diff --git a/examples/parallel/parallel.cpp b/examples/parallel/parallel.cpp index a2ef0fb03..f66c91013 100644 --- a/examples/parallel/parallel.cpp +++ b/examples/parallel/parallel.cpp @@ -132,7 +132,6 @@ int main(int argc, char ** argv) { llama_context * ctx = NULL; // load the target model - params.logits_all = true; std::tie(model, ctx) = llama_init_from_gpt_params(params); // load the prompts from an external file if there are any diff --git a/examples/speculative/speculative.cpp b/examples/speculative/speculative.cpp index e991b8846..2a3d07bfd 100644 --- a/examples/speculative/speculative.cpp +++ b/examples/speculative/speculative.cpp @@ -65,7 +65,6 @@ int main(int argc, char ** argv) { llama_context * ctx_dft = NULL; // load the target model - params.logits_all = true; std::tie(model_tgt, ctx_tgt) = llama_init_from_gpt_params(params); // load the draft model diff --git a/llama.cpp b/llama.cpp index e4db288dd..3e528d96b 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1737,6 +1737,7 @@ struct llama_cparams { uint32_t n_ctx; // context size used during inference uint32_t n_batch; uint32_t n_ubatch; + uint32_t n_seq_max; uint32_t n_threads; // number of threads to use for generation uint32_t n_threads_batch; // number of threads to use for batch processing @@ -2054,6 +2055,8 @@ struct llama_context { ggml_backend_free(backend); } + free(output_ids); + #ifdef GGML_USE_VULKAN ggml_vk_free_cpu_assist(); #endif @@ -2094,19 +2097,19 @@ struct llama_context { // host buffer for the model output (logits and embeddings) ggml_backend_buffer_t buf_output = nullptr; - // decode output (2-dimensional array: [n_tokens][n_vocab]) - size_t logits_size = 0; - float * logits = nullptr; + // decode output (2-dimensional array: [n_outputs][n_vocab]) + size_t logits_size = 0; // capacity (of floats) for logits + float * logits = nullptr; + + int32_t * output_ids = nullptr; // map token positions to ids of the logits and embd buffers + size_t output_size = 0; // capacity (of tokens positions) for the output buffer + int32_t n_outputs = 0; // number of actually-used outputs in the previous batch -#ifndef NDEBUG - // guard against access to unset logits - std::vector logits_valid; -#endif bool logits_all = false; - // embeddings output (2-dimensional array: [n_tokens][n_embd]) + // embeddings output (2-dimensional array: [n_outputs][n_embd]) // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE - size_t embd_size = 0; + size_t embd_size = 0; // capacity (of floats) for embeddings float * embd = nullptr; // sequence embeddings output (map of [n_embd] vectors) @@ -2124,14 +2127,15 @@ struct llama_context { struct ggml_tensor * inp_tokens; // I32 [n_batch] struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch] struct ggml_tensor * inp_pos; // I32 [n_batch] + struct ggml_tensor * inp_out_ids; // I32 [n_outputs] struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch] - struct ggml_tensor * inp_KQ_pos; // F32 [kv_size] + struct ggml_tensor * inp_KQ_pos; // F32 [n_kv] struct ggml_tensor * inp_K_shift; // I32 [kv_size] struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch] struct ggml_tensor * inp_cls; // I32 [n_batch] struct ggml_tensor * inp_s_copy; // I32 [kv_size] - struct ggml_tensor * inp_s_mask; // F32 [1, kv_size] - struct ggml_tensor * inp_s_seq; // I32 [kv_size, n_batch] + struct ggml_tensor * inp_s_mask; // F32 [1, n_kv] + struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch] // control vectors struct llama_control_vector cvec; @@ -5562,7 +5566,8 @@ struct llm_build_context { const float norm_rms_eps; const int32_t n_tokens; - const int32_t n_kv; // size of KV cache to consider (n_kv <= n_ctx) + const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size) + const int32_t n_outputs; const int32_t kv_head; // index of where we store new KV data in the cache const int32_t n_orig_ctx; @@ -5609,6 +5614,7 @@ struct llm_build_context { norm_rms_eps (hparams.f_norm_rms_eps), n_tokens (batch.n_tokens), n_kv (worst_case ? kv_self.size : kv_self.n), + n_outputs (worst_case ? n_tokens : lctx.n_outputs), kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head), n_orig_ctx (cparams.n_yarn_orig_ctx), pooling_type (cparams.pooling_type), @@ -5753,6 +5759,13 @@ struct llm_build_context { return lctx.inp_pos; } + struct ggml_tensor * build_inp_out_ids() { + lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs); + cb(lctx.inp_out_ids, "inp_out_ids", -1); + ggml_set_input(lctx.inp_out_ids); + return lctx.inp_out_ids; + } + struct ggml_tensor * build_inp_KQ_mask(bool causal = true) { if (causal) { lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, n_tokens); @@ -5809,6 +5822,8 @@ struct llm_build_context { struct ggml_cgraph * build_llama() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + int32_t n_tokens = this->n_tokens; + const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); @@ -5876,6 +5891,15 @@ struct llm_build_context { Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } + if (il == n_layer - 1) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + n_tokens = n_outputs; + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); @@ -6055,6 +6079,14 @@ struct llm_build_context { Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } + if (il == n_layer - 1) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); @@ -6170,6 +6202,15 @@ struct llm_build_context { Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } + if (il == n_layer - 1) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids); + } + struct ggml_tensor * ffn_inp = cur; // feed forward @@ -6264,6 +6305,14 @@ struct llm_build_context { Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } + if (il == n_layer - 1) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + // add the input struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); @@ -6461,6 +6510,14 @@ struct llm_build_context { Kcur, Vcur, Q, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } + if (il == n_layer - 1) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + residual = ggml_get_rows(ctx0, residual, inp_out_ids); + } + struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur); cb(ffn_inp, "ffn_inp", il); @@ -6550,6 +6607,14 @@ struct llm_build_context { Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } + if (il == n_layer - 1) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); @@ -6707,6 +6772,14 @@ struct llm_build_context { } cb(cur, "kqv_out", il); + if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + // re-add the layer input cur = ggml_add(ctx0, cur, inpL); @@ -6829,6 +6902,14 @@ struct llm_build_context { Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } + if (il == n_layer - 1) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + // Add the input struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); @@ -6927,6 +7008,14 @@ struct llm_build_context { Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } + if (il == n_layer - 1) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + // Add the input struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); @@ -7040,6 +7129,14 @@ struct llm_build_context { Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } + if (il == n_layer - 1) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); @@ -7146,6 +7243,14 @@ struct llm_build_context { Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } + if (il == n_layer - 1) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); @@ -7258,6 +7363,14 @@ struct llm_build_context { Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } + if (il == n_layer - 1) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); @@ -7376,6 +7489,15 @@ struct llm_build_context { Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il); } + if (il == n_layer - 1) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids); + } + // FF { ffn_output = llm_build_ffn(ctx0, attn_norm_output, @@ -7473,6 +7595,15 @@ struct llm_build_context { cur = attention_norm; + if (il == n_layer - 1) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + // feed-forward network { cur = llm_build_ffn(ctx0, cur, @@ -7565,6 +7696,14 @@ struct llm_build_context { Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } + if (il == n_layer - 1) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + // add the input struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); @@ -7665,6 +7804,14 @@ struct llm_build_context { Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } + if (il == n_layer - 1) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + // add the input struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); @@ -7774,6 +7921,14 @@ struct llm_build_context { Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } + if (il == n_layer - 1) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); @@ -7884,6 +8039,14 @@ struct llm_build_context { Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } + if (il == n_layer - 1) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); @@ -8007,6 +8170,14 @@ struct llm_build_context { Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } + if (il == n_layer - 1) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + // scale_res - scale the hidden states for residual connection const float scale_res = scale_depth/sqrtf(float(n_layer)); cur = ggml_scale(ctx0, cur, scale_res); @@ -8121,6 +8292,14 @@ struct llm_build_context { Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il); } + if (il == n_layer - 1) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL); cb(sa_out, "sa_out", il); @@ -8234,6 +8413,14 @@ struct llm_build_context { cb(cur, "kqv_out", il); } + if (il == n_layer - 1) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); @@ -8381,6 +8568,16 @@ struct llm_build_context { struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0); + if (il == n_layer - 1) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + x = ggml_get_rows(ctx0, x, inp_out_ids); + y = ggml_get_rows(ctx0, y, inp_out_ids); + z = ggml_get_rows(ctx0, z, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens} y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d)); y = ggml_mul(ctx0, y, ggml_silu(ctx0, z)); @@ -8483,6 +8680,14 @@ struct llm_build_context { Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } + if (il == n_layer - 1) { + // skip computing output for unused tokens + if (n_outputs == 0) { return gf; } + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + struct ggml_tensor * attn_out = cur; // feed-forward network @@ -8773,9 +8978,38 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos)); } + { + GGML_ASSERT(lctx.inp_out_ids && "every model type must skip unused outputs"); + const int64_t n_tokens = batch.n_tokens; + + GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer)); + int32_t * data = (int32_t *) lctx.inp_out_ids->data; + + if (batch.logits) { + int32_t n_outputs = 0; + for (int i = 0; i < n_tokens; ++i) { + if (batch.logits[i]) { + data[n_outputs++] = i; + } + } + lctx.n_outputs = n_outputs; + } else if (lctx.logits_all || (cparams.embeddings && hparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) { + for (int i = 0; i < n_tokens; ++i) { + data[i] = i; + } + lctx.n_outputs = n_tokens; + } else { + // only keep last output + data[0] = n_tokens - 1; + lctx.n_outputs = 1; + } + } + GGML_ASSERT( + // (!a || b) is a logical implication (a -> b) + // !hparams.causal_attn -> !cparams.causal_attn (hparams.causal_attn || !cparams.causal_attn) && - "non-causal attention with generative models is not supported" + "causal attention with embedding models is not supported" ); if (lctx.inp_KQ_mask) { @@ -8954,6 +9188,62 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { } } +// Only alloc when needed +static void llama_output_reserve(llama_context & lctx, int32_t n_outputs) { + GGML_ASSERT(0 <= n_outputs); + + const int32_t n_outputs_max = std::max((uint32_t) n_outputs, lctx.cparams.n_seq_max); + + const auto n_batch = lctx.cparams.n_batch; + const auto n_vocab = lctx.model.hparams.n_vocab; + const auto n_embd = lctx.model.hparams.n_embd; + const int64_t capacity = lctx.output_size; + + const bool has_logits = lctx.cparams.causal_attn; + const bool has_embd = lctx.cparams.embeddings; + + if (!lctx.output_ids) { + // never resized afterwards + lctx.output_ids = (int32_t *) malloc(n_batch*sizeof(int32_t)); + if (lctx.output_ids == nullptr) { + throw std::runtime_error("failed to allocate output_ids buffer"); + } + } + // alloc only when more than the current logits capacity is required + if (capacity < n_outputs_max) { + if (lctx.buf_output) { + ggml_backend_buffer_free(lctx.buf_output); + lctx.buf_output = nullptr; + lctx.logits = nullptr; + lctx.embd = nullptr; + } + { + lctx.output_size = n_outputs_max; + lctx.logits_size = has_logits ? n_vocab*n_outputs_max : 0; + lctx.embd_size = has_embd ? n_embd*n_outputs_max : 0; + + const size_t buf_output_size = (lctx.logits_size + lctx.embd_size)*sizeof(float); + + lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buf_output_size); + if (lctx.buf_output == nullptr) { + throw std::runtime_error(format("failed to allocate output buffer of size %.2f MiB", buf_output_size / (1024.0 * 1024.0))); + } + + float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output); + + lctx.logits = has_logits ? output_base : nullptr; + lctx.embd = has_embd ? output_base + lctx.logits_size : nullptr; + } + } + // set all ids as invalid (assume two's complement negative numbers) + memset(lctx.output_ids, -1, n_batch*sizeof(int32_t)); + + ggml_backend_buffer_clear(lctx.buf_output, 0); + + lctx.n_outputs = n_outputs; // also set in llama_set_inputs() before a batch +} + + static void llama_graph_compute( llama_context & lctx, ggml_cgraph * gf, @@ -9029,16 +9319,8 @@ static int llama_decode_internal( const int64_t n_embd = hparams.n_embd; const int64_t n_vocab = hparams.n_vocab; - - auto * logits_out = lctx.logits; - -#ifndef NDEBUG - auto & logits_valid = lctx.logits_valid; - logits_valid.clear(); - logits_valid.resize(n_tokens_all); - - memset(logits_out, 0, lctx.logits_size*sizeof(float)); -#endif + int32_t n_logits = 0; + int32_t n_logits_prev = 0; const auto n_ubatch = cparams.n_ubatch; @@ -9047,6 +9329,33 @@ static int llama_decode_internal( std::vector seq_id_arr; std::vector> seq_id; + // reserve output buffer + if (batch_all.logits) { + for (uint32_t i = 0; i < n_tokens_all; ++i) { + if (batch_all.logits[i]) { + n_logits++; + } + } + llama_output_reserve(lctx, n_logits); + int32_t i_logits = 0; + for (uint32_t i = 0; i < n_tokens_all; ++i) { + if (batch_all.logits[i]) { + lctx.output_ids[i] = i_logits++; + } + } + } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) { + n_logits = n_tokens_all; + llama_output_reserve(lctx, n_logits); + for (uint32_t i = 0; i < n_tokens_all; ++i) { + lctx.output_ids[i] = i; + } + } else { + // keep last logits only + n_logits = 1; + llama_output_reserve(lctx, n_logits); + lctx.output_ids[0] = 0; + } + for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) { const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token); llama_batch u_batch = { @@ -9125,20 +9434,26 @@ static int llama_decode_internal( struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1]; struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2]; - if (!hparams.causal_attn) { + if (lctx.n_outputs == 0) { + // no output + res = nullptr; + embd = nullptr; + } else if (!hparams.causal_attn) { res = nullptr; // do not extract logits for embedding models such as BERT // token or sequence embeddings embd = gf->nodes[gf->n_nodes - 1]; GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0); + // TODO: graph view to ignore the logits when not needed } else { if (strcmp(res->name, "result_output") == 0) { - // the token embeddings could be the second to last tensor, or the third to last tensor - if (strcmp(embd->name, "result_norm") != 0) { - embd = gf->nodes[gf->n_nodes - 3]; - GGML_ASSERT(strcmp(embd->name, "result_norm") == 0); + // the token embeddings could be the second to last tensor, or any of the previous tensors + // NOTE: see build_result_output() for an idea of up to how many tensors to skip + for (int i = 3; strcmp(embd->name, "result_norm") != 0 && i <= 10; ++i) { + embd = gf->nodes[gf->n_nodes - i]; } + GGML_ASSERT(strcmp(embd->name, "result_norm") == 0); } else { GGML_ASSERT(false && "missing result_output tensor"); } @@ -9189,41 +9504,29 @@ static int llama_decode_internal( if (res) { ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res); GGML_ASSERT(backend_res != nullptr); + int32_t new_logits = 0; + if (u_batch.logits) { - int32_t i_first = -1; for (uint32_t i = 0; i < n_tokens; i++) { - if (u_batch.logits[i] && i_first == -1) { - i_first = (int32_t) i; + if (u_batch.logits[i]) { + new_logits++; } - if (u_batch.logits[i] == 0 || i == n_tokens - 1) { - if (i_first != -1) { - int i_last = u_batch.logits[i] == 0 ? i : i + 1; - // extract logits for the range [i_first, i_last) - // group the requests to minimize the number of calls to the backend - ggml_backend_tensor_get_async(backend_res, res, - logits_out + n_vocab*(cur_token + i_first), - i_first*n_vocab*sizeof(float), - (i_last - i_first)*n_vocab*sizeof(float)); - i_first = -1; - } - } -#ifndef NDEBUG - logits_valid[cur_token + i] = u_batch.logits[i] != 0;; -#endif } } else if (lctx.logits_all) { - ggml_backend_tensor_get_async(backend_res, res, logits_out + n_vocab*cur_token, 0, n_vocab*n_tokens*sizeof(float)); -#ifndef NDEBUG - std::fill(logits_valid.begin() + cur_token, logits_valid.begin() + cur_token + n_tokens, true); -#endif + new_logits += n_tokens; } else { + // keep last logits only if (cur_token + n_tokens >= n_tokens_all) { - ggml_backend_tensor_get_async(backend_res, res, logits_out, n_vocab*(n_tokens - 1)*sizeof(float), n_vocab*sizeof(float)); -#ifndef NDEBUG - logits_valid[0] = true; -#endif + new_logits += 1; } } + + if (new_logits) { + GGML_ASSERT(new_logits <= n_logits); + GGML_ASSERT((n_logits_prev+new_logits)*n_vocab <= (int64_t) lctx.logits_size); + ggml_backend_tensor_get_async(backend_res, res, lctx.logits, n_logits_prev*n_vocab*sizeof(float), new_logits*n_vocab*sizeof(float)); + n_logits_prev += new_logits; + } } // extract embeddings @@ -9243,6 +9546,7 @@ static int llama_decode_internal( if (u_batch.logits[i] == 0) { continue; } + // FIXME ggml_backend_tensor_get_async(backend_embd, embd, embd_out + n_embd*(i + cur_token), (n_embd*i)*sizeof(float), n_embd*sizeof(float)); } } @@ -13011,7 +13315,7 @@ struct llama_context * llama_new_context_with_model( const auto & hparams = model->hparams; auto & cparams = ctx->cparams; - // TODO: maybe add n_seq_max here too + cparams.n_seq_max = std::max(1u, params.n_seq_max); cparams.n_threads = params.n_threads; cparams.n_threads_batch = params.n_threads_batch; cparams.yarn_ext_factor = params.yarn_ext_factor; @@ -13214,25 +13518,14 @@ struct llama_context * llama_new_context_with_model( // graph outputs buffer { - // resized during inference, reserve maximum - ctx->logits_size = hparams.n_vocab*cparams.n_batch; - ctx->embd_size = params.embeddings ? hparams.n_embd*cparams.n_batch : 0; - - const size_t buf_output_size = (ctx->logits_size + ctx->embd_size)*sizeof(float); - - ctx->buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buf_output_size); - if (ctx->buf_output == nullptr) { - LLAMA_LOG_ERROR("%s: failed to allocate logits buffer\n", __func__); + // resized during inference when more than n_seq_max logits are requested in a batch + try { + llama_output_reserve(*ctx, 0); + } catch (const std::exception & err) { + LLAMA_LOG_ERROR("%s: error reserving logits buffer: %s\n", __func__, err.what()); llama_free(ctx); return nullptr; } - ggml_backend_buffer_clear(ctx->buf_output, 0); - - - ctx->logits = (float *) ggml_backend_buffer_get_base(ctx->buf_output); - if (params.embeddings) { - ctx->embd = ctx->logits + ctx->logits_size; - } LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(ctx->buf_output), @@ -14269,17 +14562,20 @@ void llama_synchronize(struct llama_context * ctx) { } float * llama_get_logits(struct llama_context * ctx) { + // TODO: assert that really all logits are in the output llama_synchronize(ctx); return ctx->logits; } float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) { - assert(ctx->logits_valid.at(i)); + const int32_t j = ctx->output_ids[i]; + GGML_ASSERT(0 <= j); llama_synchronize(ctx); - return ctx->logits + i*ctx->model.hparams.n_vocab; + // FIXME: check for nullptr + return ctx->logits + j*ctx->model.hparams.n_vocab; } float * llama_get_embeddings(struct llama_context * ctx) { @@ -14289,9 +14585,13 @@ float * llama_get_embeddings(struct llama_context * ctx) { } float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) { + const int32_t j = ctx->output_ids[i]; + GGML_ASSERT(0 <= j); + llama_synchronize(ctx); - return ctx->embd + i*ctx->model.hparams.n_embd; + // FIXME: check for nullptr + return ctx->embd + j*ctx->model.hparams.n_embd; } float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) { diff --git a/llama.h b/llama.h index 40dcf54e3..5eaf07e8a 100644 --- a/llama.h +++ b/llama.h @@ -674,6 +674,7 @@ extern "C" { LLAMA_API void llama_synchronize(struct llama_context * ctx); // Token logits obtained from the last call to llama_decode() + // WARNING: the following layout is only valid when the batch outputs logits for all tokens // The logits for the last token are stored in the last row // Logits for which llama_batch.logits[i] == 0 are undefined // Rows: n_tokens provided with llama_batch @@ -681,10 +682,11 @@ extern "C" { LLAMA_API float * llama_get_logits(struct llama_context * ctx); // Logits for the ith token. Equivalent to: - // llama_get_logits(ctx) + i*n_vocab + // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i); // Get all output token embeddings + // WARNING: only use when all outputs are requested // shape: [n_tokens*n_embd] (1-dimensional) LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);