clang format

This commit is contained in:
lihan 2024-11-28 17:16:08 +08:00
parent 6a6c954ddb
commit 1e645678e7
4 changed files with 190 additions and 223 deletions

View file

@ -1,94 +1,82 @@
#include "ssm_conv.cuh" #include "ssm_conv.cuh"
template <int block_size> template <int block_size>
static __global__ void ssm_conv_f32(const float *__restrict__ src0, static __global__ void ssm_conv_f32(const float * __restrict__ src0, const float * __restrict__ src1,
const float *__restrict__ src1, const int src0_nb0, const int src0_nb1, const int src0_nb2, const int src1_nb1,
const int src0_nb0, const int src0_nb1, float * __restrict__ dst, const int dst_nb0, const int dst_nb1, const int dst_nb2,
const int src0_nb2, const int src1_nb1, const int nc, const int ncs, const int nr, const int n_t, const int n_s) {
float *__restrict__ dst, const int dst_nb0, const int tid = blockIdx.y;
const int dst_nb1, const int dst_nb2, const int i3 = blockIdx.x;
const int nc, const int ncs, const int nr, const int i2 = threadIdx.x;
const int n_t, const int n_s) {
const int tid = blockIdx.y;
const int i3 = blockIdx.x;
const int i2 = threadIdx.x;
const int ith = tid; const int ith = tid;
const int nth = WARP_SIZE; const int nth = WARP_SIZE;
// rows per thread // rows per thread
const int dr = (nr + nth - 1) / nth; const int dr = (nr + nth - 1) / nth;
// row range for this thread // row range for this thread
const int ir0 = dr * ith; const int ir0 = dr * ith;
const int ir1 = min(ir0 + dr, nr); const int ir1 = min(ir0 + dr, nr);
const int ir = ir1 - ir0; const int ir = ir1 - ir0;
// {d_conv - 1 + n_t, d_inner, n_seqs} // {d_conv - 1 + n_t, d_inner, n_seqs}
// sliding window // sliding window
const float *s = const float * s = (const float *) ((const char *) src0 + ir0 * src0_nb1 + i2 * src0_nb0 +
(const float *)((const char *)src0 + ir0 * src0_nb1 + i2 * src0_nb0 + i3 * src0_nb2); // {d_conv, d_inner, n_s}
i3 * src0_nb2); // {d_conv, d_inner, n_s} const float * c = (const float *) ((const char *) src1 + ir0 * src1_nb1); // {d_conv, d_inner}
const float *c = (const float *)((const char *)src1 + float * x = (float *) ((char *) dst + ir0 * dst_nb0 + i2 * dst_nb1 + i3 * dst_nb2); // {d_inner, n_t, n_s}
ir0 * src1_nb1); // {d_conv, d_inner}
float *x = (float *)((char *)dst + ir0 * dst_nb0 + i2 * dst_nb1 +
i3 * dst_nb2); // {d_inner, n_t, n_s}
// TODO: transpose the output for smaller strides for big batches? // TODO: transpose the output for smaller strides for big batches?
// d_inner // d_inner
for (int i1 = 0; i1 < ir; ++i1) { for (int i1 = 0; i1 < ir; ++i1) {
// rowwise dot product // rowwise dot product
// NOTE: not using ggml_vec_dot_f32, because its sum is in double precision // NOTE: not using ggml_vec_dot_f32, because its sum is in double precision
float sumf = 0.0f; float sumf = 0.0f;
// d_conv // d_conv
#pragma unroll #pragma unroll
for (int i0 = 0; i0 < nc; ++i0) { for (int i0 = 0; i0 < nc; ++i0) {
sumf += s[i0 + i1 * ncs] * c[i0 + i1 * nc]; sumf += s[i0 + i1 * ncs] * c[i0 + i1 * nc];
}
x[i1] = sumf;
} }
x[i1] = sumf;
}
} }
static void ssm_conv_f32_cuda(const float *src0, const float *src1, static void ssm_conv_f32_cuda(const float * src0, const float * src1, const int src0_nb0, const int src0_nb1,
const int src0_nb0, const int src0_nb1, const int src0_nb2, const int src1_nb1, float * dst, const int dst_nb0, const int dst_nb1,
const int src0_nb2, const int src1_nb1, const int dst_nb2, const int nc, const int ncs, const int nr, const int n_t,
float *dst, const int dst_nb0, const int dst_nb1, const int n_s, cudaStream_t stream) {
const int dst_nb2, const int nc, const int ncs, const dim3 block_dims(n_t, 1, 1);
const int nr, const int n_t, const int n_s, // const int nblocks = n_s; // TODO
cudaStream_t stream) { const dim3 grid_dims(n_s, WARP_SIZE, 1);
const dim3 block_dims(n_t, 1, 1);
// const int nblocks = n_s; // TODO
const dim3 grid_dims(n_s, WARP_SIZE, 1);
ssm_conv_f32<WARP_SIZE><<<grid_dims, block_dims, 0, stream>>>( ssm_conv_f32<WARP_SIZE><<<grid_dims, block_dims, 0, stream>>>(
src0, src1, src0_nb0, src0_nb1, src0_nb2, src1_nb1, dst, dst_nb0, dst_nb1, src0, src1, src0_nb0, src0_nb1, src0_nb2, src1_nb1, dst, dst_nb0, dst_nb1, dst_nb2, nc, ncs, nr, n_t, n_s);
dst_nb2, nc, ncs, nr, n_t, n_s);
} }
void ggml_cuda_op_ssm_conv(ggml_backend_cuda_context &ctx, ggml_tensor *dst) { void ggml_cuda_op_ssm_conv(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const struct ggml_tensor *src0 = dst->src[0]; // conv_x const struct ggml_tensor * src0 = dst->src[0]; // conv_x
const struct ggml_tensor *src1 = dst->src[1]; // conv1d.weight const struct ggml_tensor * src1 = dst->src[1]; // conv1d.weight
const int nc = src1->ne[0]; // d_conv const int nc = src1->ne[0]; // d_conv
const int ncs = src0->ne[0]; // d_conv - 1 + n_t const int ncs = src0->ne[0]; // d_conv - 1 + n_t
const int nr = src0->ne[1]; // d_inner const int nr = src0->ne[1]; // d_inner
const int n_t = dst->ne[1]; // tokens per sequence const int n_t = dst->ne[1]; // tokens per sequence
const int n_s = dst->ne[2]; // number of sequences in the batch const int n_s = dst->ne[2]; // number of sequences in the batch
GGML_ASSERT(dst->ne[0] == nr); GGML_ASSERT(dst->ne[0] == nr);
GGML_ASSERT(src0->nb[0] == sizeof(float)); GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(src1->nb[0] == sizeof(float)); GGML_ASSERT(src1->nb[0] == sizeof(float));
GGML_ASSERT(src0->nb[1] == src0->ne[0] * sizeof(float)); GGML_ASSERT(src0->nb[1] == src0->ne[0] * sizeof(float));
const float *src0_d = (const float *)src0->data; const float * src0_d = (const float *) src0->data;
const float *src1_d = (const float *)src1->data; const float * src1_d = (const float *) src1->data;
float *dst_d = (float *)dst->data; float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream(); cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32);
ssm_conv_f32_cuda(src0_d, src1_d, src0->nb[0], src0->nb[1], src0->nb[2], ssm_conv_f32_cuda(src0_d, src1_d, src0->nb[0], src0->nb[1], src0->nb[2], src1->nb[1], dst_d, dst->nb[0], dst->nb[1],
src1->nb[1], dst_d, dst->nb[0], dst->nb[1], dst->nb[2], nc, dst->nb[2], nc, ncs, nr, n_t, n_s, stream);
ncs, nr, n_t, n_s, stream); }
}

View file

@ -1,3 +1,3 @@
#include "common.cuh" #include "common.cuh"
void ggml_cuda_op_ssm_conv(ggml_backend_cuda_context& ctx, ggml_tensor* dst); void ggml_cuda_op_ssm_conv(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View file

@ -7,171 +7,150 @@
template <size_t splitD, size_t N> template <size_t splitD, size_t N>
__global__ void __launch_bounds__(splitD, 2) __global__ void __launch_bounds__(splitD, 2)
ssm_scan_f32(const float *__restrict__ src0, const float *__restrict__ src1, ssm_scan_f32(const float * __restrict__ src0, const float * __restrict__ src1, const float * __restrict__ src2,
const float *__restrict__ src2, const float *__restrict__ src3, const float * __restrict__ src3, const float * __restrict__ src4, const float * __restrict__ src5,
const float *__restrict__ src4, const float *__restrict__ src5, const int src0_nb1, const int src0_nb2, const int src1_nb0, const int src1_nb1, const int src1_nb2,
const int src0_nb1, const int src0_nb2, const int src1_nb0, const int src1_nb3, const int src2_nb0, const int src2_nb1, const int src2_nb2, const int src3_nb1,
const int src1_nb1, const int src1_nb2, const int src1_nb3, const int src4_nb1, const int src4_nb2, const int src5_nb1, const int src5_nb2,
const int src2_nb0, const int src2_nb1, const int src2_nb2, float * __restrict__ dst, const int D, const int L, const int B) {
const int src3_nb1, const int src4_nb1, const int src4_nb2, const int bidx = blockIdx.x; // split along B
const int src5_nb1, const int src5_nb2, const int bidy = blockIdx.y; // split along D
float *__restrict__ dst, const int D, const int L, const int tid = threadIdx.x;
const int B) { const int wid = tid / 32;
const int bidx = blockIdx.x; // split along B const int wtid = tid % 32;
const int bidy = blockIdx.y; // split along D
const int tid = threadIdx.x;
const int wid = tid / 32;
const int wtid = tid % 32;
extern __shared__ float smem[]; extern __shared__ float smem[];
const int stride_sA = N + 1; const int stride_sA = N + 1;
const int stride_ss0 = N + 1; const int stride_ss0 = N + 1;
float *smem_A = smem; float * smem_A = smem;
float *smem_s0 = smem_A + splitD * stride_sA; float * smem_s0 = smem_A + splitD * stride_sA;
const float *s0_block = (const float *)((char *)src0 + bidx * src0_nb2 + const float * s0_block = (const float *) ((char *) src0 + bidx * src0_nb2 + bidy * splitD * src0_nb1);
bidy * splitD * src0_nb1); const float * x_block = (const float *) ((char *) src1 + (bidx * src1_nb2) + bidy * splitD * sizeof(float));
const float *x_block = (const float *)((char *)src1 + (bidx * src1_nb2) + const float * dt_block = (const float *) ((char *) src2 + (bidx * src2_nb2) + bidy * splitD * sizeof(float));
bidy * splitD * sizeof(float)); const float * A_block = (const float *) ((char *) src3 + bidy * splitD * src3_nb1);
const float *dt_block = (const float *)((char *)src2 + (bidx * src2_nb2) + const float * B_block = (const float *) ((char *) src4 + (bidx * src4_nb2));
bidy * splitD * sizeof(float)); const float * C_block = (const float *) ((char *) src5 + (bidx * src5_nb2));
const float *A_block = float * y_block = (float *) ((char *) dst + (bidx * src1_nb2) + bidy * splitD * sizeof(float));
(const float *)((char *)src3 + bidy * splitD * src3_nb1); float * s_block = (float *) ((char *) dst + src1_nb3 + bidx * src0_nb2 + bidy * splitD * src0_nb1);
const float *B_block = (const float *)((char *)src4 + (bidx * src4_nb2));
const float *C_block = (const float *)((char *)src5 + (bidx * src5_nb2));
float *y_block = (float *)((char *)dst + (bidx * src1_nb2) +
bidy * splitD * sizeof(float));
float *s_block = (float *)((char *)dst + src1_nb3 + bidx * src0_nb2 +
bidy * splitD * src0_nb1);
const int stride_s0 = src0_nb1 / sizeof(float); const int stride_s0 = src0_nb1 / sizeof(float);
const int stride_x = src1_nb1 / sizeof(float); const int stride_x = src1_nb1 / sizeof(float);
const int stride_dt = src2_nb1 / sizeof(float); const int stride_dt = src2_nb1 / sizeof(float);
const int stride_A = src3_nb1 / sizeof(float); const int stride_A = src3_nb1 / sizeof(float);
const int stride_B = src4_nb1 / sizeof(float); const int stride_B = src4_nb1 / sizeof(float);
const int stride_C = src5_nb1 / sizeof(float); const int stride_C = src5_nb1 / sizeof(float);
const int stride_s = stride_s0; const int stride_s = stride_s0;
const int stride_y = stride_x; const int stride_y = stride_x;
// can N not be 16? for example 32? // can N not be 16? for example 32?
if (N == 16) { if (N == 16) {
#pragma unroll #pragma unroll
for (int i = 0; i < splitD / 4; i += 2) { for (int i = 0; i < splitD / 4; i += 2) {
float value = A_block[(wid * warpSize + i) * stride_A + wtid]; float value = A_block[(wid * warpSize + i) * stride_A + wtid];
// todo: bank conflict // todo: bank conflict
// I am always confused with how to use the swizzling method to solve // I am always confused with how to use the swizzling method to solve
// bank conflit. Hoping somebody can tell me. // bank conflit. Hoping somebody can tell me.
smem_A[(wid * warpSize + i) * stride_sA + wtid + smem_A[(wid * warpSize + i) * stride_sA + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value;
((wtid / 16) > 0 ? 1 : 0)] = value; }
}
#pragma unroll #pragma unroll
for (int i = 0; i < splitD / 4; i += 2) { for (int i = 0; i < splitD / 4; i += 2) {
float value = s0_block[(wid * warpSize + i) * stride_s0 + wtid]; float value = s0_block[(wid * warpSize + i) * stride_s0 + wtid];
smem_s0[(wid * warpSize + i) * stride_ss0 + wtid + smem_s0[(wid * warpSize + i) * stride_ss0 + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value;
((wtid / 16) > 0 ? 1 : 0)] = value; }
} }
}
__syncthreads();
for (int i = 0; i < L; i++) {
float dt_soft_plus = dt_block[i * stride_dt + wid * warpSize + wtid];
if (dt_soft_plus <= 20.0f) {
dt_soft_plus = log1pf(exp(dt_soft_plus));
}
float x_dt = x_block[i * stride_x + wid * warpSize + wtid] * dt_soft_plus;
float sumf = 0.0f;
#pragma unroll
for (int j = 0; j < N; j++) {
float state = (smem_s0[(wid * warpSize + wtid) * stride_ss0 + j] *
expf(dt_soft_plus *
smem_A[(wid * warpSize + wtid) * stride_sA + j])) +
(B_block[i * stride_B + j] * x_dt);
sumf += state * C_block[i * stride_C + j];
if (i == L - 1) {
s_block[(wid * warpSize + wtid) * stride_s + j] = state;
} else {
smem_s0[(wid * warpSize + wtid) * stride_ss0 + j] = state;
}
}
__syncthreads(); __syncthreads();
y_block[i * stride_y + wid * warpSize + wtid] = sumf;
} for (int i = 0; i < L; i++) {
float dt_soft_plus = dt_block[i * stride_dt + wid * warpSize + wtid];
if (dt_soft_plus <= 20.0f) {
dt_soft_plus = log1pf(exp(dt_soft_plus));
}
float x_dt = x_block[i * stride_x + wid * warpSize + wtid] * dt_soft_plus;
float sumf = 0.0f;
#pragma unroll
for (int j = 0; j < N; j++) {
float state = (smem_s0[(wid * warpSize + wtid) * stride_ss0 + j] *
expf(dt_soft_plus * smem_A[(wid * warpSize + wtid) * stride_sA + j])) +
(B_block[i * stride_B + j] * x_dt);
sumf += state * C_block[i * stride_C + j];
if (i == L - 1) {
s_block[(wid * warpSize + wtid) * stride_s + j] = state;
} else {
smem_s0[(wid * warpSize + wtid) * stride_ss0 + j] = state;
}
}
__syncthreads();
y_block[i * stride_y + wid * warpSize + wtid] = sumf;
}
} }
static void ssm_scan_f32_cuda( static void ssm_scan_f32_cuda(const float * src0, const float * src1, const float * src2, const float * src3,
const float *src0, const float *src1, const float *src2, const float *src3, const float * src4, const float * src5, const int src0_nb1, const int src0_nb2,
const float *src4, const float *src5, const int src0_nb1, const int src1_nb0, const int src1_nb1, const int src1_nb2, const int src1_nb3,
const int src0_nb2, const int src1_nb0, const int src1_nb1, const int src2_nb0, const int src2_nb1, const int src2_nb2, const int src3_nb1,
const int src1_nb2, const int src1_nb3, const int src2_nb0, const int src4_nb1, const int src4_nb2, const int src5_nb1, const int src5_nb2,
const int src2_nb1, const int src2_nb2, const int src3_nb1, float * dst, const int N, const int D, const int L, const int B, cudaStream_t stream) {
const int src4_nb1, const int src4_nb2, const int src5_nb1, const int threads = 128;
const int src5_nb2, float *dst, const int N, const int D, const int L, // todo: consider D cannot be divided,does this situation exist?
const int B, cudaStream_t stream) { GGML_ASSERT(D % threads == 0);
const int threads = 128; const dim3 blocks(B, (D + threads - 1) / threads, 1);
// todo: consider D cannot be divided,does this situation exist? const int smem_size = (threads * (N + 1) * 2) * sizeof(float);
GGML_ASSERT(D % threads == 0); if (N == 16) {
const dim3 blocks(B, (D + threads - 1) / threads, 1); ssm_scan_f32<128, 16><<<blocks, threads, smem_size, stream>>>(
const int smem_size = (threads * (N + 1) * 2) * sizeof(float); src0, src1, src2, src3, src4, src5, src0_nb1, src0_nb2, src1_nb0, src1_nb1, src1_nb2, src1_nb3, src2_nb0,
if (N == 16) { src2_nb1, src2_nb2, src3_nb1, src4_nb1, src4_nb2, src5_nb1, src5_nb2, dst, D, L, B);
ssm_scan_f32<128, 16><<<blocks, threads, smem_size, stream>>>( } else {
src0, src1, src2, src3, src4, src5, src0_nb1, src0_nb2, src1_nb0, GGML_ABORT("doesn't support N!=16.");
src1_nb1, src1_nb2, src1_nb3, src2_nb0, src2_nb1, src2_nb2, src3_nb1, }
src4_nb1, src4_nb2, src5_nb1, src5_nb2, dst, D, L, B);
} else {
GGML_ABORT("doesn't support N!=16.");
}
} }
void ggml_cuda_op_ssm_scan(ggml_backend_cuda_context &ctx, ggml_tensor *dst) { void ggml_cuda_op_ssm_scan(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const struct ggml_tensor *src0 = dst->src[0]; // s const struct ggml_tensor * src0 = dst->src[0]; // s
const struct ggml_tensor *src1 = dst->src[1]; // x const struct ggml_tensor * src1 = dst->src[1]; // x
const struct ggml_tensor *src2 = dst->src[2]; // dt const struct ggml_tensor * src2 = dst->src[2]; // dt
const struct ggml_tensor *src3 = dst->src[3]; // A const struct ggml_tensor * src3 = dst->src[3]; // A
const struct ggml_tensor *src4 = dst->src[4]; // B const struct ggml_tensor * src4 = dst->src[4]; // B
const struct ggml_tensor *src5 = dst->src[5]; // C const struct ggml_tensor * src5 = dst->src[5]; // C
// const int64_t d_state = src0->ne[0]; // const int64_t d_state = src0->ne[0];
// const int64_t d_inner = src0->ne[1]; // const int64_t d_inner = src0->ne[1];
// const int64_t l = src1->ne[1]; // const int64_t l = src1->ne[1];
// const int64_t b = src0->ne[2]; // const int64_t b = src0->ne[2];
const int64_t nc = src0->ne[0]; // d_state const int64_t nc = src0->ne[0]; // d_state
const int64_t nr = src0->ne[1]; // d_inner const int64_t nr = src0->ne[1]; // d_inner
const int64_t n_t = src1->ne[1]; // number of tokens per sequence const int64_t n_t = src1->ne[1]; // number of tokens per sequence
const int64_t n_s = src0->ne[2]; // number of sequences in the batch const int64_t n_s = src0->ne[2]; // number of sequences in the batch
GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
ggml_nelements(dst)); GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(src0->nb[0] == sizeof(float)); GGML_ASSERT(src1->nb[0] == sizeof(float));
GGML_ASSERT(src1->nb[0] == sizeof(float)); GGML_ASSERT(src2->nb[0] == sizeof(float));
GGML_ASSERT(src2->nb[0] == sizeof(float)); GGML_ASSERT(src3->nb[0] == sizeof(float));
GGML_ASSERT(src3->nb[0] == sizeof(float)); GGML_ASSERT(src4->nb[0] == sizeof(float));
GGML_ASSERT(src4->nb[0] == sizeof(float)); GGML_ASSERT(src5->nb[0] == sizeof(float));
GGML_ASSERT(src5->nb[0] == sizeof(float)); // required for the dot product between s and C
// required for the dot product between s and C GGML_ASSERT(src0->nb[1] == src0->ne[0] * sizeof(float));
GGML_ASSERT(src0->nb[1] == src0->ne[0] * sizeof(float)); // required for per-sequence offsets for states
// required for per-sequence offsets for states GGML_ASSERT(src0->nb[2] == src0->ne[0] * src0->ne[1] * sizeof(float));
GGML_ASSERT(src0->nb[2] == src0->ne[0] * src0->ne[1] * sizeof(float)); // required to get correct offset for state destination (i.e. src1->nb[3])
// required to get correct offset for state destination (i.e. src1->nb[3]) GGML_ASSERT(src1->nb[3] == src1->ne[0] * src1->ne[1] * src1->ne[2] * sizeof(float));
GGML_ASSERT(src1->nb[3] ==
src1->ne[0] * src1->ne[1] * src1->ne[2] * sizeof(float));
const float *src0_d = (const float *)src0->data; const float * src0_d = (const float *) src0->data;
const float *src1_d = (const float *)src1->data; const float * src1_d = (const float *) src1->data;
const float *src2_d = (const float *)src2->data; const float * src2_d = (const float *) src2->data;
const float *src3_d = (const float *)src3->data; const float * src3_d = (const float *) src3->data;
const float *src4_d = (const float *)src4->data; const float * src4_d = (const float *) src4->data;
const float *src5_d = (const float *)src5->data; const float * src5_d = (const float *) src5->data;
float *dst_d = (float *)dst->data; float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream(); cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32);
ssm_scan_f32_cuda(src0_d, src1_d, src2_d, src3_d, src4_d, src5_d, src0->nb[1], ssm_scan_f32_cuda(src0_d, src1_d, src2_d, src3_d, src4_d, src5_d, src0->nb[1], src0->nb[2], src1->nb[0],
src0->nb[2], src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[1], src1->nb[2], src1->nb[3], src2->nb[0], src2->nb[1], src2->nb[2], src3->nb[1],
src1->nb[3], src2->nb[0], src2->nb[1], src2->nb[2], src4->nb[1], src4->nb[2], src5->nb[1], src5->nb[2], dst_d, nc, nr, n_t, n_s, stream);
src3->nb[1], src4->nb[1], src4->nb[2], src5->nb[1],
src5->nb[2], dst_d, nc, nr, n_t, n_s, stream);
} }

View file

@ -1,3 +1,3 @@
#include "common.cuh" #include "common.cuh"
void ggml_cuda_op_ssm_scan(ggml_backend_cuda_context& ctx, ggml_tensor* dst); void ggml_cuda_op_ssm_scan(ggml_backend_cuda_context & ctx, ggml_tensor * dst);