diff --git a/common/common.cpp b/common/common.cpp index 3e2df6e34..1ea4f919f 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -836,7 +836,12 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa invalid_param = true; return true; } - params.n_gpu_layers = std::stoi(argv[i]); + std::string argValue = argv[i]; + if (argValue == "auto" || argValue == "a") { + params.n_gpu_layers = -2; + } else { + params.n_gpu_layers = std::stoi(argValue); + } if (!llama_supports_gpu_offload()) { fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); @@ -1407,6 +1412,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { if (llama_supports_gpu_offload()) { printf(" -ngl N, --n-gpu-layers N\n"); printf(" number of layers to store in VRAM\n"); + printf(" set to 'auto' or 'a' to determine max automatically based on VRAM size\n"); printf(" -ngld N, --n-gpu-layers-draft N\n"); printf(" number of layers to store in VRAM for the draft model\n"); printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n"); @@ -2480,7 +2486,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str()); fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str()); fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false"); - fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers); + fprintf(stream, "n_gpu_layers: %d # default: -1, auto: -2\n", params.n_gpu_layers); fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict); fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs); fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false"); diff --git a/common/common.h b/common/common.h index 99ee90bc3..82e7c78ae 100644 --- a/common/common.h +++ b/common/common.h @@ -62,7 +62,7 @@ struct gpt_params { int32_t n_parallel = 1; // number of parallel sequences to decode int32_t n_sequences = 1; // number of sequences to decode float p_split = 0.1f; // speculative decoding split probability - int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) + int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default, -2 - automatically determine) int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default) llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors diff --git a/ggml-cuda.cu b/ggml-cuda.cu index f51b2042d..381b64aa7 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -2612,6 +2612,11 @@ GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, si CUDA_CHECK(cudaMemGetInfo(free, total)); } +GGML_CALL void ggml_backend_cuda_get_free_device_memory(int device, size_t * free) { + size_t total; + ggml_backend_cuda_get_device_memory(device, free, &total); +} + GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) { if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) { return false; diff --git a/ggml-cuda.h b/ggml-cuda.h index 5eb4af40f..21bb433cc 100644 --- a/ggml-cuda.h +++ b/ggml-cuda.h @@ -34,6 +34,7 @@ GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type GGML_API GGML_CALL int ggml_backend_cuda_get_device_count(void); GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size); GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total); +GGML_API GGML_CALL void ggml_backend_cuda_get_free_device_memory(int device, size_t * free); GGML_API GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size); GGML_API GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer); diff --git a/llama.cpp b/llama.cpp index 9a1c11043..f0d3baa35 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1648,6 +1648,28 @@ static size_t llama_get_device_memory(int device) { #endif } +// TODO: implement for other backends to return free memory +static size_t llama_get_available_device_memory(int device) { +#if defined(GGML_USE_CUDA) + size_t free; + ggml_backend_cuda_get_free_device_memory(device, &free); + return free; +#elif defined(GGML_USE_SYCL) + size_t total; + size_t free; + ggml_backend_sycl_get_device_memory(device, &total, &free); + return free; +#elif defined(GGML_USE_VULKAN) + size_t total; + size_t free; + ggml_backend_vk_get_device_memory(device, &total, &free); + return free; +#else + return 1; + GGML_UNUSED(device); +#endif +} + // // globals // @@ -4327,6 +4349,32 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); } } +static int llm_determine_max_ngl(const llama_model_loader & ml, const llama_model & model, const int main_gpu) { + const auto & hparams = model.hparams; + + size_t available_gpu_memory = llama_get_available_device_memory(main_gpu); + + // TODO: This is a rough, pretty inaccurate estimate, should implement using existing layer size and not guesstimating + size_t model_size = ml.n_bytes; + int32_t model_layers = hparams.n_layer; + size_t memory_per_layer = model_size / model_layers; + + // TODO: get buffer size dynamically + int32_t buf_size = 400 * MiB; + int32_t buf_size_k = 200 * MiB; + int32_t buf_size_v = 200 * MiB; + + int32_t total_buf_size = buf_size + buf_size_k + buf_size_v; + + available_gpu_memory = available_gpu_memory - hparams.n_ctx_train; // context size + available_gpu_memory = available_gpu_memory - total_buf_size; // buffer size + + // Calculate the maximum number of layers that can fit into the GPU memory + int32_t max_ngl = std::floor(static_cast(available_gpu_memory) / memory_per_layer); + + return max_ngl; +} + // Returns false if cancelled by progress_callback static bool llm_load_tensors( llama_model_loader & ml, @@ -4342,6 +4390,11 @@ static bool llm_load_tensors( auto & hparams = model.hparams; + if (n_gpu_layers == -2) { + n_gpu_layers = llm_determine_max_ngl(ml, model, main_gpu); + LLAMA_LOG_INFO("%s: automatically set n_gpu_layers = %d\n", __func__, n_gpu_layers); + } + model.split_mode = split_mode; model.main_gpu = main_gpu; model.n_gpu_layers = n_gpu_layers;