update: cicd

This commit is contained in:
namtranase 2023-12-23 00:35:47 +07:00
parent a600c61da2
commit 2187a8debe
6 changed files with 11 additions and 11 deletions

View file

@ -4,7 +4,7 @@
**Supported models:**
- [X] LLaMA
- [x] LLaMA 2
- [x] LLaMA 2
- [X] MPT
- [X] Mistral AI v0.1
- [ ] Bloom
@ -33,7 +33,7 @@ Install requirements
pip install -r requirements.txt
```
Get the pre-computed AWQ search results for multiple model families, including LLaMA, LLaMA2, MPT, OPT
```bash
```bash
git clone https://huggingface.co/datasets/mit-han-lab/awq-model-zoo awq_cache
```

View file

@ -170,7 +170,7 @@ def apply_scale(module, scales_list, input_feat_dict=None):
Args:
module (nn.Module): The module containing the layers to be scaled.
scales_list (List[Tuple[str, List[str], torch.Tensor]]): A list of tuples containing:
* prev_op_name (str): The name of the preceding operation or module,
* prev_op_name (str): The name of the preceding operation or module,
relative to which the layers to be scaled are located.
* layer_names (List[str]): A list of names of the layers to be scaled, relative to the preceding operation.
* scales (torch.Tensor): A 1D tensor of size (num_features,) containing the scaling factors for each feature.
@ -237,7 +237,7 @@ def apply_clip(module, clip_list):
def add_scale_weights(model_path, scale_path, tmp_path):
"""
Adds pre-computed Activation Weight Quantization (AWQ) results to a model,
Adds pre-computed Activation Weight Quantization (AWQ) results to a model,
including scaling factors and clipping bounds.
Args:

View file

@ -1,2 +1,2 @@
torch>=2.0.0
transformers>=4.32.0
transformers>=4.32.0

View file

@ -1041,7 +1041,7 @@ dir_model = args.model
if args.awq_path:
sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
from awq.apply_awq import add_scale_weights
from awq.apply_awq import add_scale_weights
tmp_model_path = args.model / "weighted_model"
dir_model = tmp_model_path
if tmp_model_path.is_dir():
@ -1050,7 +1050,7 @@ if args.awq_path:
tmp_model_path.mkdir(parents=True, exist_ok=True)
print("Saving new weighted model ...")
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
print(f"Saved weighted model at {tmp_model_path}.")
print(f"Saved weighted model at {tmp_model_path}.")
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file=sys.stderr)

View file

@ -1201,7 +1201,7 @@ def main(args_in: list[str] | None = None) -> None:
args = parser.parse_args(args_in)
if args.awq_path:
sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
from awq.apply_awq import add_scale_weights
from awq.apply_awq import add_scale_weights
tmp_model_path = args.model / "weighted_model"
if tmp_model_path.is_dir():
print(f"{tmp_model_path} exists as a weighted model.")
@ -1209,9 +1209,9 @@ def main(args_in: list[str] | None = None) -> None:
tmp_model_path.mkdir(parents=True, exist_ok=True)
print("Saving new weighted model ...")
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
print(f"Saved weighted model at {tmp_model_path}.")
print(f"Saved weighted model at {tmp_model_path}.")
args.model = tmp_model_path
if args.dump_single:
model_plus = lazy_load_file(args.model)
do_dump_model(model_plus)

View file

@ -180,7 +180,7 @@ class TensorNameMap:
"layers.{bid}.feed_forward.experts.{xid}.w3", # mixtral
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral
),
# AWQ-activation gate
MODEL_TENSOR.FFN_ACT: (
"transformer.blocks.{bid}.ffn.act", # mpt