server : refactor (#5882)
* server : refactoring (wip) * server : remove llava/clip objects from build * server : fix empty prompt handling + all slots idle logic * server : normalize id vars * server : code style * server : simplify model chat template validation * server : code style * server : minor * llama : llama_chat_apply_template support null buf * server : do not process embedding requests when disabled * server : reorganize structs and enums + naming fixes * server : merge oai.hpp in utils.hpp * server : refactor system prompt update at start * server : disable cached prompts with self-extend * server : do not process more than n_batch tokens per iter * server: tests: embeddings use a real embeddings model (#5908) * server, tests : bump batch to fit 1 embedding prompt * server: tests: embeddings fix build type Debug is randomly failing (#5911) * server: tests: embeddings, use different KV Cache size * server: tests: embeddings, fixed prompt do not exceed n_batch, increase embedding timeout, reduce number of concurrent embeddings * server: tests: embeddings, no need to wait for server idle as it can timout * server: refactor: clean up http code (#5912) * server : avoid n_available var ggml-ci * server: refactor: better http codes * server : simplify json parsing + add comment about t_last * server : rename server structs * server : allow to override FQDN in tests ggml-ci * server : add comments --------- Co-authored-by: Pierrick Hymbert <pierrick.hymbert@gmail.com>
This commit is contained in:
parent
ceca1aef07
commit
2002bc96bf
14 changed files with 2327 additions and 2773 deletions
|
@ -10,6 +10,7 @@ from contextlib import closing
|
|||
from re import RegexFlag
|
||||
|
||||
import aiohttp
|
||||
import numpy as np
|
||||
import openai
|
||||
from behave import step
|
||||
from behave.api.async_step import async_run_until_complete
|
||||
|
@ -24,6 +25,9 @@ def step_server_config(context, server_fqdn, server_port):
|
|||
if 'PORT' in os.environ:
|
||||
context.server_port = int(os.environ['PORT'])
|
||||
print(f"$PORT set, overriding server port with to {context.server_port}")
|
||||
if 'FQDN' in os.environ:
|
||||
context.server_fqdn = os.environ['FQDN']
|
||||
print(f"$FQDN set, overriding server fqdn with to {context.server_fqdn}")
|
||||
|
||||
context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
|
||||
|
||||
|
@ -34,6 +38,7 @@ def step_server_config(context, server_fqdn, server_port):
|
|||
context.n_ga_w = None
|
||||
context.n_gpu_layer = None
|
||||
context.n_predict = None
|
||||
context.n_prompts = 0
|
||||
context.n_server_predict = None
|
||||
context.n_slots = None
|
||||
context.prompt_prefix = None
|
||||
|
@ -202,6 +207,7 @@ def step_n_tokens_predicted(context, predicted_n):
|
|||
@step(u'a user prompt {user_prompt}')
|
||||
def step_user_prompt(context, user_prompt):
|
||||
context.prompts.append(user_prompt)
|
||||
context.n_prompts = len(context.prompts)
|
||||
|
||||
|
||||
@step(u'a system prompt {system_prompt}')
|
||||
|
@ -290,6 +296,12 @@ def step_prompt_passkey(context):
|
|||
context.prompt_passkey = context.text
|
||||
|
||||
|
||||
@step(u'{n_prompts:d} fixed prompts')
|
||||
def step_fixed_prompts(context, n_prompts):
|
||||
context.prompts.extend([str(0)*(context.n_batch if context.n_batch is not None else 512) for i in range(n_prompts)])
|
||||
context.n_prompts = n_prompts
|
||||
|
||||
|
||||
@step(u'a "{passkey}" passkey challenge prompt with the passkey inserted every {i_pos:d} junk')
|
||||
def step_prompt_passkey(context, passkey, i_pos):
|
||||
prompt = ""
|
||||
|
@ -301,6 +313,7 @@ def step_prompt_passkey(context, passkey, i_pos):
|
|||
passkey_highlight = "\x1b[33m" + passkey + "\x1b[0m"
|
||||
print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```\n")
|
||||
context.prompts.append(context.prompt_prefix + prompt + context.prompt_suffix)
|
||||
context.n_prompts = len(context.prompts)
|
||||
|
||||
|
||||
@step(u'an OAI compatible chat completions request with {api_error} api error')
|
||||
|
@ -341,11 +354,13 @@ async def step_oai_chat_completions(context, api_error):
|
|||
@step(u'a prompt')
|
||||
def step_a_prompt(context):
|
||||
context.prompts.append(context.text)
|
||||
context.n_prompts = len(context.prompts)
|
||||
|
||||
|
||||
@step(u'a prompt {prompt}')
|
||||
def step_a_prompt_prompt(context, prompt):
|
||||
context.prompts.append(prompt)
|
||||
context.n_prompts = len(context.prompts)
|
||||
|
||||
|
||||
@step(u'concurrent completion requests')
|
||||
|
@ -430,25 +445,47 @@ async def all_prompts_are_predicted(context, expected_predicted_n=None):
|
|||
@step(u'embeddings are computed for')
|
||||
@async_run_until_complete
|
||||
async def step_compute_embedding(context):
|
||||
context.n_prompts = 1
|
||||
context.embeddings = await request_embedding(context.text, base_url=context.base_url)
|
||||
|
||||
|
||||
@step(u'all embeddings are the same')
|
||||
@async_run_until_complete
|
||||
async def step_all_embeddings_are_the_same(context):
|
||||
n_embedding_requests = await gather_tasks_results(context)
|
||||
assert n_embedding_requests > 0
|
||||
embeddings = []
|
||||
for i in range(n_embedding_requests):
|
||||
embedding = context.tasks_result.pop().pop()
|
||||
embeddings.append(embedding)
|
||||
assert_embeddings(embedding)
|
||||
n = len(embeddings)
|
||||
for i in range(n-1):
|
||||
for j in range(i+1, n):
|
||||
embedding1 = np.array(embeddings[i])
|
||||
embedding2 = np.array(embeddings[j])
|
||||
if context.debug:
|
||||
print(f"embedding1: {embedding1[-8:]}\n")
|
||||
print(f"embedding2: {embedding2[-8:]}\n")
|
||||
similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
|
||||
msg = f"Similarity between {i} and {j}: {similarity:.10f}"
|
||||
if context.debug:
|
||||
print(f"{msg}\n")
|
||||
assert np.isclose(similarity, 1.0, rtol=1e-05, atol=1e-08, equal_nan=False), msg
|
||||
|
||||
@step(u'embeddings are generated')
|
||||
def step_assert_embeddings(context):
|
||||
if len(context.prompts) == 0:
|
||||
assert_embeddings(context.embeddings)
|
||||
else:
|
||||
assert len(context.embeddings) == len(context.prompts), (f"unexpected response:\n"
|
||||
f"context.prompts={context.prompts}\n"
|
||||
f"context.embeddings={context.embeddings}")
|
||||
for embedding in context.embeddings:
|
||||
context.prompts.pop()
|
||||
assert_embeddings(embedding)
|
||||
assert context.n_prompts == len(context.embeddings), (f"unexpected response:\n"
|
||||
f"context.n_prompts={context.n_prompts}\n"
|
||||
f"context.embeddings={context.embeddings}")
|
||||
for embedding in context.embeddings:
|
||||
assert_embeddings(embedding)
|
||||
|
||||
|
||||
@step(u'an OAI compatible embeddings computation request for')
|
||||
@async_run_until_complete
|
||||
async def step_oai_compute_embeddings(context):
|
||||
context.n_prompts = 1
|
||||
context.embeddings = await request_oai_embeddings(context.text,
|
||||
base_url=context.base_url,
|
||||
user_api_key=context.user_api_key,
|
||||
|
@ -462,6 +499,7 @@ async def step_oai_compute_embeddings_multiple_inputs(context):
|
|||
base_url=context.base_url,
|
||||
user_api_key=context.user_api_key,
|
||||
model=context.model)
|
||||
context.prompts.clear()
|
||||
|
||||
|
||||
@step(u'concurrent embedding requests')
|
||||
|
@ -488,9 +526,9 @@ async def step_concurrent_oai_embedding_requests(context):
|
|||
@async_run_until_complete()
|
||||
async def all_embeddings_are_generated(context):
|
||||
n_embedding_requests = await gather_tasks_results(context)
|
||||
assert n_embedding_requests > 0
|
||||
assert n_embedding_requests == context.n_prompts
|
||||
for i in range(n_embedding_requests):
|
||||
assert_embeddings(context.tasks_result.pop())
|
||||
assert_embeddings(context.tasks_result.pop().pop())
|
||||
|
||||
|
||||
@step(u'tokenizing')
|
||||
|
@ -588,11 +626,11 @@ def step_supported_models(context, i_model, param, preposition, param_value):
|
|||
|
||||
|
||||
async def concurrent_requests(context, f_completion, *args, **kwargs):
|
||||
n_prompts = len(context.prompts)
|
||||
context.n_prompts = len(context.prompts)
|
||||
if context.debug:
|
||||
print(f"starting {n_prompts} concurrent completion requests...")
|
||||
assert n_prompts > 0
|
||||
for prompt_no in range(n_prompts):
|
||||
print(f"starting {context.n_prompts} concurrent completion requests...")
|
||||
assert context.n_prompts > 0
|
||||
for prompt_no in range(context.n_prompts):
|
||||
shifted_args = [context.prompts.pop(), *args]
|
||||
context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs)))
|
||||
await asyncio.sleep(0.1)
|
||||
|
@ -765,7 +803,7 @@ async def request_embedding(content, base_url=None):
|
|||
}) as response:
|
||||
assert response.status == 200
|
||||
response_json = await response.json()
|
||||
return response_json['embedding']
|
||||
return [response_json['embedding']]
|
||||
|
||||
|
||||
async def request_oai_embeddings(input,
|
||||
|
@ -775,6 +813,7 @@ async def request_oai_embeddings(input,
|
|||
user_api_key = user_api_key if user_api_key is not None else 'nope'
|
||||
if async_client:
|
||||
origin = 'llama.cpp'
|
||||
headers=[]
|
||||
if user_api_key is not None:
|
||||
headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
|
||||
async with aiohttp.ClientSession() as session:
|
||||
|
@ -783,14 +822,21 @@ async def request_oai_embeddings(input,
|
|||
"input": input,
|
||||
"model": model,
|
||||
},
|
||||
headers=headers) as response:
|
||||
headers=headers,
|
||||
timeout=3600) as response:
|
||||
assert response.status == 200, f"received status code not expected: {response.status}"
|
||||
assert response.headers['Access-Control-Allow-Origin'] == origin
|
||||
assert response.headers['Content-Type'] == "application/json; charset=utf-8"
|
||||
response_json = await response.json()
|
||||
assert response_json['model'] == model, f"invalid model received: {response_json['model']}"
|
||||
assert response_json['object'] == 'list'
|
||||
return response_json['data']
|
||||
if isinstance(input, collections.abc.Sequence):
|
||||
embeddings = []
|
||||
for an_oai_embeddings in response_json['data']:
|
||||
embeddings.append(an_oai_embeddings['embedding'])
|
||||
else:
|
||||
embeddings = [response_json['data']['embedding']]
|
||||
return embeddings
|
||||
else:
|
||||
openai.api_key = user_api_key
|
||||
openai.api_base = f'{base_url}/v1'
|
||||
|
@ -804,7 +850,7 @@ async def request_oai_embeddings(input,
|
|||
for an_oai_embeddings in oai_embeddings.data:
|
||||
embeddings.append(an_oai_embeddings.embedding)
|
||||
else:
|
||||
embeddings = oai_embeddings.data.embedding
|
||||
embeddings = [oai_embeddings.data.embedding]
|
||||
return embeddings
|
||||
|
||||
|
||||
|
@ -899,6 +945,8 @@ def assert_embeddings(embeddings):
|
|||
assert len(embeddings) > 0
|
||||
embeddings_computed = False
|
||||
for emb in embeddings:
|
||||
if not isinstance(emb, float):
|
||||
assert False, f"Bad embeddings: {embeddings}"
|
||||
if emb != 0:
|
||||
embeddings_computed = True
|
||||
assert embeddings_computed, f"Embeddings: {embeddings}"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue