {
inp_embd_data[i] = 0.0f;
}
} else {
const int64_t n_embd = hparams.n_embd;
const int64_t n_tokens = ubatch.n_tokens;
ggml_backend_tensor_set(lctx.inp_embd, ubatch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
ggml_backend_tensor_set(lctx.inp_embd, ubatch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
}
}
if (ubatch.pos && lctx.inp_pos) {
@ -657,6 +666,10 @@ void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
ctx->cparams.causal_attn = causal_attn;
}
void llama_set_cross_attention(struct llama_context * ctx, bool cross_attention) {
ctx->cparams.cross_attn = cross_attention;
}
void llama_synchronize(struct llama_context * ctx) {
ggml_backend_sched_synchronize(ctx->sched.get());

View file

@ -107,6 +107,7 @@ struct llama_context {
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
struct ggml_tensor * inp_cross_attn_state; // F32 [4, n_embd, 1061]
};
// TODO: make these methods of llama_context

View file

@ -29,6 +29,7 @@ struct llama_cparams {
bool offload_kqv;
bool flash_attn;
bool no_perf;
bool cross_attn;
enum llama_pooling_type pooling_type;

View file

@ -2,6 +2,8 @@
#include "ggml.h"
#include <algorithm>
uint32_t llama_hparams::n_head(uint32_t il) const {
if (il < n_layer) {
return n_head_arr[il];
@ -69,3 +71,7 @@ uint32_t llama_hparams::n_embd_v_s() const {
// corresponds to Mamba's ssm_states size
return ssm_d_state * ssm_d_inner;
}
bool llama_hparams::cross_attention_layers(uint32_t il) const {
return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
}

View file

@ -49,6 +49,7 @@ struct llama_hparams {
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> cross_attn_layers;
uint32_t n_layer_dense_lead = 0;
uint32_t n_lora_q = 0;
@ -133,6 +134,9 @@ struct llama_hparams {
// dimension of the recurrent state embeddings
uint32_t n_embd_v_s() const;
// cross attention layers
bool cross_attention_layers(uint32_t il) const;
};
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");

View file

@ -91,6 +91,17 @@ bool llama_kv_cache_init(
return false;
}
// for cross attention layers
if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layers(i)) {
ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_k, 6404, hparams.n_head_kv(i));
ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_v, 6404, hparams.n_head_kv(i));
ggml_format_name(k, "cache_k_l%d", i);
ggml_format_name(v, "cache_v_l%d", i);
cache.k_l.push_back(k);
cache.v_l.push_back(v);
continue;
}
ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
ggml_format_name(k, "cache_k_l%d", i);

View file

@ -315,6 +315,8 @@ namespace GGUFMeta {
return true;
}
template bool llama_model_loader::get_arr<std::array<unsigned int, 512>>(enum llm_kv kid, std::array<unsigned int, 512>& result, bool required);
template<typename T, size_t N_MAX>
bool llama_model_loader::get_arr(const std::string & key, std::array<T, N_MAX> & result, bool required) {
const int kid = gguf_find_key(meta.get(), key.c_str());

View file

@ -435,9 +435,11 @@ void llama_model::load_hparams(llama_model_loader & ml) {
std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
std::fill(hparams.cross_attn_layers.begin(), hparams.cross_attn_layers.end(), -1);
ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
ml.get_arr(LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, hparams.cross_attn_layers, false);
// n_head_kv is optional, default to n_head
hparams.n_head_kv_arr = hparams.n_head_arr;
@ -486,7 +488,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_MLLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
if (hparams.n_rot != hparams.n_embd_head_k) {
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
}
@ -530,6 +532,16 @@ void llama_model::load_hparams(llama_model_loader & ml) {
}
}
} break;
case LLM_ARCH_MLLAMA:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 40: type = LLM_TYPE_11B; break;
case 100: type = LLM_TYPE_90B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_DECI:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@ -1558,6 +1570,55 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
}
}
} break;
case LLM_ARCH_MLLAMA:
{
// TODO: mllama should fix here.
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab+7}, 0);
// output
{
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
// TODO: mllama should fix here.
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab-1}, llama_model_loader::TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (output == NULL) {
// TODO: mllama should fix here.
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab-1}, llama_model_loader::TENSOR_DUPLICATED);
}
}
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
if (hparams.cross_attention_layers(i)) {
layer.cross_attn_k_norm = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_K_NORM, "weight", i), {128}, 0);
layer.cross_attn_k_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_K_PROJ, "weight", i), {n_embd, 1024}, 0);
layer.cross_attn_o_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_O_PROJ, "weight", i), {n_embd, n_embd}, 0);
layer.cross_attn_q_norm = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_Q_NORM, "weight", i), {128}, 0);
layer.cross_attn_q_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_Q_PROJ, "weight", i), {n_embd, n_embd}, 0);
layer.cross_attn_v_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_V_PROJ, "weight", i), {n_embd, 1024}, 0);
layer.cross_attn_attn_gate = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_ATTN_GATE, i), {1}, 0);
layer.cross_attn_mlp_gate = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_MLP_GATE, i), {1}, 0);
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
} else {
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
}
}
} break;
case LLM_ARCH_DECI:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -3870,6 +3931,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
// use what we call a normal RoPE, operating on pairs of consecutive head values
case LLM_ARCH_LLAMA:
case LLM_ARCH_MLLAMA:
case LLM_ARCH_DECI:
case LLM_ARCH_BAICHUAN:
case LLM_ARCH_STARCODER:

View file

@ -9,6 +9,7 @@
#include <string>
#include <unordered_map>
#include <vector>
#include <stdexcept>
struct llama_model_loader;
@ -62,6 +63,7 @@ enum llm_type {
LLM_TYPE_40B,
LLM_TYPE_65B,
LLM_TYPE_70B,
LLM_TYPE_90B,
LLM_TYPE_236B,
LLM_TYPE_314B,
LLM_TYPE_671B,
@ -281,6 +283,16 @@ struct llama_layer {
struct ggml_tensor * ffn_up_scale = nullptr;
struct ggml_tensor * ffn_down_scale = nullptr;
// cross attention
struct ggml_tensor * cross_attn_k_norm = nullptr;
struct ggml_tensor * cross_attn_k_proj = nullptr;
struct ggml_tensor * cross_attn_o_proj = nullptr;
struct ggml_tensor * cross_attn_q_norm = nullptr;
struct ggml_tensor * cross_attn_q_proj = nullptr;
struct ggml_tensor * cross_attn_v_proj = nullptr;
struct ggml_tensor * cross_attn_attn_gate = nullptr;
struct ggml_tensor * cross_attn_mlp_gate = nullptr;
struct llama_layer_posnet posnet;
struct llama_layer_convnext convnext;

View file

@ -632,7 +632,9 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
if (llama_model_has_encoder(&model)) {
n_attn_layer *= 3;
}
GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
if (qs.n_attention_wv != n_attn_layer) {
LLAMA_LOG_WARN("%s: n_attention_wv is unexpected, expected: %d, found: %d\n", __func__, n_attn_layer, qs.n_attention_wv);
}
}
size_t total_size_org = 0;

View file

@ -154,6 +154,21 @@ static struct ggml_tensor * llm_build_inp_embd(
return inpL;
}
static struct ggml_tensor * llm_build_inp_cross_attn_state(
struct ggml_context * ctx,
struct llama_context & lctx,
const llama_hparams & hparams,
const llm_build_cb & cb) {
const int64_t n_embd = hparams.n_embd;
struct ggml_tensor * inpCAS = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd, 1601, 4);
cb(inpCAS, "inp_cross_attn_state", -1);
ggml_set_input(inpCAS);
lctx.inp_cross_attn_state = inpCAS;
return inpCAS;
}
static void llm_build_kv_store(
struct ggml_context * ctx,
const llama_hparams & hparams,
@ -1157,6 +1172,7 @@ struct llm_build_context {
lctx.inp_pos_bucket = nullptr;
lctx.inp_embd_enc = nullptr;
lctx.inp_KQ_mask_cross = nullptr;
lctx.inp_cross_attn_state = nullptr;
}
void free() {
@ -1639,6 +1655,240 @@ struct llm_build_context {
return gf;
}
struct ggml_cgraph * build_mllama() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
// mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens;
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
struct ggml_tensor * inpCAS;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
inpCAS = llm_build_inp_cross_attn_state(ctx0, lctx, hparams, cb);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
if (hparams.cross_attention_layers(il)) {
if (!ubatch.embd && !cparams.cross_attn) {
continue;
}
// cross attention layer
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_q_proj, cur);
cb(Qcur, "Qcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
cb(Qcur, "Qcur", il);
Qcur = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 0, 2, 1, 3));
cb(Qcur, "Qcur", il);
Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].cross_attn_q_norm, NULL, LLM_NORM_RMS, cb, il);
cb(Qcur, "Qcur", il);
struct ggml_tensor * Kcur, * Vcur;
if (ubatch.embd) {
Kcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_k_proj, inpCAS);
cb(Kcur, "Kcur", il);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, 6404);
cb(Kcur, "Kcur", il);
Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
cb(Kcur, "Kcur", il);
Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].cross_attn_k_norm, NULL, LLM_NORM_RMS, cb, il);
cb(Kcur, "Kcur", il);
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, kv_self.k_l[il]));
Vcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_v_proj, inpCAS);
cb(Vcur, "Vcur", il);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, 6404);
cb(Vcur, "Vcur", il);
Vcur = ggml_permute(ctx0, Vcur, 0, 2, 1, 3);
cb(Vcur, "Vcur", il);
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, kv_self.v_l[il]));
} else {
Kcur = ggml_view_tensor(ctx0, kv_self.k_l[il]);
cb(Kcur, "Kcur (view)", il);
Vcur = ggml_view_tensor(ctx0, kv_self.v_l[il]);
cb(Vcur, "Vcur (view)", il);
}
struct ggml_tensor * kq = ggml_mul_mat(ctx0, Kcur, Qcur);
cb(kq, "kq", il);
// TODO: apply causal masks
struct ggml_tensor * kq_soft_max = ggml_soft_max_ext(ctx0, kq, nullptr, 1.f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
cb(kq_soft_max, "kq_soft_max", il);
Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, Vcur));
cb(Vcur, "Vcur", il);
struct ggml_tensor * kqv = ggml_mul_mat(ctx0, Vcur, kq_soft_max);
cb(kqv, "kqv", il);
struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
cb(kqv_merged, "kqv_merged", il);
cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens);
cb(cur, "kqv_merged_cont", il);
cur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_o_proj, cur);
cb(cur, "cur", il);
// TODO: do this in place once?
cur = ggml_mul(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_attn_gate));
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
cur = llm_build_ffn(ctx0, lctx, cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
// TODO: do this inplace once?
cur = ggml_add_inplace(ctx0, ggml_mul_inplace(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_mlp_gate)), ffn_inp);
cb(cur, "ffn_out", il);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
} else {
// self attention layer
// rope freq factors for llama3; may return nullptr for llama2 and other models
struct ggml_tensor * rope_factors = build_rope_factors(il);
// compute Q and K and RoPE them
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
n_tokens = n_outputs;
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
cur = llm_build_ffn(ctx0, lctx, cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_deci() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
@ -8198,6 +8448,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm.build_llama();
} break;
case LLM_ARCH_MLLAMA:
{
result = llm.build_mllama();
} break;
case LLM_ARCH_DECI:
{
result = llm.build_deci();
@ -8484,7 +8738,7 @@ static int llama_prepare_sbatch(
n_outputs = 1;
}
lctx.sbatch.from_batch(batch, n_embd,
lctx.sbatch.from_batch(batch, batch.n_embd,
/* simple_split */ !lctx.kv_self.recurrent,
/* logits_all */ n_outputs == n_tokens_all);
@ -8873,7 +9127,7 @@ static int llama_encode_impl(
const int64_t n_embd = hparams.n_embd;
lctx.sbatch.from_batch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);
lctx.sbatch.from_batch(batch, batch.n_embd, /* simple_split */ true, /* logits_all */ true);
const llama_ubatch ubatch = lctx.sbatch.split_simple(n_tokens);
@ -9359,6 +9613,7 @@ struct llama_context_params llama_context_default_params() {
/*.offload_kqv =*/ true,
/*.flash_attn =*/ false,
/*.no_perf =*/ true,
/*.cross_attn =*/ false,
/*.abort_callback =*/ nullptr,
/*.abort_callback_data =*/ nullptr,
};