diff --git a/convert.py b/convert.py index 4868b66f9..955b6546f 100755 --- a/convert.py +++ b/convert.py @@ -301,28 +301,6 @@ class Params: # # vocab # -def bytes_to_unicode(): - # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py - """ - Returns list of utf-8 byte and a corresponding list of unicode strings. - The reversible bpe codes work on unicode strings. - This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. - When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. - This is a significant percentage of your normal, say, 32K bpe vocab. - To avoid that, we want lookup tables between utf-8 bytes and unicode strings. - And avoids mapping to whitespace/control characters the bpe code barfs on. - """ - bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) - cs = bs[:] - n = 0 - for b in range(2**8): - if b not in bs: - bs.append(b) - cs.append(2**8+n) - n += 1 - return dict(zip(bs, (chr(n) for n in cs))) - - class BpeVocab: def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None: self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read()) @@ -463,8 +441,6 @@ class HFVocab: def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: tokenizer = self.tokenizer reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} - byte_encoder = bytes_to_unicode() - byte_decoder = {v: k for k, v in byte_encoder.items()} for i in range(tokenizer.vocab_size): text = reverse_vocab[i].encode("utf-8")