diff --git a/ggml/src/ggml-cuda/ssm_conv.cu b/ggml/src/ggml-cuda/ssm_conv.cu index fcaddf3a8..df89b4cf5 100644 --- a/ggml/src/ggml-cuda/ssm_conv.cu +++ b/ggml/src/ggml-cuda/ssm_conv.cu @@ -7,10 +7,12 @@ static __global__ void ssm_conv_f32( const int src1_nb1, float * dst, const int dst_nb0, const int dst_nb1, const int dst_nb2, - const int nc, const int ncs, const int nr, const int n_t, const int n_s) { + const int nc, const int ncs, const int nr) { // const int row = blockIdx.x*blockDim.y + threadIdx.y; const int tid = threadIdx.x; + const int i2 = blockIdx.x; + const int i3 = threadIdx.y; const int ith = tid; const int nth = WARP_SIZE; @@ -19,32 +21,27 @@ static __global__ void ssm_conv_f32( const int dr = (nr + nth - 1)/nth; // row range for this thread - const int ir0 = dr*ith; + const int ir0 = dr * ith; const int ir1 = min(ir0 + dr, nr); const int ir = ir1 - ir0; - - for (int i3 = 0; i3 < n_s; ++i3) { - for (int i2 = 0; i2 < n_t; ++i2) { - // {d_conv - 1 + n_t, d_inner, n_seqs} - // sliding window - const float * s = (const float *) ((const char *) src0 + ir0*src0_nb1 + i2*src0_nb0 + i3*src0_nb2); // {d_conv, d_inner, n_s} - const float * c = (const float *) ((const char *) src1 + ir0*src1_nb1); // {d_conv, d_inner} - float * x = (float *) ((char *) dst + ir0*dst_nb0 + i2*dst_nb1 + i3*dst_nb2); // {d_inner, n_t, n_s} - - // TODO: transpose the output for smaller strides for big batches? - // d_inner - for (int i1 = 0; i1 < ir; ++i1) { - // rowwise dot product - // NOTE: not using ggml_vec_dot_f32, because its sum is in double precision - float sumf = 0.0f; - - // d_conv - for (int i0 = 0; i0 < nc; ++i0) { - sumf += s[i0 + i1*ncs] * c[i0 + i1*nc]; - } - x[i1] = sumf; - } + + // {d_conv - 1 + n_t, d_inner, n_seqs} + // sliding window + const float * s = (const float *) ((const char *) src0 + ir0*src0_nb1 + i2*src0_nb0 + i3*src0_nb2); // {d_conv, d_inner, n_s} + const float * c = (const float *) ((const char *) src1 + ir0*src1_nb1); // {d_conv, d_inner} + float * x = (float *) ((char *) dst + ir0*dst_nb0 + i2*dst_nb1 + i3*dst_nb2); // {d_inner, n_t, n_s} + // TODO: transpose the output for smaller strides for big batches? + // d_inner + #pragma unroll + for (int i1 = 0; i1 < ir; ++i1) { + // rowwise dot product + // NOTE: not using ggml_vec_dot_f32, because its sum is in double precision + float sumf = 0.0f; + #pragma unroll + for (int i0 = 0; i0 < nc; ++i0) { + sumf += s[i0 + i1*ncs] * c[i0 + i1*nc]; } + x[i1] = sumf; } } @@ -57,8 +54,8 @@ static void ssm_conv_f32_cuda( const int nc, const int ncs, const int nr, const int n_t, const int n_s, cudaStream_t stream) { - const dim3 block_dims(WARP_SIZE, 1, 1); - const int nblocks = 1; // TODO + const dim3 block_dims(WARP_SIZE, n_s, 1); + const int nblocks = n_t; ssm_conv_f32<<>>( src0, src1, @@ -66,7 +63,7 @@ static void ssm_conv_f32_cuda( src1_nb1, dst, dst_nb0, dst_nb1, dst_nb2, - nc, ncs, nr, n_t, n_s); + nc, ncs, nr); } void ggml_cuda_op_ssm_conv(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { @@ -100,3 +97,4 @@ void ggml_cuda_op_ssm_conv(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { nc, ncs, nr, n_t, n_s, stream); } + diff --git a/ggml/src/ggml-cuda/ssm_scan.cu b/ggml/src/ggml-cuda/ssm_scan.cu index 4cc32b776..dd912856d 100644 --- a/ggml/src/ggml-cuda/ssm_scan.cu +++ b/ggml/src/ggml-cuda/ssm_scan.cu @@ -11,10 +11,11 @@ static __global__ void ssm_scan_f32( const int src4_nb1, const int src4_nb2, const int src5_nb1, const int src5_nb2, float * dst, - const int nc, const int nr, const int n_t, const int n_s) { + const int nc, const int nr) { -// const int row = blockIdx.x*blockDim.y + threadIdx.y; const int tid = threadIdx.x; + const int i2 = blockIdx.x; + const int i3 = threadIdx.y; const int ith = tid; const int nth = WARP_SIZE; @@ -27,38 +28,36 @@ static __global__ void ssm_scan_f32( const int ir1 = min(ir0 + dr, nr); const int ir = ir1 - ir0; - for (int i3 = 0; i3 < n_s; ++i3) { - for (int i2 = 0; i2 < n_t; ++i2) { - const float * s0 = (const float *) ((const char *) src0 + ir0*src0_nb1 + i3*src0_nb2); // {d_state, d_inner, n_s} - const float * x = (const float *) ((const char *) src1 + ir0*src1_nb0 + i2*src1_nb1 + i3*src1_nb2); // {d_inner, n_t, n_s} - const float * dt = (const float *) ((const char *) src2 + ir0*src2_nb0 + i2*src2_nb1 + i3*src2_nb2); // {d_inner, n_t, n_s} - const float * A = (const float *) ((const char *) src3 + ir0*src3_nb1); // {d_state, d_inner} - const float * B = (const float *) ((const char *) src4 + i2*src4_nb1 + i3*src4_nb2); // {d_state, n_t, n_s} - const float * C = (const float *) ((const char *) src5 + i2*src5_nb1 + i3*src5_nb2); // {d_state, n_t, n_s} - float * y = (float *) ((char *) dst + ir0*src1_nb0 + i2*src1_nb1 + i3*src1_nb2); // {d_inner, n_t, n_s} - float * s = (float *) ((char *) dst + ir0*src0_nb1 + i3*src0_nb2 + src1_nb3); // {d_state, d_inner, n_s} + const float * s0 = (const float *) ((const char *) src0 + ir0*src0_nb1 + i3*src0_nb2); // {d_state, d_inner, n_s} + const float * x = (const float *) ((const char *) src1 + ir0*src1_nb0 + i2*src1_nb1 + i3*src1_nb2); // {d_inner, n_t, n_s} + const float * dt = (const float *) ((const char *) src2 + ir0*src2_nb0 + i2*src2_nb1 + i3*src2_nb2); // {d_inner, n_t, n_s} + const float * A = (const float *) ((const char *) src3 + ir0*src3_nb1); // {d_state, d_inner} + const float * B = (const float *) ((const char *) src4 + i2*src4_nb1 + i3*src4_nb2); // {d_state, n_t, n_s} + const float * C = (const float *) ((const char *) src5 + i2*src5_nb1 + i3*src5_nb2); // {d_state, n_t, n_s} + float * y = (float *) ((char *) dst + ir0*src1_nb0 + i2*src1_nb1 + i3*src1_nb2); // {d_inner, n_t, n_s} + float * s = (float *) ((char *) dst + ir0*src0_nb1 + i3*src0_nb2 + src1_nb3); // {d_state, d_inner, n_s} - // use the output as the source for the next token-wise iterations - if (i2 > 0) { s0 = s; } + // use the output as the source for the next token-wise iterations + if (i2 > 0) { s0 = s; } - // d_inner - for (int i1 = 0; i1 < ir; ++i1) { - // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78 - float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1]; - float x_dt = x[i1] * dt_soft_plus; - float sumf = 0.0f; - // d_state - for (int i0 = 0; i0 < nc; ++i0) { - int i = i0 + i1*nc; - // state = prev_state * dA + dB * x - float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt); - // y = rowwise_dotprod(state, C) - sumf += state * C[i0]; - s[i] = state; - } - y[i1] = sumf; - } + // d_inner + #pragma unroll + for (int i1 = 0; i1 < ir; ++i1) { + // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78 + float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1]; + float x_dt = x[i1] * dt_soft_plus; + float sumf = 0.0f; + // d_state + #pragma unroll + for (int i0 = 0; i0 < nc; ++i0) { + int i = i0 + i1*nc; + // state = prev_state * dA + dB * x + float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt); + // y = rowwise_dotprod(state, C) + sumf += state * C[i0]; + s[i] = state; } + y[i1] = sumf; } } @@ -75,8 +74,8 @@ static void ssm_scan_f32_cuda( const int nc, const int nr, const int n_t, const int n_s, cudaStream_t stream) { - const dim3 block_dims(WARP_SIZE, 1, 1); - const int nblocks = 1; // TODO + const dim3 block_dims(WARP_SIZE, n_s, 1); + const int nblocks = n_t; ssm_scan_f32<<>>( src0, src1, src2, src3, @@ -88,7 +87,7 @@ static void ssm_scan_f32_cuda( src4_nb1, src4_nb2, src5_nb1, src5_nb2, dst, - nc, nr, n_t, n_s); + nc, nr); } void ggml_cuda_op_ssm_scan(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {