Make stablelm conversion script use .safetensors
This commit is contained in:
parent
605e701cb4
commit
1ee5cc3076
1 changed files with 32 additions and 49 deletions
|
@ -14,23 +14,13 @@ from typing import Any
|
|||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer # type: ignore[import]
|
||||
from safetensors import safe_open
|
||||
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||||
import gguf
|
||||
|
||||
|
||||
def count_model_parts(dir_model: Path) -> int:
|
||||
num_parts = 0
|
||||
for filename in os.listdir(dir_model):
|
||||
if filename.startswith("pytorch_model-"):
|
||||
num_parts += 1
|
||||
|
||||
if num_parts > 0:
|
||||
print("gguf: found " + str(num_parts) + " model parts")
|
||||
return num_parts
|
||||
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(description="Convert a stablelm model to a GGML compatible file")
|
||||
parser.add_argument(
|
||||
|
@ -82,8 +72,6 @@ if hparams["architectures"][0] != "StableLMEpochForCausalLM":
|
|||
|
||||
sys.exit()
|
||||
|
||||
# get number of model parts
|
||||
num_parts = count_model_parts(dir_model)
|
||||
|
||||
ARCH=gguf.MODEL_ARCH.STABLELM
|
||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||
|
@ -145,21 +133,16 @@ print(tensor_map)
|
|||
# tensor info
|
||||
print("gguf: get tensor metadata")
|
||||
|
||||
if num_parts == 0:
|
||||
part_names = iter(("pytorch_model.bin",))
|
||||
else:
|
||||
part_names = (
|
||||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
||||
)
|
||||
part_names = iter(("model.safetensors",))
|
||||
|
||||
for part_name in part_names:
|
||||
if args.vocab_only:
|
||||
break
|
||||
print("gguf: loading model part '" + part_name + "'")
|
||||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
||||
|
||||
ctx = safe_open(dir_model / part_name, framework="pt", device="cpu")
|
||||
with ctx as model_part:
|
||||
for name in model_part.keys():
|
||||
data = model_part[name]
|
||||
data = model_part.get_tensor(name)
|
||||
|
||||
# we don't need these
|
||||
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue