add examples of input floats

This commit is contained in:
ningshanwutuobang 2023-06-05 22:32:36 +08:00
parent 5673a8de37
commit 20d5eef816
3 changed files with 324 additions and 0 deletions

View file

@ -0,0 +1,28 @@
#ifndef _EMBD_INPUT_H_
#define _EMBD_INPUT_H_ 1
#include "common.h"
#include "llama.h"
#include "build-info.h"
extern "C" {
typedef struct MyModel {
llama_context* ctx;
gpt_params params;
} MyModel;
struct MyModel* create_mymodel(int argc, char ** argv);
bool eval_float(void* model, float* input, int N);
bool eval_tokens(void* model, std::vector<llama_token> tokens);
bool eval_id(struct MyModel* mymodel, int id);
bool eval_string(struct MyModel* mymodel, const char* str);
const char* sampling(struct MyModel* mymodel);
llama_token sampling_id(struct MyModel* mymodel);
}
#endif

View file

@ -0,0 +1,267 @@
// Defines sigaction on msys:
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "embd_input.h"
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined (_WIN32)
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#include <windows.h>
#include <signal.h>
#endif
static console_state con_st;
static llama_context ** g_ctx;
static bool is_interacting = false;
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
void sigint_handler(int signo) {
if (signo == SIGINT) {
if (!is_interacting) {
is_interacting=true;
} else {
console_cleanup(con_st);
printf("\n");
llama_print_timings(*g_ctx);
_exit(130);
}
}
}
#endif
extern "C" {
struct MyModel* create_mymodel(int argc, char ** argv) {
gpt_params params;
if (gpt_params_parse(argc, argv, params) == false) {
return nullptr;
}
if (params.n_ctx > 2048) {
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
"expect poor results\n", __func__, params.n_ctx);
}
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
if (params.seed < 0) {
params.seed = time(NULL);
}
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = gpt_random_prompt(rng);
}
llama_init_backend();
llama_context * ctx;
g_ctx = &ctx;
// load the model and apply lora adapter, if any
ctx = llama_init_from_gpt_params(params);
if (ctx == NULL) {
fprintf(stderr, "%s: error: unable to load model\n", __func__);
return nullptr;
}
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
}
struct MyModel* ret= new MyModel();
ret->ctx = ctx;
ret->params = params;
// printf("ctx: %d\n", ret->ctx);
return ret;
}
bool eval_float(void* model, float* input, int N){
MyModel* mymodel = (MyModel* )model;
llama_context* ctx = mymodel->ctx;
gpt_params params = mymodel->params;
int n_emb = llama_n_embd(ctx);
int n_past = 0;
for (int i = 0; i < (int) N; i += params.n_batch) {
int n_eval = (int) N - i;
if (n_eval > params.n_batch) {
n_eval = params.n_batch;
}
if (llama_eval_float(ctx, (input+i*n_emb), n_eval, n_past, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;
}
n_past += n_eval;
}
return true;
}
bool eval_tokens(void* model, std::vector<llama_token> tokens) {
MyModel* mymodel = (MyModel* )model;
// printf("model: %d\n", mymodel);
llama_context* ctx;// = mymodel->ctx;
// printf("ctx2: %d\n", ctx);
// printf("ctx2: %d\n", mymodel->ctx);
ctx = mymodel->ctx;
// printf("ctx2: %d\n", ctx);
gpt_params params = mymodel->params;
// printf("\n%d\n", params);
int n_past = 1;
for (int i = 0; i < (int) tokens.size(); i += params.n_batch) {
int n_eval = (int) tokens.size() - i;
if (n_eval > params.n_batch) {
n_eval = params.n_batch;
}
// printf("%d, %d, %d\n", i, n_eval, n_past);
if (llama_eval(ctx, &tokens[i], n_eval, n_past, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;
}
n_past += n_eval;
}
return true;
}
bool eval_id(struct MyModel* mymodel, int id) {
// printf("%d\n", id);
std::vector<llama_token> tokens;
tokens.push_back(id);
// printf("%d\n", tokens.size());
// printf("%d\n", tokens[0]);
return eval_tokens(mymodel, tokens);
}
bool eval_string(struct MyModel* mymodel,const char* str){
// std::cout << "eval " << std::endl;
// printf("%s", str);
llama_context* ctx = mymodel->ctx;
std::string str2 = str;
// printf("%s", str2.c_str());
std::cout << str2 << std::endl;
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx, str2, true);
eval_tokens(mymodel, embd_inp);
return true;
}
llama_token sampling_id(struct MyModel* mymodel) {
llama_context* ctx = mymodel->ctx;
gpt_params params = mymodel->params;
// int n_ctx = llama_n_ctx(ctx);
// out of user input, sample next token
const float temp = params.temp;
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
const float top_p = params.top_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
// const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
// const float repeat_penalty = params.repeat_penalty;
// const float alpha_presence = params.presence_penalty;
// const float alpha_frequency = params.frequency_penalty;
const int mirostat = params.mirostat;
const float mirostat_tau = params.mirostat_tau;
const float mirostat_eta = params.mirostat_eta;
// const bool penalize_nl = params.penalize_nl;
llama_token id = 0;
{
auto logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab(ctx);
// Apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// Apply penalties
// float nl_logit = logits[llama_token_nl()];
// auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
// llama_sample_repetition_penalty(ctx, &candidates_p,
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
// last_n_repeat, repeat_penalty);
// llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
// last_n_repeat, alpha_frequency, alpha_presence);
// if (!penalize_nl) {
// logits[llama_token_nl()] = nl_logit;
// }
if (temp <= 0) {
// Greedy sampling
id = llama_sample_token_greedy(ctx, &candidates_p);
} else {
if (mirostat == 1) {
static float mirostat_mu = 2.0f * mirostat_tau;
const int mirostat_m = 100;
llama_sample_temperature(ctx, &candidates_p, temp);
id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
} else if (mirostat == 2) {
static float mirostat_mu = 2.0f * mirostat_tau;
llama_sample_temperature(ctx, &candidates_p, temp);
id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
} else {
// Temperature sampling
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
llama_sample_typical(ctx, &candidates_p, typical_p, 1);
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
llama_sample_temperature(ctx, &candidates_p, temp);
id = llama_sample_token(ctx, &candidates_p);
}
}
}
return id;
}
const char* sampling(struct MyModel* mymodel) {
llama_context* ctx = mymodel->ctx;
int id = sampling_id(mymodel);
std::string ret = llama_token_to_str(ctx, id);
return ret.c_str();
}
}

View file

@ -0,0 +1,29 @@
#include "embd_input.h"
#include <stdlib.h>
#include <random>
int main(int argc, char** argv) {
auto mymodel = create_mymodel(argc, argv);
int N = 10;
int n_embd = llama_n_embd(mymodel->ctx);
float* data = new float[N*n_embd];
std::default_random_engine e;
std::uniform_real_distribution<float> u(0,1);
for (int i=0;i<N*n_embd;i++) {
data[i] = u(e);
}
eval_string(mymodel, "111");
printf("eval float");
eval_float(mymodel, data, N);
printf("eval float end\n");
eval_string(mymodel, mymodel->params.prompt.c_str());
for (int i=0;i < 500; i++) {
int id = sampling_id(mymodel);
printf("%s", llama_token_to_str(mymodel->ctx, id));
eval_id(mymodel, id);
}
printf("\n");
return 0;
}