fixup! Add basic chipStar support
This commit is contained in:
parent
2a86c00ffa
commit
21b68f3032
1 changed files with 156 additions and 150 deletions
306
ggml-cuda.cu
306
ggml-cuda.cu
|
@ -8326,153 +8326,155 @@ static __global__ void k_compute_batched_ptrs(
|
|||
ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst_f16 + i12* nb2/2 + i13* nb3/2;
|
||||
}
|
||||
|
||||
// static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
// GGML_ASSERT(!ggml_is_transposed(src0));
|
||||
// GGML_ASSERT(!ggml_is_transposed(src1));
|
||||
//
|
||||
// GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
// GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
// GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
//
|
||||
// const int64_t ne00 = src0->ne[0]; GGML_UNUSED(ne00);
|
||||
// const int64_t ne01 = src0->ne[1];
|
||||
// const int64_t ne02 = src0->ne[2];
|
||||
// const int64_t ne03 = src0->ne[3];
|
||||
//
|
||||
// const int64_t nb01 = src0->nb[1];
|
||||
// const int64_t nb02 = src0->nb[2]; GGML_UNUSED(nb02);
|
||||
// const int64_t nb03 = src0->nb[3]; GGML_UNUSED(nb03);
|
||||
//
|
||||
// const int64_t ne10 = src1->ne[0];
|
||||
// const int64_t ne11 = src1->ne[1];
|
||||
// const int64_t ne12 = src1->ne[2];
|
||||
// const int64_t ne13 = src1->ne[3];
|
||||
//
|
||||
// const int64_t nb11 = src1->nb[1];
|
||||
// const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
|
||||
// const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
|
||||
//
|
||||
// const int64_t ne1 = ggml_nelements(src1);
|
||||
// const int64_t ne = ggml_nelements(dst);
|
||||
//
|
||||
// CUDA_CHECK(ggml_cuda_set_device(g_main_device));
|
||||
// cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
|
||||
//
|
||||
// CUBLAS_CHECK(cublasSetStream(g_cublas_handles[g_main_device], main_stream));
|
||||
//
|
||||
// ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
// void * src0_ddq = src0_extra->data_device[g_main_device];
|
||||
// half * src0_as_f16 = (half *) src0_ddq;
|
||||
//
|
||||
// ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
// float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
|
||||
//
|
||||
// ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
// float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
|
||||
//
|
||||
// // convert src1 to fp16
|
||||
// const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
|
||||
// GGML_ASSERT(to_fp16_cuda != nullptr);
|
||||
//
|
||||
// size_t src1_as = 0;
|
||||
// half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as);
|
||||
// to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream);
|
||||
//
|
||||
// size_t dst_as = 0;
|
||||
// half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as);
|
||||
//
|
||||
// GGML_ASSERT(ne12 % ne02 == 0);
|
||||
// GGML_ASSERT(ne13 % ne03 == 0);
|
||||
//
|
||||
// // broadcast factors
|
||||
// const int64_t r2 = ne12/ne02;
|
||||
// const int64_t r3 = ne13/ne03;
|
||||
//
|
||||
// const half alpha_f16 = 1.0f;
|
||||
// const half beta_f16 = 0.0f;
|
||||
//
|
||||
// #if 0
|
||||
// // use cublasGemmEx
|
||||
// {
|
||||
// for (int i13 = 0; i13 < ne13; ++i13) {
|
||||
// for (int i12 = 0; i12 < ne12; ++i12) {
|
||||
// int i03 = i13 / r3;
|
||||
// int i02 = i12 / r2;
|
||||
//
|
||||
// CUBLAS_CHECK(
|
||||
// cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
// ne01, ne11, ne10,
|
||||
// &alpha_f16, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half),
|
||||
// (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float),
|
||||
// &beta_f16, ( char *) dst_f16 + i12* dst->nb[2]/2 + i13* dst->nb[3]/2, CUDA_R_16F, ne01,
|
||||
// CUBLAS_COMPUTE_16F,
|
||||
// CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// #else
|
||||
// if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
|
||||
// // there is no broadcast and src0, src1 are contiguous across dims 2, 3
|
||||
// // use cublasGemmStridedBatchedEx
|
||||
// CUBLAS_CHECK(
|
||||
// cublasGemmStridedBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
// ne01, ne11, ne10,
|
||||
// &alpha_f16, (const char *) src0_as_f16, CUDA_R_16F, nb01/sizeof(half), src0->nb[2]/sizeof(half), // strideA
|
||||
// (const char *) src1_as_f16, CUDA_R_16F, nb11/sizeof(float), src1->nb[2]/sizeof(float), // strideB
|
||||
// &beta_f16, ( char *) dst_f16, CUDA_R_16F, ne01, dst->nb[2]/sizeof(float), // strideC
|
||||
// ne12*ne13,
|
||||
// CUBLAS_COMPUTE_16F,
|
||||
// CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
// } else {
|
||||
// // use cublasGemmBatchedEx
|
||||
// const int ne23 = ne12*ne13;
|
||||
//
|
||||
// const void ** ptrs_src = nullptr;
|
||||
// void ** ptrs_dst = nullptr;
|
||||
//
|
||||
// size_t ptrs_src_s = 0;
|
||||
// size_t ptrs_dst_s = 0;
|
||||
//
|
||||
// ptrs_src = (const void **) ggml_cuda_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s);
|
||||
// ptrs_dst = ( void **) ggml_cuda_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s);
|
||||
//
|
||||
// dim3 block_dims(ne13, ne12);
|
||||
// k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
|
||||
// src0_as_f16, src1_as_f16, dst_f16,
|
||||
// ptrs_src, ptrs_dst,
|
||||
// ne12, ne13,
|
||||
// ne23,
|
||||
// nb02, nb03,
|
||||
// nb12, nb13,
|
||||
// dst->nb[2], dst->nb[3],
|
||||
// r2, r3);
|
||||
// CUDA_CHECK(cudaGetLastError());
|
||||
//
|
||||
// CUBLAS_CHECK(
|
||||
// cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
// ne01, ne11, ne10,
|
||||
// &alpha_f16, (const void **) (ptrs_src + 0*ne23), CUDA_R_16F, nb01/sizeof(half),
|
||||
// (const void **) (ptrs_src + 1*ne23), CUDA_R_16F, nb11/sizeof(float),
|
||||
// &beta_f16, ( void **) (ptrs_dst + 0*ne23), CUDA_R_16F, ne01,
|
||||
// ne23,
|
||||
// CUBLAS_COMPUTE_16F,
|
||||
// CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
//
|
||||
// if (ptrs_src_s != 0) {
|
||||
// ggml_cuda_pool_free(ptrs_src, ptrs_src_s);
|
||||
// }
|
||||
// if (ptrs_dst_s != 0) {
|
||||
// ggml_cuda_pool_free(ptrs_dst, ptrs_dst_s);
|
||||
// }
|
||||
// }
|
||||
// #endif
|
||||
//
|
||||
// const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
|
||||
// to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream);
|
||||
//
|
||||
// ggml_cuda_pool_free(src1_as_f16, src1_as);
|
||||
// ggml_cuda_pool_free(dst_f16, dst_as);
|
||||
// }
|
||||
#ifndef GGML_USE_CHIPSTAR
|
||||
static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(!ggml_is_transposed(src0));
|
||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||
|
||||
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
|
||||
const int64_t ne00 = src0->ne[0]; GGML_UNUSED(ne00);
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
const int64_t ne03 = src0->ne[3];
|
||||
|
||||
const int64_t nb01 = src0->nb[1];
|
||||
const int64_t nb02 = src0->nb[2]; GGML_UNUSED(nb02);
|
||||
const int64_t nb03 = src0->nb[3]; GGML_UNUSED(nb03);
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
const int64_t ne12 = src1->ne[2];
|
||||
const int64_t ne13 = src1->ne[3];
|
||||
|
||||
const int64_t nb11 = src1->nb[1];
|
||||
const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
|
||||
const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
|
||||
|
||||
const int64_t ne1 = ggml_nelements(src1);
|
||||
const int64_t ne = ggml_nelements(dst);
|
||||
|
||||
CUDA_CHECK(ggml_cuda_set_device(g_main_device));
|
||||
cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
|
||||
|
||||
CUBLAS_CHECK(cublasSetStream(g_cublas_handles[g_main_device], main_stream));
|
||||
|
||||
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
void * src0_ddq = src0_extra->data_device[g_main_device];
|
||||
half * src0_as_f16 = (half *) src0_ddq;
|
||||
|
||||
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
|
||||
|
||||
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
|
||||
|
||||
// convert src1 to fp16
|
||||
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
|
||||
GGML_ASSERT(to_fp16_cuda != nullptr);
|
||||
|
||||
size_t src1_as = 0;
|
||||
half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as);
|
||||
to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream);
|
||||
|
||||
size_t dst_as = 0;
|
||||
half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as);
|
||||
|
||||
GGML_ASSERT(ne12 % ne02 == 0);
|
||||
GGML_ASSERT(ne13 % ne03 == 0);
|
||||
|
||||
// broadcast factors
|
||||
const int64_t r2 = ne12/ne02;
|
||||
const int64_t r3 = ne13/ne03;
|
||||
|
||||
const half alpha_f16 = 1.0f;
|
||||
const half beta_f16 = 0.0f;
|
||||
|
||||
#if 0
|
||||
// use cublasGemmEx
|
||||
{
|
||||
for (int i13 = 0; i13 < ne13; ++i13) {
|
||||
for (int i12 = 0; i12 < ne12; ++i12) {
|
||||
int i03 = i13 / r3;
|
||||
int i02 = i12 / r2;
|
||||
|
||||
CUBLAS_CHECK(
|
||||
cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
ne01, ne11, ne10,
|
||||
&alpha_f16, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half),
|
||||
(const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float),
|
||||
&beta_f16, ( char *) dst_f16 + i12* dst->nb[2]/2 + i13* dst->nb[3]/2, CUDA_R_16F, ne01,
|
||||
CUBLAS_COMPUTE_16F,
|
||||
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
|
||||
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
|
||||
// use cublasGemmStridedBatchedEx
|
||||
CUBLAS_CHECK(
|
||||
cublasGemmStridedBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
ne01, ne11, ne10,
|
||||
&alpha_f16, (const char *) src0_as_f16, CUDA_R_16F, nb01/sizeof(half), src0->nb[2]/sizeof(half), // strideA
|
||||
(const char *) src1_as_f16, CUDA_R_16F, nb11/sizeof(float), src1->nb[2]/sizeof(float), // strideB
|
||||
&beta_f16, ( char *) dst_f16, CUDA_R_16F, ne01, dst->nb[2]/sizeof(float), // strideC
|
||||
ne12*ne13,
|
||||
CUBLAS_COMPUTE_16F,
|
||||
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
} else {
|
||||
// use cublasGemmBatchedEx
|
||||
const int ne23 = ne12*ne13;
|
||||
|
||||
const void ** ptrs_src = nullptr;
|
||||
void ** ptrs_dst = nullptr;
|
||||
|
||||
size_t ptrs_src_s = 0;
|
||||
size_t ptrs_dst_s = 0;
|
||||
|
||||
ptrs_src = (const void **) ggml_cuda_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s);
|
||||
ptrs_dst = ( void **) ggml_cuda_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s);
|
||||
|
||||
dim3 block_dims(ne13, ne12);
|
||||
k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
|
||||
src0_as_f16, src1_as_f16, dst_f16,
|
||||
ptrs_src, ptrs_dst,
|
||||
ne12, ne13,
|
||||
ne23,
|
||||
nb02, nb03,
|
||||
nb12, nb13,
|
||||
dst->nb[2], dst->nb[3],
|
||||
r2, r3);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
CUBLAS_CHECK(
|
||||
cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
ne01, ne11, ne10,
|
||||
&alpha_f16, (const void **) (ptrs_src + 0*ne23), CUDA_R_16F, nb01/sizeof(half),
|
||||
(const void **) (ptrs_src + 1*ne23), CUDA_R_16F, nb11/sizeof(float),
|
||||
&beta_f16, ( void **) (ptrs_dst + 0*ne23), CUDA_R_16F, ne01,
|
||||
ne23,
|
||||
CUBLAS_COMPUTE_16F,
|
||||
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
|
||||
if (ptrs_src_s != 0) {
|
||||
ggml_cuda_pool_free(ptrs_src, ptrs_src_s);
|
||||
}
|
||||
if (ptrs_dst_s != 0) {
|
||||
ggml_cuda_pool_free(ptrs_dst, ptrs_dst_s);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
|
||||
to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream);
|
||||
|
||||
ggml_cuda_pool_free(src1_as_f16, src1_as);
|
||||
ggml_cuda_pool_free(dst_f16, dst_as);
|
||||
}
|
||||
#endif
|
||||
|
||||
static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
const bool all_on_device =
|
||||
|
@ -8509,10 +8511,14 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
|
|||
} else if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
|
||||
// KQV single-batch
|
||||
ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
|
||||
} else if (!split && all_on_device && use_tensor_cores && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
|
||||
}
|
||||
#ifndef GGML_USE_CHIPSTAR
|
||||
else if (!split && all_on_device && use_tensor_cores && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
|
||||
// KQ + KQV multi-batch
|
||||
// ggml_cuda_mul_mat_mat_batched_cublas(src0, src1, dst);
|
||||
} else if (src0->type == GGML_TYPE_F32) {
|
||||
ggml_cuda_mul_mat_mat_batched_cublas(src0, src1, dst);
|
||||
}
|
||||
#endif
|
||||
else if (src0->type == GGML_TYPE_F32) {
|
||||
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
|
||||
} else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
|
||||
if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue