From 978ba3d83d17b10fdf9807006048432b5b3769fc Mon Sep 17 00:00:00 2001 From: ardfork <134447697+ardfork@users.noreply.github.com> Date: Sun, 4 Aug 2024 18:16:23 +0000 Subject: [PATCH 01/16] Server: Don't ignore llama.cpp params (#8754) * Don't ignore llama.cpp params * Add fallback for max_tokens --- examples/server/server.cpp | 2 +- examples/server/utils.hpp | 18 ------------------ 2 files changed, 1 insertion(+), 19 deletions(-) diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 7813a2957..d5f131d9b 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -900,7 +900,7 @@ struct server_context { slot.params.stream = json_value(data, "stream", false); slot.params.cache_prompt = json_value(data, "cache_prompt", false); - slot.params.n_predict = json_value(data, "n_predict", default_params.n_predict); + slot.params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", default_params.n_predict)); slot.sparams.top_k = json_value(data, "top_k", default_sparams.top_k); slot.sparams.top_p = json_value(data, "top_p", default_sparams.top_p); slot.sparams.min_p = json_value(data, "min_p", default_sparams.min_p); diff --git a/examples/server/utils.hpp b/examples/server/utils.hpp index db6b3b74d..e6a1f0697 100644 --- a/examples/server/utils.hpp +++ b/examples/server/utils.hpp @@ -355,24 +355,6 @@ static json oaicompat_completion_params_parse( llama_params["__oaicompat"] = true; - // Map OpenAI parameters to llama.cpp parameters - // - // For parameters that are defined by the OpenAI documentation (e.g. - // temperature), we explicitly specify OpenAI's intended default; we - // need to do that because sometimes OpenAI disagrees with llama.cpp - // - // https://platform.openai.com/docs/api-reference/chat/create - llama_sampling_params default_sparams; - llama_params["model"] = json_value(body, "model", std::string("unknown")); - llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0); - llama_params["logit_bias"] = json_value(body, "logit_bias", json::object()); - llama_params["n_predict"] = json_value(body, "max_tokens", -1); - llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0); - llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED); - llama_params["stream"] = json_value(body, "stream", false); - llama_params["temperature"] = json_value(body, "temperature", 1.0); - llama_params["top_p"] = json_value(body, "top_p", 1.0); - // Apply chat template to the list of messages llama_params["prompt"] = format_chat(model, chat_template, body.at("messages")); From 0d6fb52be0c1b7e77eb855f3adc4952771c8ce4c Mon Sep 17 00:00:00 2001 From: Brandon Squizzato <35474886+bsquizz@users.noreply.github.com> Date: Sun, 4 Aug 2024 14:17:16 -0400 Subject: [PATCH 02/16] Install curl in runtime layer (#8693) --- .devops/llama-server.Dockerfile | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.devops/llama-server.Dockerfile b/.devops/llama-server.Dockerfile index b631d5806..ff558604e 100644 --- a/.devops/llama-server.Dockerfile +++ b/.devops/llama-server.Dockerfile @@ -3,7 +3,7 @@ ARG UBUNTU_VERSION=22.04 FROM ubuntu:$UBUNTU_VERSION AS build RUN apt-get update && \ - apt-get install -y build-essential git libcurl4-openssl-dev curl + apt-get install -y build-essential git libcurl4-openssl-dev WORKDIR /app @@ -16,7 +16,7 @@ RUN make -j$(nproc) llama-server FROM ubuntu:$UBUNTU_VERSION AS runtime RUN apt-get update && \ - apt-get install -y libcurl4-openssl-dev libgomp1 + apt-get install -y libcurl4-openssl-dev libgomp1 curl COPY --from=build /app/llama-server /llama-server From c02b0a8a4dee489b29073f25a27ed6e5628e86e1 Mon Sep 17 00:00:00 2001 From: wangshuai09 <391746016@qq.com> Date: Mon, 5 Aug 2024 12:22:30 +0800 Subject: [PATCH 03/16] cann: support q4_0 model (#8822) --- ggml/src/ggml-cann.cpp | 12 +- ggml/src/ggml-cann/acl_tensor.cpp | 31 +- ggml/src/ggml-cann/acl_tensor.h | 36 ++- ggml/src/ggml-cann/aclnn_ops.cpp | 45 ++- ggml/src/ggml-cann/kernels/CMakeLists.txt | 3 +- ggml/src/ggml-cann/kernels/ascendc_kernels.h | 2 + .../kernels/quantize_float_to_q4_0.cpp | 273 ++++++++++++++++++ 7 files changed, 357 insertions(+), 45 deletions(-) create mode 100644 ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp diff --git a/ggml/src/ggml-cann.cpp b/ggml/src/ggml-cann.cpp index 461febcc0..a15bc8aa2 100644 --- a/ggml/src/ggml-cann.cpp +++ b/ggml/src/ggml-cann.cpp @@ -627,7 +627,6 @@ GGML_CALL static void* ggml_backend_cann_buffer_get_base( GGML_CALL static void ggml_backend_cann_transform_q4_0(ggml_tensor* tensor, const void* src, void* dst) { - GGML_ASSERT(tensor->op == GGML_OP_NONE); int64_t n_elems = ggml_nelements(tensor); int64_t groups = n_elems / QK4_0; @@ -679,7 +678,6 @@ GGML_CALL static void ggml_backend_cann_transform_q4_0(ggml_tensor* tensor, */ GGML_CALL static void ggml_backend_cann_transform_back_q4_0( const ggml_tensor* tensor, void* src, void* dst) { - GGML_ASSERT(tensor->op == GGML_OP_NONE); int64_t n_elems = ggml_nelements(tensor); int64_t groups = n_elems / QK4_0; @@ -1666,10 +1664,17 @@ GGML_CALL static bool ggml_backend_cann_supports_op(ggml_backend_t backend, } case GGML_OP_MUL_MAT: { switch (op->src[0]->type) { - // case GGML_TYPE_Q4_0: case GGML_TYPE_F16: case GGML_TYPE_F32: case GGML_TYPE_Q8_0: + // TODO: fix me + // Current groupsize should not be greater than k-1 in + // aclnnWeightQuantBatchMatmulV2GetWorkspaceSize(). + if (op->src[0]->ne[0]-1 > QK8_0) { + return true; + } + return false; + case GGML_TYPE_Q4_0: return true; default: return false; @@ -1694,6 +1699,7 @@ GGML_CALL static bool ggml_backend_cann_supports_op(ggml_backend_t backend, case GGML_TYPE_F32: case GGML_TYPE_F16: case GGML_TYPE_Q8_0: + case GGML_TYPE_Q4_0: return true; default: return false; diff --git a/ggml/src/ggml-cann/acl_tensor.cpp b/ggml/src/ggml-cann/acl_tensor.cpp index 960ce9a03..d120ce6ac 100644 --- a/ggml/src/ggml-cann/acl_tensor.cpp +++ b/ggml/src/ggml-cann/acl_tensor.cpp @@ -37,6 +37,10 @@ aclDataType ggml_cann_type_mapping(ggml_type type) { return ACL_INT16; case GGML_TYPE_I32: return ACL_INT32; + case GGML_TYPE_Q4_0: + return ACL_INT4; + case GGML_TYPE_Q8_0: + return ACL_INT8; default: return ACL_DT_UNDEFINED; } @@ -89,33 +93,6 @@ bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1) { return false; } -aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype, - size_t type_size, int64_t* ne, size_t* nb, - int64_t dims, aclFormat format, - size_t offset) { - int64_t tmp_ne[GGML_MAX_DIMS * 2]; - int64_t tmp_stride[GGML_MAX_DIMS * 2]; - - memcpy(tmp_ne, ne, dims * sizeof(int64_t)); - for (int i = 0; i < dims; i++) { - tmp_stride[i] = nb[i] / type_size; - } - - std::reverse(tmp_ne, tmp_ne + dims); - std::reverse(tmp_stride, tmp_stride + dims); - - int64_t acl_storage_len = 0; - for (int i = 0; i < dims; i++) { - acl_storage_len += (ne[i] - 1) * nb[i]; - } - - aclTensor* acl_tensor = - aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size, - format, &acl_storage_len, 1, data_ptr); - - return acl_tensor; -} - int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0, const ggml_tensor* src1, int64_t* bcast_src0_ne, diff --git a/ggml/src/ggml-cann/acl_tensor.h b/ggml/src/ggml-cann/acl_tensor.h index 7d0bf04e0..4734a9cb8 100644 --- a/ggml/src/ggml-cann/acl_tensor.h +++ b/ggml/src/ggml-cann/acl_tensor.h @@ -23,6 +23,9 @@ #ifndef CANN_ACL_TENSOR_H #define CANN_ACL_TENSOR_H +#include +#include + #include #include "common.h" @@ -65,7 +68,8 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne = null size_t offset = 0); /** - * @brief Creates an ACL tensor from provided parameters. + * @brief Template for creating an ACL tensor from provided parameters. typename TYPE + * should be size_t or float. * * @details This function creates an ACL tensor using the provided data pointer, * data type, dimensions, strides, format, offset, and additional parameters. @@ -83,10 +87,34 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne = null * @param offset Offset in bytes for the ACL tensor data. Defaults to 0. * @return Pointer to the created ACL tensor. */ +template aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype, - size_t type_size, int64_t* ne, size_t* nb, - int64_t dims, aclFormat format = ACL_FORMAT_ND, - size_t offset = 0); + TYPE type_size, int64_t* ne, TYPE* nb, + int64_t dims, + aclFormat format = ACL_FORMAT_ND, + size_t offset = 0) { + int64_t tmp_ne[GGML_MAX_DIMS * 2]; + int64_t tmp_stride[GGML_MAX_DIMS * 2]; + + memcpy(tmp_ne, ne, dims * sizeof(int64_t)); + for (int i = 0; i < dims; i++) { + tmp_stride[i] = nb[i] / type_size; + } + + std::reverse(tmp_ne, tmp_ne + dims); + std::reverse(tmp_stride, tmp_stride + dims); + + int64_t acl_storage_len = 0; + for (int i = 0; i < dims; i++) { + acl_storage_len += (ne[i] - 1) * nb[i]; + } + + aclTensor* acl_tensor = + aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size, + format, &acl_storage_len, 1, data_ptr); + + return acl_tensor; +} /** * @brief Checks if tensors require broadcasting based on their shapes. diff --git a/ggml/src/ggml-cann/aclnn_ops.cpp b/ggml/src/ggml-cann/aclnn_ops.cpp index 556284888..171439132 100644 --- a/ggml/src/ggml-cann/aclnn_ops.cpp +++ b/ggml/src/ggml-cann/aclnn_ops.cpp @@ -910,6 +910,13 @@ void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ((ggml_tensor*)dst->extra)->ne); return; } + if (dst->type == GGML_TYPE_Q4_0) { + aclrtlaunch_ascendc_quantize_f16_to_q4_0( + 24, ctx.stream(), src->data, dst->data, + ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb, + ((ggml_tensor*)dst->extra)->ne); + return; + } if (dst->type == GGML_TYPE_F16) { if (ggml_are_same_shape(src, dst)) { cann_copy(ctx, acl_src, acl_dst); @@ -971,6 +978,13 @@ void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ((ggml_tensor*)dst->extra)->ne); return; } + if (dst->type == GGML_TYPE_Q4_0) { + aclrtlaunch_ascendc_quantize_f32_to_q4_0( + 24, ctx.stream(), src->data, dst->data, + ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb, + ((ggml_tensor*)dst->extra)->ne); + return; + } if (dst->type == GGML_TYPE_F32) { if (ggml_are_same_shape(src, dst)) { cann_copy(ctx, acl_src, acl_dst); @@ -2463,21 +2477,33 @@ static void ggml_cann_mat_mul_fp(ggml_backend_cann_context& ctx, * @param dst The destination tensor where the result of the matrix * multiplication will be stored. */ -static void ggml_cann_mul_mat_q8_0(ggml_backend_cann_context& ctx, - ggml_tensor* dst) { +static void ggml_cann_mul_mat_quant(ggml_backend_cann_context& ctx, + ggml_tensor* dst, + const enum ggml_type type) { ggml_tensor* src0 = dst->src[0]; // weight ggml_tensor* src1 = dst->src[1]; // input // The shape of the weight is NCHW. Matrix multiplication uses HW dims. HC // is regarded as batch. weight need transpose. int64_t weight_ne[] = {src0->ne[1], src0->ne[0]}; - size_t weight_elem_size = sizeof(uint8_t); - size_t weight_nb[] = {weight_elem_size * src0->ne[0], weight_elem_size}; + float weight_elem_size; + if (type == GGML_TYPE_Q4_0) { + weight_elem_size = float(sizeof(uint8_t)) / 2; + } + else if (type == GGML_TYPE_Q8_0) { + weight_elem_size = float(sizeof(uint8_t)); + } + else { + GGML_ABORT("Only support Q4_0 and Q8_0 MUL_MAT"); + } + float weight_nb[] = {weight_elem_size * src0->ne[0], weight_elem_size}; + // size of one matrix is element_size * height * width. size_t weight_stride = weight_elem_size * src0->ne[0] * src0->ne[1]; size_t weight_size = weight_stride * src0->ne[2] * src0->ne[3]; // scale stored at the end of weight. Also need transpose. + GGML_ASSERT(QK4_0 == QK8_0); int64_t scale_ne[] = {src0->ne[1], src0->ne[0] / QK8_0}; size_t scale_elem_size = sizeof(uint16_t); size_t scale_nb[] = {src0->ne[0] / QK8_0 * scale_elem_size, @@ -2541,8 +2567,9 @@ static void ggml_cann_mul_mat_q8_0(ggml_backend_cann_context& ctx, (char*)input_buffer + batch1 * input_stride, ACL_FLOAT16, input_elem_size, input_ne, input_nb, 2); aclTensor* acl_weight_tensor = ggml_cann_create_tensor( - (char*)src0->data + batch0 * weight_stride, ACL_INT8, - weight_elem_size, weight_ne, weight_nb, 2); + (char*)src0->data + batch0 * weight_stride, + ggml_cann_type_mapping(type), weight_elem_size, weight_ne, + weight_nb, 2); aclTensor* acl_scale_tensor = ggml_cann_create_tensor( scale_offset + batch0 * scale_stride, ACL_FLOAT16, scale_elem_size, scale_ne, scale_nb, 2); @@ -2596,11 +2623,9 @@ void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst) { case GGML_TYPE_F16: ggml_cann_mat_mul_fp(ctx, dst); break; - // case GGML_TYPE_Q4_0: - // ggml_cann_mul_mat_q4_0(ctx, dst); - // break; + case GGML_TYPE_Q4_0: case GGML_TYPE_Q8_0: - ggml_cann_mul_mat_q8_0(ctx, dst); + ggml_cann_mul_mat_quant(ctx, dst, type); break; default: GGML_ABORT("fatal error"); diff --git a/ggml/src/ggml-cann/kernels/CMakeLists.txt b/ggml/src/ggml-cann/kernels/CMakeLists.txt index f12a4d43f..5b4fef91b 100644 --- a/ggml/src/ggml-cann/kernels/CMakeLists.txt +++ b/ggml/src/ggml-cann/kernels/CMakeLists.txt @@ -9,6 +9,7 @@ file(GLOB SRC_FILES get_row_q8_0.cpp quantize_f32_q8_0.cpp quantize_f16_q8_0.cpp + quantize_float_to_q4_0.cpp dup.cpp ) @@ -29,4 +30,4 @@ ascendc_library(ascendc_kernels STATIC ${SRC_FILES} ) -#ascendc_compile_definitions(ascendc_kernels PRIVATE -DASCENDC_DUMP) +# ascendc_compile_definitions(ascendc_kernels PRIVATE -DASCENDC_DUMP) diff --git a/ggml/src/ggml-cann/kernels/ascendc_kernels.h b/ggml/src/ggml-cann/kernels/ascendc_kernels.h index bf8914751..7e153208c 100644 --- a/ggml/src/ggml-cann/kernels/ascendc_kernels.h +++ b/ggml/src/ggml-cann/kernels/ascendc_kernels.h @@ -8,6 +8,8 @@ #include "aclrtlaunch_ascendc_quantize_f32_q8_0.h" #include "aclrtlaunch_ascendc_quantize_f16_q8_0.h" +#include "aclrtlaunch_ascendc_quantize_f16_to_q4_0.h" +#include "aclrtlaunch_ascendc_quantize_f32_to_q4_0.h" #include "aclrtlaunch_ascendc_dup_by_rows_fp16.h" #include "aclrtlaunch_ascendc_dup_by_rows_fp32.h" diff --git a/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp b/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp new file mode 100644 index 000000000..f6deee3c5 --- /dev/null +++ b/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp @@ -0,0 +1,273 @@ +#include "kernel_operator.h" + +using namespace AscendC; + +#define BUFFER_NUM 2 +#define Group_Size 32 + +template +class QUANTIZE_FLOAT_TO_Q4_0 { + public: + __aicore__ inline QUANTIZE_FLOAT_TO_Q4_0() {} + __aicore__ inline void init(GM_ADDR input, GM_ADDR output, + int64_t *input_ne_ub, size_t *input_nb_ub, + int64_t *output_ne_ub) { + int64_t op_block_num = GetBlockNum(); + int64_t op_block_idx = GetBlockIdx(); + + // input stride of data elements + for (int i = 0; i < 4; i++) { + input_ne[i] = input_ne_ub[i]; + input_stride[i] = input_nb_ub[i] / input_nb_ub[0]; + output_ne[i] = output_ne_ub[i]; + } + + // output stride of data elements + output_stride[0] = 1; + for (int i = 1; i < 4; i++) { + output_stride[i] = output_stride[i - 1] * output_ne[i - 1]; + } + + // scale saved one by one after data:. [group1_scale, group2_scale, ...] + scale_ne = input_ne; + scale_stride[0] = 1; + scale_stride[1] = input_ne[0] / Group_Size; + for (int i = 2; i < 4; i++) { + scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1]; + } + + // split input tensor by rows. + uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3]; + dr = nr / op_block_num; + + uint64_t tails = nr % op_block_num; + if (op_block_idx < tails) { + dr += 1; + ir = dr * op_block_idx; + } else { + ir = dr * op_block_idx + tails; + } + + group_size_in_row = scale_stride[1]; + int64_t scale_offset = output_ne[0] * output_ne[1] * output_ne[2] * + output_ne[3] * sizeof(uint8_t) / 2; + + input_gm.SetGlobalBuffer((__gm__ SRC_T *)input); + output_gm.SetGlobalBuffer((__gm__ int8_t *)output); + scale_gm.SetGlobalBuffer((__gm__ half *)(output + scale_offset + ir * + group_size_in_row * + sizeof(half))); + + pipe.InitBuffer(input_queue, BUFFER_NUM, Group_Size * sizeof(SRC_T)); + pipe.InitBuffer(output_queue, BUFFER_NUM, + Group_Size * sizeof(int8_t) / 2); + pipe.InitBuffer(cast_queue , BUFFER_NUM, Group_Size * sizeof(float)); + pipe.InitBuffer(work_queue, BUFFER_NUM, Group_Size*sizeof(float)); + pipe.InitBuffer(max_queue, BUFFER_NUM, Group_Size*sizeof(float)); + pipe.InitBuffer(min_queue, BUFFER_NUM, Group_Size*sizeof(float)); + pipe.InitBuffer(scale_queue, BUFFER_NUM, 16*sizeof(half)); + pipe.InitBuffer(int8_queue, BUFFER_NUM, Group_Size * sizeof(int8_t)); + pipe.InitBuffer(half_queue, BUFFER_NUM, Group_Size * sizeof(half)); + } + + __aicore__ inline void copy_in(uint32_t offset) { + LocalTensor input_local = input_queue.AllocTensor(); + DataCopy(input_local, input_gm[offset], Group_Size); + input_queue.EnQue(input_local); + } + + __aicore__ inline void copy_out(uint32_t offset) { + // reinterpretcast Group_Size(32) * int4b_t to Group_Size / 2 * int8_t, + // and using DataCopyPad to avoid 32 bits align. + LocalTensor output_local = output_queue.DeQue(); + LocalTensor output_int8_local = + output_local.ReinterpretCast(); + + DataCopyExtParams dataCopyParams; + dataCopyParams.blockCount = 1; + dataCopyParams.blockLen = Group_Size / 2 * sizeof(int8_t); + DataCopyPad(output_gm[offset], output_int8_local, dataCopyParams); + + output_queue.FreeTensor(output_local); + } + + __aicore__ inline void input_to_cast(LocalTensor cast_local, + LocalTensor input_local) { + DataCopy(cast_local, input_local, Group_Size); + } + + __aicore__ inline void input_to_cast(LocalTensor cast_local, + LocalTensor input_local) { + Cast(cast_local, input_local, RoundMode::CAST_NONE, Group_Size); + } + + __aicore__ inline half calculate_group(int64_t row, int64_t group) { + const int64_t i3 = row / (input_ne[1] * input_ne[2]); + const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1]; + const int64_t i1 = + row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1]; + + const int64_t input_offset = i1 * input_stride[1] + + i2 * input_stride[2] + + i3 * input_stride[3] + Group_Size * group; + + // output_offset is stride for output_gm which datatype is int8_t and + // divided by 2 is needed for int4b_t. + const int64_t output_offset = (i1 * output_stride[1] + + i2 * output_stride[2] + + i3 * output_stride[3] + + Group_Size * group) / 2; + copy_in(input_offset); + + LocalTensor input_local = input_queue.DeQue(); + LocalTensor output_local = output_queue.AllocTensor(); + LocalTensor cast_local = cast_queue.AllocTensor(); + LocalTensor work_local = work_queue.AllocTensor(); + LocalTensor max_local = max_queue.AllocTensor(); + LocalTensor min_local = min_queue.AllocTensor(); + LocalTensor int8_local = int8_queue.AllocTensor(); + LocalTensor half_local = half_queue.AllocTensor(); + + input_to_cast(cast_local, input_local); + + ReduceMax(max_local, cast_local, work_local, Group_Size); + ReduceMin(min_local, cast_local, work_local, Group_Size); + const float max_value = max_local.GetValue(0); + const float min_value = min_local.GetValue(0); + float d = max_value; + if (min_value < 0 && (-1 * min_value) > max_value) { + d = min_value; + } + + d = d / (-8); + if (d != 0) { + Muls(cast_local, cast_local, 1.0f / d, Group_Size); + } + + // range: [-8,8] -> [0.5,16.5] -> [0,16] -> [0,15] -> [-8,7] + float scalar = 8.5f; + Adds(cast_local, cast_local, scalar, Group_Size); + Cast(cast_local, cast_local, RoundMode::CAST_FLOOR, Group_Size); + scalar = 15.0f; + Mins(cast_local, cast_local, scalar, Group_Size); + scalar = -8.0f; + Adds(cast_local, cast_local, scalar, Group_Size); + + // float->half->int4b + Cast(half_local, cast_local, RoundMode::CAST_NONE, Group_Size); + Cast(output_local, half_local, RoundMode::CAST_NONE, Group_Size); + + output_queue.EnQue(output_local); + copy_out(output_offset); + + input_queue.FreeTensor(input_local); + work_queue.FreeTensor(work_local); + max_queue.FreeTensor(max_local); + min_queue.FreeTensor(min_local); + int8_queue.FreeTensor(int8_local); + half_queue.FreeTensor(half_local); + cast_queue.FreeTensor(cast_local); + return (half)d; + } + + __aicore__ inline void calculate() { + LocalTensor scale_local = scale_queue.AllocTensor(); + uint32_t scale_local_offset = 0; + uint32_t scale_global_offset = 0; + for (int64_t i = ir; i < ir + dr; i++) { + for (int64_t j = 0; j < group_size_in_row; j++) { + half scale = calculate_group(i, j); + scale_local.SetValue(scale_local_offset++, scale); + if (scale_local_offset == 16) { + scale_local_offset = 0; + // TODO: OPTIMIZE ME + pipe_barrier(PIPE_ALL); + DataCopy(scale_gm[scale_global_offset], scale_local, 16); + pipe_barrier(PIPE_ALL); + scale_global_offset += 16; + } + } + } + + if (scale_local_offset != 0) { + pipe_barrier(PIPE_ALL); + DataCopyExtParams dataCopyParams; + dataCopyParams.blockCount = 1; + dataCopyParams.blockLen = scale_local_offset * sizeof(half); + DataCopyPad(scale_gm[scale_global_offset], scale_local, + dataCopyParams); + pipe_barrier(PIPE_ALL); + } + scale_queue.FreeTensor(scale_local); + } + + private: + int64_t input_ne[4]; + size_t input_stride[4]; + + int64_t *scale_ne; + size_t scale_stride[4]; + + int64_t output_ne[4]; + size_t output_stride[4]; + + int64_t group_size_in_row; + + int64_t ir; + int64_t dr; + + TPipe pipe; + GlobalTensor input_gm; + GlobalTensor scale_gm; + GlobalTensor output_gm; + TQue input_queue; + TQue output_queue; + TQue work_queue; + TQue max_queue; + TQue min_queue; + TQue scale_queue; + TQue cast_queue; + TQue int8_queue; + TQue half_queue; +}; + +template +__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) { + auto gm_ptr = (__gm__ uint8_t *)gm; + auto ub_ptr = (uint8_t *)(ub); + for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) { + *ub_ptr = *gm_ptr; + } +} + +extern "C" __global__ __aicore__ void ascendc_quantize_f16_to_q4_0( + GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm, + GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) { + int64_t input_ne_ub[4]; + size_t input_nb_ub[4]; + int64_t output_ne_ub[4]; + + copy_to_ub(input_ne_gm, input_ne_ub, 32); + copy_to_ub(input_nb_gm, input_nb_ub, 32); + copy_to_ub(output_ne_gm, output_ne_ub, 32); + + QUANTIZE_FLOAT_TO_Q4_0 op; + op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub); + op.calculate(); +} + +extern "C" __global__ __aicore__ void ascendc_quantize_f32_to_q4_0( + GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm, + GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) { + int64_t input_ne_ub[4]; + size_t input_nb_ub[4]; + int64_t output_ne_ub[4]; + + copy_to_ub(input_ne_gm, input_ne_ub, 32); + copy_to_ub(input_nb_gm, input_nb_ub, 32); + copy_to_ub(output_ne_gm, output_ne_ub, 32); + + QUANTIZE_FLOAT_TO_Q4_0 op; + op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub); + op.calculate(); +} From 655858ace0cf2720e56eb01f84ad05e0c94ada3c Mon Sep 17 00:00:00 2001 From: Daniel Bevenius Date: Mon, 29 Jul 2024 15:06:06 +0200 Subject: [PATCH 04/16] ggml : move c parameter comment to ggml_rope_ext (ggml/901) This commit moves the comment for the c parameter from ggml_rope to ggml_rope_ext. The comment is currently incorrect as ggml_rope does not have a c parameter (freq_factors tensor). Signed-off-by: Daniel Bevenius --- ggml/include/ggml.h | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h index d8d3dceef..a9e88e592 100644 --- a/ggml/include/ggml.h +++ b/ggml/include/ggml.h @@ -1456,7 +1456,6 @@ extern "C" { // if mode & 2 == 1, GPT-NeoX style // // b is an int32 vector with size a->ne[2], it contains the positions - // c is freq factors (e.g. phi3-128k), (optional) GGML_API struct ggml_tensor * ggml_rope( struct ggml_context * ctx, struct ggml_tensor * a, @@ -1473,6 +1472,7 @@ extern "C" { int mode); // custom RoPE + // c is freq factors (e.g. phi3-128k), (optional) GGML_API struct ggml_tensor * ggml_rope_ext( struct ggml_context * ctx, struct ggml_tensor * a, From a3738b2fa7c60ef2c4592435d1aa7fb8f1f69c3e Mon Sep 17 00:00:00 2001 From: 0cc4m Date: Sun, 4 Aug 2024 17:28:08 +0200 Subject: [PATCH 05/16] vulkan : implement Stable Diffusion operators (ggml/904) * Fix Vulkan repeat op * Implement Vulkan concat op * Delete old Vulkan shader generator * Implement Vulkan im2col op * Implement Vulkan unary gelu_quick op * Implement Vulkan group_norm op * Implement Vulkan timestep_embedding op * Implement Vulkan upscale op * Fix Vulkan vk_context tensor extra index issue * Fix Vulkan matmul shader parameter bug * Properly fix Vulkan matmul shader parameter bug * Add Vulkan ADD f16 + f32 -> f16 operator support * Implement Vulkan tanh op * Fix Vulkan group count too large Validation error on non-Nvidia GPUs * Throw error when too much memory is requested * Fix another Vulkan group count too large Validation error on non-Nvidia GPUs * Fix matmul MMQ condition * Implement Vulkan pad op * Fix Vulkan crash when tensor is used multiple times in a compute graph * Add Vulkan CONCAT f16 + f16 -> f16 op * Add Vulkan LEAKY_RELU op --- ggml/src/ggml-vulkan.cpp | 840 +++++++++++++----- ggml/src/vulkan-shaders/add.comp | 6 +- ggml/src/vulkan-shaders/clamp.comp | 8 +- ggml/src/vulkan-shaders/concat.comp | 35 + ggml/src/vulkan-shaders/copy.comp | 8 +- ggml/src/vulkan-shaders/div.comp | 6 +- ggml/src/vulkan-shaders/gelu.comp | 2 +- ggml/src/vulkan-shaders/gelu_quick.comp | 23 + .../vulkan-shaders/generic_binary_head.comp | 6 +- .../vulkan-shaders/generic_unary_head.comp | 4 + ggml/src/vulkan-shaders/group_norm.comp | 66 ++ ggml/src/vulkan-shaders/im2col.comp | 57 ++ ggml/src/vulkan-shaders/leaky_relu.comp | 22 + ggml/src/vulkan-shaders/mul.comp | 6 +- ggml/src/vulkan-shaders/norm.comp | 2 +- ggml/src/vulkan-shaders/pad.comp | 26 + ggml/src/vulkan-shaders/relu.comp | 2 +- ggml/src/vulkan-shaders/rms_norm.comp | 2 +- ggml/src/vulkan-shaders/scale.comp | 6 +- ggml/src/vulkan-shaders/silu.comp | 2 +- ggml/src/vulkan-shaders/soft_max.comp | 2 +- ggml/src/vulkan-shaders/square.comp | 8 +- ggml/src/vulkan-shaders/sum_rows.comp | 2 +- ggml/src/vulkan-shaders/tanh.comp | 21 + .../vulkan-shaders/timestep_embedding.comp | 41 + ggml/src/vulkan-shaders/types.comp | 4 +- ggml/src/vulkan-shaders/upscale.comp | 36 + .../src/vulkan-shaders/vulkan-shaders-gen.cpp | 82 +- 28 files changed, 1032 insertions(+), 293 deletions(-) create mode 100644 ggml/src/vulkan-shaders/concat.comp create mode 100644 ggml/src/vulkan-shaders/gelu_quick.comp create mode 100644 ggml/src/vulkan-shaders/group_norm.comp create mode 100644 ggml/src/vulkan-shaders/im2col.comp create mode 100644 ggml/src/vulkan-shaders/leaky_relu.comp create mode 100644 ggml/src/vulkan-shaders/pad.comp create mode 100644 ggml/src/vulkan-shaders/tanh.comp create mode 100644 ggml/src/vulkan-shaders/timestep_embedding.comp create mode 100644 ggml/src/vulkan-shaders/upscale.comp diff --git a/ggml/src/ggml-vulkan.cpp b/ggml/src/ggml-vulkan.cpp index fa68360b9..d7fea78d0 100644 --- a/ggml/src/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan.cpp @@ -177,24 +177,33 @@ struct vk_device_struct { vk_pipeline pipeline_mul_mat_vec_nc_f16_f32; vk_pipeline pipeline_get_rows[GGML_TYPE_COUNT]; vk_pipeline pipeline_get_rows_f32[GGML_TYPE_COUNT]; + vk_pipeline pipeline_add_f32, pipeline_add_f16_f32_f16; vk_pipeline pipeline_mul_f32; vk_pipeline pipeline_div_f32; - vk_pipeline pipeline_add_f32; + vk_pipeline pipeline_concat_f32, pipeline_concat_f16, pipeline_concat_i32; + vk_pipeline pipeline_upscale_f32; vk_pipeline pipeline_scale_f32; vk_pipeline pipeline_sqr_f32; vk_pipeline pipeline_clamp_f32; + vk_pipeline pipeline_pad_f32; vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16; vk_pipeline pipeline_norm_f32; + vk_pipeline pipeline_group_norm_f32; vk_pipeline pipeline_rms_norm_f32; vk_pipeline pipeline_gelu_f32; + vk_pipeline pipeline_gelu_quick_f32; vk_pipeline pipeline_silu_f32; vk_pipeline pipeline_relu_f32; + vk_pipeline pipeline_leaky_relu_f32; + vk_pipeline pipeline_tanh_f32; vk_pipeline pipeline_diag_mask_inf_f32; vk_pipeline pipeline_soft_max_f32, pipeline_soft_max_f32_f16; vk_pipeline pipeline_rope_norm_f32, pipeline_rope_norm_f16; vk_pipeline pipeline_rope_neox_f32, pipeline_rope_neox_f16; vk_pipeline pipeline_argsort_f32; vk_pipeline pipeline_sum_rows_f32; + vk_pipeline pipeline_im2col_f32, pipeline_im2col_f32_f16; + vk_pipeline pipeline_timestep_embedding_f32; std::vector pipelines; @@ -320,7 +329,7 @@ struct vk_op_binary_push_constants { uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13; uint32_t nb10; uint32_t nb11; uint32_t nb12; uint32_t nb13; uint32_t ne20; uint32_t ne21; uint32_t ne22; uint32_t ne23; uint32_t nb20; uint32_t nb21; uint32_t nb22; uint32_t nb23; uint32_t d_offset; - float param1; float param2; + float param1; float param2; int32_t param3; }; struct vk_op_diag_mask_push_constants { @@ -358,6 +367,25 @@ struct vk_op_argsort_push_constants { int32_t order; }; +struct vk_op_im2col_push_constants { + uint32_t batch_offset; uint32_t offset_delta; + uint32_t IC; + uint32_t IW; uint32_t IH; + uint32_t OW; uint32_t OH; + uint32_t KW; uint32_t KH; + uint32_t pelements; + uint32_t CHW; + int32_t s0; int32_t s1; + int32_t p0; int32_t p1; + int32_t d0; int32_t d1; +}; + +struct vk_op_timestep_embedding_push_constants { + uint32_t nb1; + uint32_t dim; + uint32_t max_period; +}; + // Allow pre-recording command buffers struct vk_staging_memcpy { vk_staging_memcpy(void * _dst, const void * _src, size_t _n) : dst(_dst), src(_src), n(_n) {} @@ -367,28 +395,32 @@ struct vk_staging_memcpy { size_t n; }; -struct vk_context { - size_t idx; +struct vk_op_upscale_push_constants { + uint32_t ne; uint32_t d_offset; + uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03; + uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13; + float sf0; float sf1; float sf2; float sf3; +}; +struct vk_context_struct { vk_submission * s; std::vector seqs; - ggml_tensor * exit_tensor; + int exit_tensor_idx; std::vector in_memcpys; std::vector out_memcpys; vk_queue * q; }; +typedef std::shared_ptr vk_context; +typedef std::weak_ptr vk_context_ref; struct ggml_tensor_extra_gpu { - size_t ctx_idx; - vk_buffer_ref buffer_gpu; uint64_t offset; void reset() { - ctx_idx = 0; buffer_gpu.reset(); offset = 0; } @@ -459,8 +491,10 @@ struct ggml_backend_vk_context { vk_buffer buffer_pool[MAX_VK_BUFFERS]; - vk_context * compute_ctx; - vk_context * transfer_ctx; + vk_context_ref compute_ctx; + vk_context_ref transfer_ctx; + + std::vector tensor_ctxs; }; #ifdef GGML_VULKAN_MEMORY_DEBUG @@ -510,12 +544,12 @@ static vk_instance_t vk_instance; static size_t vk_skip_checks; static size_t vk_output_tensor; -static void ggml_vk_print_tensor(ggml_backend * ctx, const ggml_tensor * tensor, const char * name); -static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * tensor); -static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_tensor * tensor); +static void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name); +static void ggml_vk_check_results_0(ggml_tensor * tensor); +static void ggml_vk_check_results_1(ggml_tensor * tensor); #endif -typedef void (*ggml_vk_func_t)(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +typedef void (*ggml_vk_func_t)(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); GGML_CALL static void ggml_backend_vk_free(ggml_backend_t backend); @@ -708,11 +742,11 @@ static vk_submission ggml_vk_create_submission(vk_device& device, vk_queue& q, s return s; } -static void ggml_vk_submit(vk_context * ctx, vk::Fence fence) { - VK_LOG_DEBUG("ggml_vk_submit(" << ctx->seqs.size() << ", " << fence << ")"); +static void ggml_vk_submit(vk_context& ctx, vk::Fence fence) { if (ctx->seqs.empty()) { return; } + VK_LOG_DEBUG("ggml_vk_submit(" << ctx << ", " << fence << ")"); std::vector> tl_wait_vals; std::vector> tl_signal_vals; @@ -844,21 +878,17 @@ static void ggml_vk_create_queue(vk_device& device, vk_queue& q, uint32_t queue_ q.stage_flags = stage_flags; } -static vk_context * ggml_vk_create_context(ggml_backend_vk_context * ctx, vk_queue& q) { - VK_LOG_DEBUG("ggml_vk_create_context()"); - ctx->gc.contexts.emplace_back(); - vk_context * result = &ctx->gc.contexts[ctx->gc.contexts.size() - 1]; - memset((void *) result, 0, sizeof(vk_context)); - result->idx = ctx->gc.contexts.size() - 1; +static vk_context ggml_vk_create_context(ggml_backend_vk_context * ctx, vk_queue& q) { + vk_context result = std::make_shared(); + VK_LOG_DEBUG("ggml_vk_create_context(" << result << ")"); + ctx->gc.contexts.emplace_back(result); result->q = &q; return result; } -static vk_context * ggml_vk_create_temporary_context(vk_queue& q) { - VK_LOG_DEBUG("ggml_vk_create_temporary_context()"); - vk_context * result = new vk_context; - memset((void *) result, 0, sizeof(vk_context)); - result->idx = 0; +static vk_context ggml_vk_create_temporary_context(vk_queue& q) { + vk_context result = std::make_shared(); + VK_LOG_DEBUG("ggml_vk_create_temporary_context(" << result << ")"); result->q = &q; return result; } @@ -915,6 +945,10 @@ static uint32_t find_properties(const vk::PhysicalDeviceMemoryProperties* mem_pr static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, vk::MemoryPropertyFlags req_flags, vk::MemoryPropertyFlags fallback_flags = vk::MemoryPropertyFlags(0)) { VK_LOG_DEBUG("ggml_vk_create_buffer(" << device->name << ", " << size << ", " << to_string(req_flags) << ", " << to_string(fallback_flags) << ")"); + if (size > device->max_memory_allocation_size) { + throw vk::OutOfDeviceMemoryError("Requested buffer size exceeds device memory allocation limit"); + } + std::lock_guard guard(device->mutex); vk_buffer buf = std::make_shared(); @@ -1027,7 +1061,7 @@ static vk_subbuffer ggml_vk_subbuffer(vk_buffer& buf) { return { buf, 0, VK_WHOLE_SIZE }; } -static void ggml_vk_sync_buffers(vk_context * ctx) { +static void ggml_vk_sync_buffers(vk_context& ctx) { VK_LOG_DEBUG("ggml_vk_sync_buffers()"); const std::vector mem_barriers{ { { vk::AccessFlagBits::eMemoryRead | vk::AccessFlagBits::eMemoryWrite }, { vk::AccessFlagBits::eMemoryRead | vk::AccessFlagBits::eMemoryWrite } } }; @@ -1041,7 +1075,7 @@ static void ggml_vk_sync_buffers(vk_context * ctx) { ); } -static void ggml_vk_wait_events(vk_context * ctx, std::vector&& events) { +static void ggml_vk_wait_events(vk_context& ctx, std::vector&& events) { VK_LOG_DEBUG("ggml_vk_wait_events()"); if (events.empty()) { return; @@ -1598,6 +1632,7 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_nc_f16_f32, "mul_mat_vec_nc_f16_f32", mul_mat_vec_nc_f16_f32_len, mul_mat_vec_nc_f16_f32_data, "main", 3, 7 * sizeof(uint32_t), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_norm_f32, "norm_f32", norm_f32_len, norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_group_norm_f32, "group_norm_f32", group_norm_f32_len, group_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_rms_norm_f32, "rms_norm_f32", rms_norm_f32_len, rms_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f32, "cpy_f32_f32", cpy_f32_f32_len, cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); @@ -1605,20 +1640,31 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_cpy_f16_f16, "cpy_f16_f16", cpy_f16_f16_len, cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_add_f32, "add_f32", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_add_f16_f32_f16, "add_f16_f32_f16", add_f16_f32_f16_len, add_f16_f32_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_mul_f32, "mul_f32", mul_f32_len, mul_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1); - ggml_vk_create_pipeline(device, device->pipeline_div_f32, "div_f32", div_f32_len, div_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_concat_f32, "concat_f32", concat_f32_len, concat_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_concat_f16, "concat_f16", concat_f16_len, concat_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_concat_i32, "concat_i32", concat_i32_len, concat_i32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1); + + ggml_vk_create_pipeline(device, device->pipeline_upscale_f32, "upscale_f32", upscale_f32_len, upscale_f32_data, "main", 2, sizeof(vk_op_upscale_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_scale_f32, "scale_f32", scale_f32_len, scale_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_sqr_f32, "sqr_f32", sqr_f32_len, sqr_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_clamp_f32, "clamp_f32", clamp_f32_len, clamp_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_pad_f32, "pad_f32", pad_f32_len, pad_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_gelu_f32, "gelu_f32", gelu_f32_len, gelu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_gelu_quick_f32, "gelu_quick_f32", gelu_quick_f32_len, gelu_quick_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_silu_f32, "silu_f32", silu_f32_len, silu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_relu_f32, "relu_f32", relu_f32_len, relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_leaky_relu_f32, "leaky_relu_f32", leaky_relu_f32_len, leaky_relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_tanh_f32, "tanh_f32", tanh_f32_len, tanh_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {512, 1, 1}, {}, 1); @@ -1634,6 +1680,11 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_argsort_f32, "argsort_f32", argsort_f32_len, argsort_f32_data, "main", 2, sizeof(vk_op_argsort_push_constants), {1024, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_sum_rows_f32, "sum_rows_f32", sum_rows_f32_len, sum_rows_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, { device->subgroup_size }, 1); + + ggml_vk_create_pipeline(device, device->pipeline_im2col_f32, "im2col_f32", im2col_f32_len, im2col_f32_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_len, im2col_f32_f16_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1); + + ggml_vk_create_pipeline(device, device->pipeline_timestep_embedding_f32, "timestep_embedding_f32", timestep_embedding_f32_len, timestep_embedding_f32_data, "main", 2, sizeof(vk_op_timestep_embedding_push_constants), {256, 1, 1}, {}, 1); } static vk_device ggml_vk_get_device(size_t idx) { @@ -2077,9 +2128,6 @@ static void ggml_vk_init(ggml_backend_vk_context * ctx, size_t idx) { ctx->staging_size = 0; ctx->staging_offset = 0; - ctx->compute_ctx = nullptr; - ctx->transfer_ctx = nullptr; - #ifdef GGML_VULKAN_CHECK_RESULTS const char* skip_checks = getenv("GGML_VULKAN_SKIP_CHECKS"); vk_skip_checks = (skip_checks == NULL ? 0 : atoi(skip_checks)); @@ -2112,7 +2160,7 @@ static vk_pipeline ggml_vk_get_to_fp16(ggml_backend_vk_context * ctx, ggml_type } static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_pipeline(ggml_backend_vk_context * ctx, ggml_type src0_type, ggml_type src1_type) { - VK_LOG_DEBUG("ggml_vk_get_mul_mat_mat_pipeline()"); + VK_LOG_DEBUG("ggml_vk_get_mul_mat_mat_pipeline(" << ggml_type_name(src0_type) << ", " << ggml_type_name(src1_type) << ")"); if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) { return ctx->device->pipeline_matmul_f32; } @@ -2126,7 +2174,9 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_pipeline(ggml_backend_vk_conte return ctx->device->pipeline_matmul_f16; } - GGML_ASSERT(src1_type == GGML_TYPE_F32); + if (src1_type != GGML_TYPE_F32) { + return nullptr; + } switch (src0_type) { case GGML_TYPE_Q4_0: @@ -2370,7 +2420,7 @@ static vk_submission ggml_vk_begin_submission(vk_device& device, vk_queue& q, bo return s; } -static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context * ctx, vk_context * subctx, vk_pipeline& pipeline, std::vector&& buffers, size_t push_constant_size, const void* push_constants, std::array elements) { +static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context * ctx, vk_context& subctx, vk_pipeline& pipeline, std::vector&& buffers, size_t push_constant_size, const void* push_constants, std::array elements) { const uint32_t wg0 = CEIL_DIV(elements[0], pipeline->wg_denoms[0]); const uint32_t wg1 = CEIL_DIV(elements[1], pipeline->wg_denoms[1]); const uint32_t wg2 = CEIL_DIV(elements[2], pipeline->wg_denoms[2]); @@ -2410,7 +2460,7 @@ static void ggml_vk_end_submission(vk_submission& s, std::vector w s.signal_semaphores = std::move(signal_semaphores); } -static void ggml_vk_ctx_end(vk_context * ctx) { +static void ggml_vk_ctx_end(vk_context& ctx) { VK_LOG_DEBUG("ggml_vk_ctx_end(" << ctx << ", " << ctx->seqs.size() << ")"); if (ctx->s == nullptr) { return; @@ -2420,7 +2470,7 @@ static void ggml_vk_ctx_end(vk_context * ctx) { ctx->s = nullptr; } -static void ggml_vk_ctx_begin(vk_device& device, vk_context * subctx) { +static void ggml_vk_ctx_begin(vk_device& device, vk_context& subctx) { VK_LOG_DEBUG("ggml_vk_ctx_begin(" << device->name << ")"); if (subctx->s != nullptr) { ggml_vk_ctx_end(subctx); @@ -2453,7 +2503,7 @@ static void ggml_vk_ensure_sync_staging_buffer(vk_device& device, size_t size) { } } -static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_context * subctx, vk_buffer& dst, size_t offset, const ggml_tensor * tensor, bool sync_staging = false) { +static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_context& subctx, vk_buffer& dst, size_t offset, const ggml_tensor * tensor, bool sync_staging = false) { VK_LOG_DEBUG("ggml_vk_buffer_write_nc_async(" << tensor << ")"); GGML_ASSERT(!ggml_is_contiguous(tensor)); // Buffer is already mapped @@ -2558,7 +2608,7 @@ static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_cont } } -static void ggml_vk_buffer_write_2d_async(vk_context * subctx, vk_buffer& dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height, vk_buffer staging_buffer, size_t staging_offset, bool sync_staging = false) { +static void ggml_vk_buffer_write_2d_async(vk_context subctx, vk_buffer& dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height, vk_buffer staging_buffer, size_t staging_offset, bool sync_staging = false) { VK_LOG_DEBUG("ggml_vk_buffer_write_2d_async(" << width << ", " << height << ")"); // Buffer is already mapped if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) { @@ -2623,7 +2673,7 @@ static void ggml_vk_buffer_write_2d_async(vk_context * subctx, vk_buffer& dst, s } } -static void ggml_vk_buffer_write_async(vk_context * subctx, vk_buffer& dst, size_t offset, const void * src, size_t size, vk_buffer staging_buffer, size_t staging_offset, bool sync_staging = false) { +static void ggml_vk_buffer_write_async(vk_context subctx, vk_buffer& dst, size_t offset, const void * src, size_t size, vk_buffer staging_buffer, size_t staging_offset, bool sync_staging = false) { VK_LOG_DEBUG("ggml_vk_buffer_write_async(" << size << ")"); return ggml_vk_buffer_write_2d_async(subctx, dst, offset, src, size, size, 1, staging_buffer, staging_offset, sync_staging); } @@ -2638,7 +2688,7 @@ static void ggml_vk_buffer_write_2d(vk_buffer& dst, size_t offset, const void * memcpy((uint8_t *)dst->ptr + offset + i * width, (const uint8_t *) src + i * spitch, width); } } else { - vk_context * subctx = ggml_vk_create_temporary_context(dst->device->transfer_queue); + vk_context subctx = ggml_vk_create_temporary_context(dst->device->transfer_queue); ggml_vk_ctx_begin(dst->device, subctx); ggml_vk_buffer_write_2d_async(subctx, dst, offset, src, spitch, width, height, nullptr, 0, true); ggml_vk_ctx_end(subctx); @@ -2650,8 +2700,6 @@ static void ggml_vk_buffer_write_2d(vk_buffer& dst, size_t offset, const void * ggml_vk_submit(subctx, dst->device->fence); VK_CHECK(dst->device->device.waitForFences({ dst->device->fence }, true, UINT64_MAX), "vk_buffer_write_2d waitForFences"); dst->device->device.resetFences({ dst->device->fence }); - - delete subctx; } } @@ -2660,12 +2708,14 @@ static void ggml_vk_buffer_write(vk_buffer& dst, size_t offset, const void * src ggml_vk_buffer_write_2d(dst, offset, src, 0, size, 1); } -static void ggml_vk_buffer_read_2d_async(vk_context * subctx, vk_buffer& src, size_t offset, void * dst, size_t spitch, size_t dpitch, size_t width, size_t height, vk_buffer staging_buffer, size_t staging_offset, bool sync_staging = false) { +static void ggml_vk_buffer_read_2d_async(vk_context subctx, vk_buffer& src, size_t offset, void * dst, size_t spitch, size_t dpitch, size_t width, size_t height, vk_buffer staging_buffer, size_t staging_offset, bool sync_staging = false) { VK_LOG_DEBUG("ggml_vk_buffer_read_2d_async(offset=" << offset << ", width=" << width << ", height=" << height << ")"); GGML_ASSERT(width > 0); GGML_ASSERT(height > 0); GGML_ASSERT(src != nullptr); + // TODO: staging_offset is not used + // Check if dst is pinned memory vk_buffer buf = nullptr; size_t buf_offset; @@ -2714,18 +2764,18 @@ static void ggml_vk_buffer_read_2d_async(vk_context * subctx, vk_buffer& src, si deferred_memcpy(dst, staging_buffer->ptr, copy_size, &subctx->out_memcpys); } -static void ggml_vk_buffer_read_async(vk_context * subctx, vk_buffer& src, size_t offset, void * dst, size_t size, vk_buffer staging_buffer, size_t staging_offset, bool sync_staging = false) { +static void ggml_vk_buffer_read_async(vk_context subctx, vk_buffer& src, size_t offset, void * dst, size_t size, vk_buffer staging_buffer, size_t staging_offset, bool sync_staging = false) { return ggml_vk_buffer_read_2d_async(subctx, src, offset, dst, size, size, size, 1, staging_buffer, staging_offset, sync_staging); } static void ggml_vk_buffer_read(vk_buffer& src, size_t offset, void * dst, size_t size) { - VK_LOG_DEBUG("ggml_vk_buffer_read(" << offset << ", " << size << ")"); + VK_LOG_DEBUG("ggml_vk_buffer_read(" << src->buffer << ", " << offset << ", " << size << ")"); if(src->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) { GGML_ASSERT(src->memory_property_flags & vk::MemoryPropertyFlagBits::eHostCoherent); memcpy(dst, (uint8_t *) src->ptr + offset, size); } else { - vk_context * subctx = ggml_vk_create_temporary_context(src->device->transfer_queue); + vk_context subctx = ggml_vk_create_temporary_context(src->device->transfer_queue); ggml_vk_ctx_begin(src->device, subctx); ggml_vk_buffer_read_async(subctx, src, offset, dst, size, nullptr, 0, true); ggml_vk_ctx_end(subctx); @@ -2737,12 +2787,10 @@ static void ggml_vk_buffer_read(vk_buffer& src, size_t offset, void * dst, size_ for (auto& cpy : subctx->out_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } - - delete subctx; } } -static void ggml_vk_buffer_copy_async(vk_context * ctx, vk_buffer& dst, size_t dst_offset, vk_buffer& src, size_t src_offset, size_t size) { +static void ggml_vk_buffer_copy_async(vk_context& ctx, vk_buffer& dst, size_t dst_offset, vk_buffer& src, size_t src_offset, size_t size) { VK_LOG_DEBUG("ggml_vk_buffer_copy_async(" << size << ")"); // Make sure both buffers are on same device GGML_ASSERT(src->device == dst->device); @@ -2756,15 +2804,13 @@ static void ggml_vk_buffer_copy(vk_buffer& dst, size_t dst_offset, vk_buffer& sr if (src->device == dst->device) { VK_LOG_DEBUG("ggml_vk_buffer_copy(SINGLE_DEVICE, " << size << ")"); // Copy within the device - vk_context * subctx = ggml_vk_create_temporary_context(src->device->transfer_queue); + vk_context subctx = ggml_vk_create_temporary_context(src->device->transfer_queue); ggml_vk_ctx_begin(src->device, subctx); ggml_vk_buffer_copy_async(subctx, dst, dst_offset, src, src_offset, size); ggml_vk_ctx_end(subctx); ggml_vk_submit(subctx, src->device->fence); VK_CHECK(src->device->device.waitForFences({ src->device->fence }, true, UINT64_MAX), "vk_buffer_copy waitForFences"); src->device->device.resetFences({ src->device->fence }); - - delete subctx; } else { VK_LOG_DEBUG("ggml_vk_buffer_copy(MULTI_DEVICE, " << size << ")"); // Copy device to device @@ -2783,7 +2829,7 @@ static void ggml_vk_buffer_copy(vk_buffer& dst, size_t dst_offset, vk_buffer& sr static void ggml_vk_buffer_memset(vk_buffer& dst, size_t offset, uint32_t c, size_t size) { VK_LOG_DEBUG("ggml_vk_buffer_memset(" << offset << ", " << c << ", " << size << ")"); - vk_context * subctx = ggml_vk_create_temporary_context(dst->device->transfer_queue); + vk_context subctx = ggml_vk_create_temporary_context(dst->device->transfer_queue); ggml_vk_ctx_begin(dst->device, subctx); subctx->s->buffer.fillBuffer(dst->buffer, offset, size, c); ggml_vk_ctx_end(subctx); @@ -2791,8 +2837,6 @@ static void ggml_vk_buffer_memset(vk_buffer& dst, size_t offset, uint32_t c, siz ggml_vk_submit(subctx, dst->device->fence); VK_CHECK(dst->device->device.waitForFences({ dst->device->fence }, true, UINT64_MAX), "vk_memset waitForFences"); dst->device->device.resetFences({ dst->device->fence }); - - delete subctx; } static uint32_t ggml_vk_guess_split_k(int m, int n, int k) { @@ -2855,7 +2899,7 @@ static uint32_t ggml_vk_guess_matmul_pipeline_align(ggml_backend_vk_context * ct } static void ggml_vk_matmul( - ggml_backend_vk_context * ctx, vk_context * subctx, vk_pipeline& pipeline, + ggml_backend_vk_context * ctx, vk_context& subctx, vk_pipeline& pipeline, vk_subbuffer&& a, vk_subbuffer&& b, vk_subbuffer&& d, vk_subbuffer&& split_k_buffer, uint32_t m, uint32_t n, uint32_t k, uint32_t stride_a, uint32_t stride_b, uint32_t stride_d, uint32_t batch_stride_a, uint32_t batch_stride_b, uint32_t batch_stride_d, @@ -2879,7 +2923,7 @@ static void ggml_vk_matmul( } static void ggml_vk_matmul_id( - ggml_backend_vk_context * ctx, vk_context * subctx, vk_pipeline& pipeline, + ggml_backend_vk_context * ctx, vk_context& subctx, vk_pipeline& pipeline, vk_subbuffer&& a, vk_subbuffer&& b, vk_subbuffer&& d, vk_subbuffer&& ids, uint32_t m, uint32_t n, uint32_t k, uint32_t stride_a, uint32_t stride_b, uint32_t stride_d, uint32_t batch_stride_a, uint32_t batch_stride_b, uint32_t batch_stride_d, @@ -2916,7 +2960,7 @@ static vk_pipeline ggml_vk_get_cpy_pipeline(ggml_backend_vk_context * ctx, ggml_ GGML_ABORT("fatal error"); } -static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context * subctx, vk_pipeline pipeline, const ggml_tensor * tensor, vk_subbuffer&& in, vk_subbuffer&& out) { +static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context& subctx, vk_pipeline pipeline, const ggml_tensor * tensor, vk_subbuffer&& in, vk_subbuffer&& out) { VK_LOG_DEBUG("ggml_vk_cpy_to_contiguous((" << tensor << ", type=" << tensor->type << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << "), "; std::cerr << "buffer in size=" << in.buffer->size << ", buffer out size=" << out.buffer->size << ")"); const int tensor_type_size = ggml_type_size(tensor->type); @@ -2934,7 +2978,7 @@ static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, sizeof(vk_op_unary_push_constants), &pc, { ne, 1, 1 }); } -static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { VK_LOG_DEBUG("ggml_vk_mul_mat_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)"); @@ -3107,7 +3151,7 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context * su ); // NOLINT } -static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { VK_LOG_DEBUG("ggml_vk_mul_mat_vec_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)"); @@ -3272,7 +3316,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context sizeof(vk_mat_vec_push_constants), &pc, { groups_x, (uint32_t)(ne12 * ne13), groups_z }); } -static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { VK_LOG_DEBUG("ggml_vk_mul_mat_p021_f16_f32(" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)"); @@ -3343,7 +3387,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_p021_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 }); } -static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { VK_LOG_DEBUG("ggml_vk_mul_mat_nc_f16_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)"); @@ -3418,7 +3462,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_nc_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 }); } -static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { VK_LOG_DEBUG("ggml_vk_mul_mat(" << src0 << ", " << src1 << ", " << dst << ")"); if (src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && dst->ne[1] == 1) { ggml_vk_mul_mat_vec_p021_f16_f32(ctx, subctx, src0, src1, dst); @@ -3431,7 +3475,7 @@ static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context * subctx, } } -static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) { +static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) { VK_LOG_DEBUG("ggml_vk_mul_mat_id_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << ids << ", name=" << ids->name << ", type=" << ids->type << ", ne0=" << ids->ne[0] << ", ne1=" << ids->ne[1] << ", ne2=" << ids->ne[2] << ", ne3=" << ids->ne[3] << ", nb0=" << ids->nb[0] << ", nb1=" << ids->nb[1] << ", nb2=" << ids->nb[2] << ", nb3=" << ids->nb[3]; @@ -3618,7 +3662,7 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context * ); // NOLINT } -static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) { +static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) { VK_LOG_DEBUG("ggml_vk_mul_mat_vec_id_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << ids << ", name=" << ids->name << ", type=" << ids->type << ", ne0=" << ids->ne[0] << ", ne1=" << ids->ne[1] << ", ne2=" << ids->ne[2] << ", ne3=" << ids->ne[3] << ", nb0=" << ids->nb[0] << ", nb1=" << ids->nb[1] << ", nb2=" << ids->nb[2] << ", nb3=" << ids->nb[3]; @@ -3794,7 +3838,7 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte sizeof(vk_mat_vec_id_push_constants), &pc, { groups_x, (uint32_t)nei0, groups_z }); } -static void ggml_vk_mul_mat_id(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) { +static void ggml_vk_mul_mat_id(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) { VK_LOG_DEBUG("ggml_vk_mul_mat_id(" << src0 << ", " << src1 << ", " << src2 << ", " << dst << ")"); if (src2->ne[1] == 1 && (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) { ggml_vk_mul_mat_vec_id_q_f16(ctx, subctx, src0, src1, src2, dst); @@ -3803,8 +3847,8 @@ static void ggml_vk_mul_mat_id(ggml_backend_vk_context * ctx, vk_context * subct } } -static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - // guaranteed to be an integer due to the check in ggml_can_repeat +static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + VK_LOG_DEBUG("ggml_vk_op_repeat(" << src0 << ", " << src1 << ", " << dst << ")"); const uint64_t ne0 = dst->ne[0]; const uint64_t ne1 = dst->ne[1]; const uint64_t ne2 = dst->ne[2]; @@ -3825,6 +3869,7 @@ static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx const uint64_t nb02 = src0->nb[2]; const uint64_t nb03 = src0->nb[3]; + // guaranteed to be an integer due to the check in ggml_can_repeat const uint64_t nr0 = ne0/ne00; const uint64_t nr1 = ne1/ne01; const uint64_t nr2 = ne2/ne02; @@ -3852,8 +3897,8 @@ static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx for (uint64_t k1 = 0; k1 < ne01; k1++) { for (uint64_t i0 = 0; i0 < nr0; i0++) { copies.push_back({ - src_offset + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0, - dst_offset + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01, + src_offset + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01, + dst_offset + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0, ne00*nb0, }); } @@ -3874,11 +3919,6 @@ static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op) { switch (op) { - case GGML_OP_ADD: - if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { - return ctx->device->pipeline_add_f32; - } - return nullptr; case GGML_OP_GET_ROWS: GGML_ASSERT(src1->type == GGML_TYPE_I32); if (dst->type == GGML_TYPE_F16) { @@ -3888,6 +3928,14 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const return ctx->device->pipeline_get_rows_f32[src0->type]; } return nullptr; + case GGML_OP_ADD: + if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_add_f32; + } + if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) { + return ctx->device->pipeline_add_f16_f32_f16; + } + return nullptr; case GGML_OP_MUL: if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_mul_f32; @@ -3898,6 +3946,22 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const return ctx->device->pipeline_div_f32; } return nullptr; + case GGML_OP_CONCAT: + if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_concat_f32; + } + if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { + return ctx->device->pipeline_concat_f16; + } + if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) { + return ctx->device->pipeline_concat_i32; + } + return nullptr; + case GGML_OP_UPSCALE: + if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_upscale_f32; + } + return nullptr; case GGML_OP_SCALE: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_scale_f32; @@ -3913,6 +3977,11 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const return ctx->device->pipeline_clamp_f32; } return nullptr; + case GGML_OP_PAD: + if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_pad_f32; + } + return nullptr; case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DUP: @@ -3922,6 +3991,11 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const return ctx->device->pipeline_norm_f32; } return nullptr; + case GGML_OP_GROUP_NORM: + if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_group_norm_f32; + } + return nullptr; case GGML_OP_RMS_NORM: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_rms_norm_f32; @@ -3939,11 +4013,21 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const return ctx->device->pipeline_gelu_f32; } break; + case GGML_UNARY_OP_GELU_QUICK: + if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_gelu_quick_f32; + } + break; case GGML_UNARY_OP_RELU: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_relu_f32; } break; + case GGML_UNARY_OP_TANH: + if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_tanh_f32; + } + break; default: break; } @@ -3995,6 +4079,24 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const return ctx->device->pipeline_sum_rows_f32; } return nullptr; + case GGML_OP_IM2COL: + if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_im2col_f32; + } + if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) { + return ctx->device->pipeline_im2col_f32_f16; + } + return nullptr; + case GGML_OP_TIMESTEP_EMBEDDING: + if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_timestep_embedding_f32; + } + return nullptr; + case GGML_OP_LEAKY_RELU: + if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_leaky_relu_f32; + } + return nullptr; default: return nullptr; } @@ -4018,9 +4120,12 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) { case GGML_OP_ADD: case GGML_OP_MUL: case GGML_OP_DIV: + case GGML_OP_CONCAT: + case GGML_OP_UPSCALE: case GGML_OP_SCALE: case GGML_OP_SQR: case GGML_OP_CLAMP: + case GGML_OP_PAD: return true; default: return false; @@ -4028,7 +4133,7 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) { } template -static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op, const PC&& pc) { +static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op, const PC&& pc) { VK_LOG_DEBUG("ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; if (src1 != nullptr) { std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; @@ -4124,7 +4229,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c vk_buffer d_D = extra->buffer_gpu.lock(); // Workaround for tiny tensor inputs on ROPE - if (use_src1 && y_sz > d_D->size) { + if (op == GGML_OP_ROPE && use_src1 && y_sz > d_D->size) { y_sz = VK_WHOLE_SIZE; } @@ -4173,13 +4278,26 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c if (op_supports_incontiguous || (ggml_is_contiguous(src0) && (src1 == nullptr || ggml_is_contiguous(src1)))) { ggml_pipeline_allocate_descriptor_sets(ctx->device, pipeline, 1); - switch (dst->op) { + switch (op) { case GGML_OP_NORM: case GGML_OP_RMS_NORM: case GGML_OP_SOFT_MAX: case GGML_OP_SUM_ROWS: - elements = { (uint32_t)ggml_nrows(src0), 1, 1 }; - break; + { + const uint32_t nr = ggml_nrows(src0); + if (nr > 262144) { + elements = { 512, 512, CEIL_DIV(nr, 262144) }; + } else if (nr > 512) { + elements = { 512, CEIL_DIV(nr, 512), 1 }; + } else { + elements = { nr, 1, 1 }; + } + } break; + case GGML_OP_GROUP_NORM: + { + const uint32_t num_groups = dst->op_params[0]; + elements = { num_groups * (uint32_t)src0->ne[3], 1, 1 }; + } break; case GGML_OP_DIAG_MASK_INF: case GGML_OP_ROPE: elements = { (uint32_t)ggml_nrows(src0), (uint32_t)ne00, 1 }; @@ -4190,6 +4308,49 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c case GGML_OP_ARGSORT: elements = { (uint32_t)ne00, (uint32_t)ggml_nrows(src0), 1 }; break; + case GGML_OP_IM2COL: + { + const bool is_2D = dst->op_params[6] == 1; + + const uint32_t IC = src1->ne[is_2D ? 2 : 1]; + + const uint32_t KH = is_2D ? src0->ne[1] : 1; + const uint32_t KW = src0->ne[0]; + + const uint32_t OH = is_2D ? dst->ne[2] : 1; + const uint32_t OW = dst->ne[1]; + + const uint32_t batch = src1->ne[3]; + + elements = { OW * KW * KH, OH, batch * IC }; + } break; + case GGML_OP_TIMESTEP_EMBEDDING: + { + const uint32_t dim = dst->op_params[0]; + uint32_t half_ceil = (dim + 1) / 2; + elements = { half_ceil, (uint32_t)src0->ne[0], 1 }; + } break; + case GGML_OP_ADD: + case GGML_OP_DIV: + case GGML_OP_MUL: + case GGML_OP_SCALE: + case GGML_OP_SQR: + case GGML_OP_CLAMP: + case GGML_OP_PAD: + case GGML_OP_CPY: + case GGML_OP_CONCAT: + case GGML_OP_UPSCALE: + case GGML_OP_UNARY: + { + const uint32_t ne = ggml_nelements(dst); + if (ne > 262144) { + elements = { 512, 512, CEIL_DIV(ne, 262144) }; + } else if (ne > 512) { + elements = { 512, CEIL_DIV(ne, 512), 1 }; + } else { + elements = { ne, 1, 1 }; + } + } break; default: elements = { (uint32_t)ggml_nelements(src0), 1, 1 }; break; @@ -4216,7 +4377,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c if (use_src1) { subbuf_y = { d_Y, y_buf_offset, y_sz }; } else { - subbuf_y = { d_X, 0, d_X->size }; + subbuf_y = { d_X, 0, x_sz }; } ggml_vk_sync_buffers(subctx); @@ -4227,11 +4388,15 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c if (use_src2) { subbuf_z = { d_Z, z_buf_offset, z_sz }; } else { - subbuf_z = { d_X, 0, d_X->size }; + subbuf_z = { d_X, 0, x_sz }; } ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, subbuf_z, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); + } else if (op == GGML_OP_IM2COL) { + // im2col uses only src1 and dst buffers + ggml_vk_sync_buffers(subctx); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_Y, y_buf_offset, y_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); } else if (use_src2) { ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_Z, z_buf_offset, z_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); @@ -4249,8 +4414,9 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c ggml_pipeline_allocate_descriptor_sets(ctx->device, pipeline, ne02 * ne03); - switch (dst->op) { + switch (op) { case GGML_OP_NORM: + case GGML_OP_GROUP_NORM: case GGML_OP_RMS_NORM: elements = { (uint32_t)ne01, 1, 1 }; break; @@ -4286,11 +4452,11 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c } } -static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f }); +static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_REPEAT, {}); } -static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4301,11 +4467,11 @@ static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx, (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, - 0.0f, 0.0f, + 0.0f, 0.0f, 0, }); } -static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4316,11 +4482,11 @@ static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context * subctx, cons (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, - 0.0f, 0.0f, + 0.0f, 0.0f, 0, }); } -static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4331,11 +4497,11 @@ static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context * subctx, cons (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, - 0.0f, 0.0f, + 0.0f, 0.0f, 0, }); } -static void ggml_vk_div(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_div(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4346,11 +4512,44 @@ static void ggml_vk_div(ggml_backend_vk_context * ctx, vk_context * subctx, cons (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, - 0.0f, 0.0f, + 0.0f, 0.0f, 0, }); } -static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_concat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + int * op_params = (int *)dst->op_params; + + const uint32_t src0_type_size = ggml_type_size(src0->type); + const uint32_t src1_type_size = ggml_type_size(src1->type); + const uint32_t dst_type_size = ggml_type_size(dst->type); + + ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONCAT, { + (uint32_t)ggml_nelements(dst), + (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, + (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, + (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, + 0, + 0.0f, 0.0f, op_params[0], + }); +} + +static void ggml_vk_upscale(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { + const uint32_t src0_type_size = ggml_type_size(src0->type); + + const float sf0 = (float)dst->ne[0] / src0->ne[0]; + const float sf1 = (float)dst->ne[1] / src0->ne[1]; + const float sf2 = (float)dst->ne[2] / src0->ne[2]; + const float sf3 = (float)dst->ne[3] / src0->ne[3]; + + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UPSCALE, { + (uint32_t)ggml_nelements(dst), 0, + (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, + (uint32_t)dst->ne[0], (uint32_t)dst->ne[1], (uint32_t)dst->ne[2],(uint32_t)dst->ne[3], + sf0, sf1, sf2, sf3, + }); +} + +static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { float * op_params = (float *)dst->op_params; const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4364,7 +4563,7 @@ static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context * subctx, co }); } -static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4377,7 +4576,7 @@ static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context * subctx, cons }); } -static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { float * op_params = (float *)dst->op_params; const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4391,7 +4590,20 @@ static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context * subctx, co }); } -static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_pad(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { + const uint32_t src0_type_size = ggml_type_size(src0->type); + const uint32_t dst_type_size = ggml_type_size(dst->type); + + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_PAD, { + (uint32_t)ggml_nelements(dst), + (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, + (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, + 0, + 0.0f, 0.0f, + }); +} + +static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra; const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4406,27 +4618,37 @@ static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context * subctx, cons }); } -static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { float * op_params = (float *)dst->op_params; ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }); } -static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_group_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { + int * op_params = (int *)dst->op_params; + + uint32_t num_groups = op_params[0]; + uint32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups); + static const float eps = 1e-6f; + + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_GROUP_NORM, { group_size, 0, eps, 0.0f }); +} + +static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { float * op_params = (float *)dst->op_params; ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }); } -static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }); } -static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { int32_t * op_params = (int32_t *)dst->op_params; ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] }); } -static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { float * op_params = (float *)dst->op_params; float scale = op_params[0]; @@ -4451,7 +4673,7 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, }); } -static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) { +static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) { const int n_dims = ((int32_t *) dst->op_params)[1]; // const int mode = ((int32_t *) dst->op_params)[2]; // const int n_ctx = ((int32_t *) dst->op_params)[3]; @@ -4475,7 +4697,7 @@ static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, con }); } -static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { int32_t * op_params = (int32_t *)dst->op_params; uint32_t ncols = src0->ne[0]; @@ -4494,10 +4716,59 @@ static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context * subctx, }); } -static void ggml_vk_sum_rows(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_sum_rows(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SUM_ROWS, { (uint32_t)src0->ne[0], 0, 0.0f, 0.0f }); } +static void ggml_vk_im2col(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + const int32_t s0 = dst->op_params[0]; + const int32_t s1 = dst->op_params[1]; + const int32_t p0 = dst->op_params[2]; + const int32_t p1 = dst->op_params[3]; + const int32_t d0 = dst->op_params[4]; + const int32_t d1 = dst->op_params[5]; + + const bool is_2D = dst->op_params[6] == 1; + + const uint32_t IC = src1->ne[is_2D ? 2 : 1]; + const uint32_t IH = is_2D ? src1->ne[1] : 1; + const uint32_t IW = src1->ne[0]; + + const uint32_t KH = is_2D ? src0->ne[1] : 1; + const uint32_t KW = src0->ne[0]; + + const uint32_t OH = is_2D ? dst->ne[2] : 1; + const uint32_t OW = dst->ne[1]; + + const uint32_t offset_delta = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32 + const uint32_t batch_offset = src1->nb[3] / 4; // nb is byte offset, src is type float32 + + const uint32_t pelements = OW * KW * KH; + + ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_IM2COL, { + batch_offset, offset_delta, + IC, IW, IH, OW, OH, KW, KH, + pelements, + IC * KH * KW, + s0, s1, p0, p1, d0, d1, + }); +} + +static void ggml_vk_timestep_embedding(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { + const uint32_t dim = dst->op_params[0]; + const uint32_t max_period = dst->op_params[1]; + const uint32_t nb1 = dst->nb[1] / ggml_type_size(dst->type); + + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_TIMESTEP_EMBEDDING, { + nb1, dim, max_period, + }); +} + +static void ggml_vk_leaky_relu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { + const float * op_params = (const float *)dst->op_params; + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_LEAKY_RELU, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f }); +} + #ifdef GGML_VULKAN_RUN_TESTS static void ggml_vk_print_matrix_area(const void * data, ggml_type type, int ne0, int ne1, int i0, int i1, int i2) { if (type != GGML_TYPE_F32 && type != GGML_TYPE_F16) { @@ -4686,7 +4957,7 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t ggml_vk_buffer_write(d_X, 0, x, sizeof(X_TYPE) * k * m * batch); ggml_vk_buffer_write(d_Y, 0, y, sizeof(Y_TYPE) * k * n * batch); - vk_context * subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); + vk_context subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); for (size_t i = 0; i < num_it; i++) { ggml_vk_ctx_begin(ctx->device, subctx); ggml_vk_matmul( @@ -4894,7 +5165,7 @@ static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_ ggml_vk_buffer_write(qx_buf, 0, qx, qx_sz); - vk_context * subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); + vk_context subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); ggml_vk_ctx_begin(ctx->device, subctx); const std::vector pc = { 1, (uint32_t)ne, (uint32_t)ne, (uint32_t)ne, (uint32_t)ne }; ggml_vk_dispatch_pipeline(ctx, subctx, p, { { qx_buf, 0, qx_sz }, { x_buf, 0, x_sz_f16 } }, pc.size() * sizeof(int), pc.data(), { (uint32_t)ne, 1, 1}); @@ -5027,7 +5298,7 @@ static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m, ggml_vk_buffer_write(qx_buf, 0, qx, qx_sz); ggml_vk_buffer_write(y_buf, 0, y, y_sz); - vk_context * subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); + vk_context subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); for (size_t i = 0; i < num_it; i++) { ggml_vk_ctx_begin(ctx->device, subctx); ggml_vk_matmul( @@ -5175,7 +5446,7 @@ static void ggml_vk_preallocate_buffers_graph(ggml_backend_vk_context * ctx, ggm const bool y_f32_kernel = use_src1 && src1->type == GGML_TYPE_F32 && !y_non_contig; - bool mmp = (use_src0 && use_src1 && src1_type == GGML_TYPE_F32) ? ggml_vk_get_mul_mat_mat_pipeline(ctx, src0_type, y_non_contig ? GGML_TYPE_F16 : src1->type) != nullptr : false; + bool mmp = (use_src0 && use_src1 && (node->op == GGML_OP_MUL_MAT || node->op == GGML_OP_MUL_MAT_ID)) ? ggml_vk_get_mul_mat_mat_pipeline(ctx, src0->type, y_non_contig ? GGML_TYPE_F16 : src1->type) != nullptr : false; const bool qx_needs_dequant = use_src0 && (!mmp || x_non_contig); const bool qy_needs_dequant = use_src1 && ((src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig); @@ -5211,24 +5482,33 @@ static void ggml_vk_preallocate_buffers_graph(ggml_backend_vk_context * ctx, ggm case GGML_OP_SCALE: case GGML_OP_SQR: case GGML_OP_CLAMP: + case GGML_OP_PAD: case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DUP: case GGML_OP_MUL: case GGML_OP_DIV: + case GGML_OP_CONCAT: + case GGML_OP_UPSCALE: case GGML_OP_NORM: + case GGML_OP_GROUP_NORM: case GGML_OP_RMS_NORM: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: case GGML_OP_ROPE: case GGML_OP_ARGSORT: case GGML_OP_SUM_ROWS: + case GGML_OP_IM2COL: + case GGML_OP_TIMESTEP_EMBEDDING: + case GGML_OP_LEAKY_RELU: break; case GGML_OP_UNARY: switch (ggml_get_unary_op(node)) { case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_GELU: + case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_RELU: + case GGML_UNARY_OP_TANH: break; default: return; @@ -5236,6 +5516,13 @@ static void ggml_vk_preallocate_buffers_graph(ggml_backend_vk_context * ctx, ggm break; case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT_ID: + if ( + x_sz > ctx->device->max_memory_allocation_size || + y_sz > ctx->device->max_memory_allocation_size || + d_sz > ctx->device->max_memory_allocation_size || + split_k_size > ctx->device->max_memory_allocation_size) { + GGML_ABORT("Requested preallocation size is too large"); + } if (ctx->prealloc_size_x < x_sz) { ctx->prealloc_size_x = x_sz; } @@ -5430,7 +5717,7 @@ static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) { } } -static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, bool last_node){ +static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, int node_idx, bool last_node){ ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra; if (ggml_is_empty(node) || extra == nullptr) { @@ -5457,7 +5744,9 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod switch (ggml_get_unary_op(node)) { case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_GELU: + case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_RELU: + case GGML_UNARY_OP_TANH: break; default: return; @@ -5468,13 +5757,17 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod case GGML_OP_ADD: case GGML_OP_MUL: case GGML_OP_DIV: + case GGML_OP_CONCAT: + case GGML_OP_UPSCALE: case GGML_OP_SCALE: case GGML_OP_SQR: case GGML_OP_CLAMP: + case GGML_OP_PAD: case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DUP: case GGML_OP_NORM: + case GGML_OP_GROUP_NORM: case GGML_OP_RMS_NORM: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: @@ -5483,6 +5776,9 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod case GGML_OP_MUL_MAT_ID: case GGML_OP_ARGSORT: case GGML_OP_SUM_ROWS: + case GGML_OP_IM2COL: + case GGML_OP_TIMESTEP_EMBEDDING: + case GGML_OP_LEAKY_RELU: break; default: std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(node->op) << std::endl; @@ -5490,102 +5786,137 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod return; } - if (ctx->compute_ctx == nullptr) { - ctx->compute_ctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); - ggml_vk_ctx_begin(ctx->device, ctx->compute_ctx); + vk_context compute_ctx; + + if (ctx->compute_ctx.expired()) { + compute_ctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); + ctx->compute_ctx = compute_ctx; + ggml_vk_ctx_begin(ctx->device, compute_ctx); + } else { + compute_ctx = ctx->compute_ctx.lock(); } switch (node->op) { case GGML_OP_REPEAT: - ggml_vk_repeat(ctx, ctx->compute_ctx, src0, src1, node); + ggml_vk_repeat(ctx, compute_ctx, src0, node); break; case GGML_OP_GET_ROWS: - ggml_vk_get_rows(ctx, ctx->compute_ctx, src0, src1, node); + ggml_vk_get_rows(ctx, compute_ctx, src0, src1, node); break; case GGML_OP_ADD: - ggml_vk_add(ctx, ctx->compute_ctx, src0, src1, node); + ggml_vk_add(ctx, compute_ctx, src0, src1, node); break; case GGML_OP_MUL: - ggml_vk_mul(ctx, ctx->compute_ctx, src0, src1, node); + ggml_vk_mul(ctx, compute_ctx, src0, src1, node); break; case GGML_OP_DIV: - ggml_vk_div(ctx, ctx->compute_ctx, src0, src1, node); + ggml_vk_div(ctx, compute_ctx, src0, src1, node); + + break; + case GGML_OP_CONCAT: + ggml_vk_concat(ctx, compute_ctx, src0, src1, node); + + break; + case GGML_OP_UPSCALE: + ggml_vk_upscale(ctx, compute_ctx, src0, node); break; case GGML_OP_SCALE: - ggml_vk_scale(ctx, ctx->compute_ctx, src0, node); + ggml_vk_scale(ctx, compute_ctx, src0, node); break; case GGML_OP_SQR: - ggml_vk_sqr(ctx, ctx->compute_ctx, src0, node); + ggml_vk_sqr(ctx, compute_ctx, src0, node); break; case GGML_OP_CLAMP: - ggml_vk_clamp(ctx, ctx->compute_ctx, src0, node); + ggml_vk_clamp(ctx, compute_ctx, src0, node); + + break; + case GGML_OP_PAD: + ggml_vk_pad(ctx, compute_ctx, src0, node); break; case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DUP: - ggml_vk_cpy(ctx, ctx->compute_ctx, src0, node); + ggml_vk_cpy(ctx, compute_ctx, src0, node); break; case GGML_OP_NORM: - ggml_vk_norm(ctx, ctx->compute_ctx, src0, node); + ggml_vk_norm(ctx, compute_ctx, src0, node); + + break; + case GGML_OP_GROUP_NORM: + ggml_vk_group_norm(ctx, compute_ctx, src0, node); break; case GGML_OP_RMS_NORM: - ggml_vk_rms_norm(ctx, ctx->compute_ctx, src0, node); + ggml_vk_rms_norm(ctx, compute_ctx, src0, node); break; case GGML_OP_UNARY: switch (ggml_get_unary_op(node)) { case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_GELU: + case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_RELU: - ggml_vk_unary(ctx, ctx->compute_ctx, src0, node); + case GGML_UNARY_OP_TANH: + ggml_vk_unary(ctx, compute_ctx, src0, node); break; default: return; } break; case GGML_OP_DIAG_MASK_INF: - ggml_vk_diag_mask_inf(ctx, ctx->compute_ctx, src0, node); + ggml_vk_diag_mask_inf(ctx, compute_ctx, src0, node); break; case GGML_OP_SOFT_MAX: - ggml_vk_soft_max(ctx, ctx->compute_ctx, src0, src1, node); + ggml_vk_soft_max(ctx, compute_ctx, src0, src1, node); break; case GGML_OP_ROPE: - ggml_vk_rope(ctx, ctx->compute_ctx, src0, src1, src2, node); + ggml_vk_rope(ctx, compute_ctx, src0, src1, src2, node); break; case GGML_OP_ARGSORT: - ggml_vk_argsort(ctx, ctx->compute_ctx, src0, node); + ggml_vk_argsort(ctx, compute_ctx, src0, node); break; case GGML_OP_SUM_ROWS: - ggml_vk_sum_rows(ctx, ctx->compute_ctx, src0, node); + ggml_vk_sum_rows(ctx, compute_ctx, src0, node); + + break; + case GGML_OP_IM2COL: + ggml_vk_im2col(ctx, compute_ctx, src0, src1, node); + + break; + case GGML_OP_TIMESTEP_EMBEDDING: + ggml_vk_timestep_embedding(ctx, compute_ctx, src0, node); + + break; + case GGML_OP_LEAKY_RELU: + ggml_vk_leaky_relu(ctx, compute_ctx, src0, node); break; case GGML_OP_MUL_MAT: - ggml_vk_mul_mat(ctx, ctx->compute_ctx, src0, src1, node); + ggml_vk_mul_mat(ctx, compute_ctx, src0, src1, node); break; case GGML_OP_MUL_MAT_ID: - ggml_vk_mul_mat_id(ctx, ctx->compute_ctx, src0, src1, src2, node); + ggml_vk_mul_mat_id(ctx, compute_ctx, src0, src1, src2, node); break; default: return; } - extra->ctx_idx = ctx->compute_ctx->idx; + ctx->tensor_ctxs[node_idx] = compute_ctx; #ifdef GGML_VULKAN_CHECK_RESULTS // Force context reset on each node so that each tensor ends up in its own context @@ -5594,13 +5925,13 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod #endif if (last_node) { - ggml_vk_ctx_end(ctx->compute_ctx); - ctx->compute_ctx->exit_tensor = node; - ctx->compute_ctx = nullptr; + ggml_vk_ctx_end(compute_ctx); + compute_ctx->exit_tensor_idx = node_idx; + ctx->compute_ctx.reset(); } } -static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * tensor){ +static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * tensor, int tensor_idx){ ggml_tensor_extra_gpu * extra = nullptr; switch (tensor->op) { @@ -5608,13 +5939,17 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * case GGML_OP_GET_ROWS: case GGML_OP_MUL: case GGML_OP_DIV: + case GGML_OP_CONCAT: + case GGML_OP_UPSCALE: case GGML_OP_SCALE: case GGML_OP_SQR: case GGML_OP_CLAMP: + case GGML_OP_PAD: case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DUP: case GGML_OP_NORM: + case GGML_OP_GROUP_NORM: case GGML_OP_RMS_NORM: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: @@ -5626,6 +5961,10 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * case GGML_OP_NONE: case GGML_OP_ARGSORT: case GGML_OP_SUM_ROWS: + case GGML_OP_IM2COL: + case GGML_OP_TIMESTEP_EMBEDDING: + case GGML_OP_LEAKY_RELU: + case GGML_OP_REPEAT: extra = (ggml_tensor_extra_gpu *) tensor->extra; break; @@ -5633,7 +5972,9 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * switch (ggml_get_unary_op(tensor)) { case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_GELU: + case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_RELU: + case GGML_UNARY_OP_TANH: extra = (ggml_tensor_extra_gpu *) tensor->extra; break; default: @@ -5656,31 +5997,31 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * VK_LOG_DEBUG("ggml_vk_compute_forward(" << tensor << ", name=" << tensor->name << ", op=" << ggml_op_name(tensor->op) << ", type=" << tensor->type << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << ", view_src=" << tensor->view_src << ", view_offs=" << tensor->view_offs << ")"); #ifdef GGML_VULKAN_CHECK_RESULTS - ggml_vk_check_results_0(ctx, tensor); + ggml_vk_check_results_0(tensor); #endif - vk_context& subctx = ctx->gc.contexts[extra->ctx_idx]; + vk_context subctx = ctx->tensor_ctxs[tensor_idx].lock(); // Only run if ctx hasn't been submitted yet - if (!subctx.seqs.empty()) { + if (!subctx->seqs.empty()) { // Do staging buffer copies - for (auto& cpy : subctx.in_memcpys) { + for (auto& cpy : subctx->in_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } - ggml_vk_submit(&subctx, ctx->fence); + ggml_vk_submit(subctx, ctx->fence); } - if (tensor == subctx.exit_tensor) { + if (tensor_idx == subctx->exit_tensor_idx) { VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_compute_forward waitForFences"); ctx->device->device.resetFences({ ctx->fence }); // Do staging buffer copies - for (auto& cpy : subctx.out_memcpys) { + for (auto& cpy : subctx->out_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } - subctx.in_memcpys.clear(); - subctx.out_memcpys.clear(); + subctx->in_memcpys.clear(); + subctx->out_memcpys.clear(); } return true; @@ -5725,8 +6066,7 @@ static void ggml_vk_graph_cleanup(ggml_backend_vk_context * ctx) { ctx->staging_offset = 0; - ctx->compute_ctx = nullptr; - ctx->transfer_ctx = nullptr; + ctx->tensor_ctxs.clear(); ctx->gc.contexts.clear(); } @@ -6063,15 +6403,20 @@ GGML_CALL static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, g ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; - if (ctx->transfer_ctx == nullptr) { + vk_context transfer_ctx; + + if (ctx->transfer_ctx.expired()) { // Initialize new transfer context - ctx->transfer_ctx = ggml_vk_create_context(ctx, ctx->device->transfer_queue); - ggml_vk_ctx_begin(ctx->device, ctx->transfer_ctx); + transfer_ctx = ggml_vk_create_context(ctx, ctx->device->transfer_queue); + ctx->transfer_ctx = transfer_ctx; + ggml_vk_ctx_begin(ctx->device, transfer_ctx); + } else { + transfer_ctx = ctx->transfer_ctx.lock(); } vk_buffer buf = extra->buffer_gpu.lock(); - ggml_vk_buffer_write_async(ctx->transfer_ctx, buf, extra->offset + tensor->view_offs + offset, data, size, ctx->staging, ctx->staging_offset); + ggml_vk_buffer_write_async(transfer_ctx, buf, extra->offset + tensor->view_offs + offset, data, size, ctx->staging, ctx->staging_offset); } GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { @@ -6081,15 +6426,20 @@ GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, c ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; - if (ctx->transfer_ctx == nullptr) { + vk_context transfer_ctx; + + if (ctx->transfer_ctx.expired()) { // Initialize new transfer context - ctx->transfer_ctx = ggml_vk_create_context(ctx, ctx->device->transfer_queue); - ggml_vk_ctx_begin(ctx->device, ctx->transfer_ctx); + transfer_ctx = ggml_vk_create_context(ctx, ctx->device->transfer_queue); + ctx->transfer_ctx = transfer_ctx; + ggml_vk_ctx_begin(ctx->device, transfer_ctx); + } else { + transfer_ctx = ctx->transfer_ctx.lock(); } vk_buffer buf = extra->buffer_gpu.lock(); - ggml_vk_buffer_read_async(ctx->transfer_ctx, buf, extra->offset + tensor->view_offs + offset, data, size, ctx->staging, ctx->staging_offset); + ggml_vk_buffer_read_async(transfer_ctx, buf, extra->offset + tensor->view_offs + offset, data, size, ctx->staging, ctx->staging_offset); } GGML_CALL static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) { @@ -6099,16 +6449,21 @@ GGML_CALL static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, c ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra; ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; - if (ctx->transfer_ctx == nullptr) { + vk_context transfer_ctx; + + if (ctx->transfer_ctx.expired()) { // Initialize new transfer context - ctx->transfer_ctx = ggml_vk_create_context(ctx, ctx->device->transfer_queue); - ggml_vk_ctx_begin(ctx->device, ctx->transfer_ctx); + transfer_ctx = ggml_vk_create_context(ctx, ctx->device->transfer_queue); + ctx->transfer_ctx = transfer_ctx; + ggml_vk_ctx_begin(ctx->device, transfer_ctx); + } else { + transfer_ctx = ctx->transfer_ctx.lock(); } vk_buffer src_buf = src_extra->buffer_gpu.lock(); vk_buffer dst_buf = dst_extra->buffer_gpu.lock(); - ggml_vk_buffer_copy_async(ctx->transfer_ctx, dst_buf, dst_extra->offset + dst->view_offs, src_buf, src_extra->offset + src->view_offs, ggml_nbytes(src)); + ggml_vk_buffer_copy_async(transfer_ctx, dst_buf, dst_extra->offset + dst->view_offs, src_buf, src_extra->offset + src->view_offs, ggml_nbytes(src)); return true; } @@ -6118,25 +6473,27 @@ GGML_CALL static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, c GGML_CALL static void ggml_backend_vk_synchronize(ggml_backend_t backend) { VK_LOG_DEBUG("ggml_backend_vk_synchronize()"); ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; - if(ctx->transfer_ctx == nullptr) { + if(ctx->transfer_ctx.expired()) { return; } - ggml_vk_ctx_end(ctx->transfer_ctx); + vk_context transfer_ctx = ctx->transfer_ctx.lock(); - for (auto& cpy : ctx->transfer_ctx->in_memcpys) { + ggml_vk_ctx_end(transfer_ctx); + + for (auto& cpy : transfer_ctx->in_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } - ggml_vk_submit(ctx->transfer_ctx, ctx->fence); + ggml_vk_submit(transfer_ctx, ctx->fence); VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_backend_vk_synchronize waitForFences"); ctx->device->device.resetFences({ ctx->fence }); - for (auto& cpy : ctx->transfer_ctx->out_memcpys) { + for (auto& cpy : transfer_ctx->out_memcpys) { memcpy(cpy.dst, cpy.src, cpy.n); } - ctx->transfer_ctx = nullptr; + ctx->transfer_ctx.reset(); } static bool ggml_vk_is_empty(ggml_tensor * node) { @@ -6159,8 +6516,11 @@ GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backen last_node -= 1; } + // Reserve tensor context space for all nodes + ctx->tensor_ctxs.resize(cgraph->n_nodes); + for (int i = 0; i < cgraph->n_nodes; i++) { - ggml_vk_build_graph(ctx,cgraph->nodes[i], i == last_node); + ggml_vk_build_graph(ctx, cgraph->nodes[i], i, i == last_node); } for (int i = 0; i < cgraph->n_nodes; i++) { @@ -6170,13 +6530,17 @@ GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backen continue; } - bool ok = ggml_vk_compute_forward(ctx, node); + bool ok = ggml_vk_compute_forward(ctx, node, i); if (!ok) { - fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op)); + if (node->op == GGML_OP_UNARY) { + std::cerr << __func__ << ": error: op not supported UNARY " << node->name << " (" << ggml_unary_op_name(static_cast(node->op_params[0])) << ")" << std::endl; + } else { + std::cerr << __func__ << ": error: op not supported " << node->name << " (" << ggml_op_name(node->op) << ")" << std::endl; + } } #ifdef GGML_VULKAN_CHECK_RESULTS else { - ggml_vk_check_results_1(ctx, node); + ggml_vk_check_results_1(node); } #endif GGML_ASSERT(ok); @@ -6196,8 +6560,10 @@ GGML_CALL static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const case GGML_OP_UNARY: switch (ggml_get_unary_op(op)) { case GGML_UNARY_OP_GELU: + case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_RELU: + case GGML_UNARY_OP_TANH: return ggml_is_contiguous(op->src[0]); default: return false; @@ -6270,11 +6636,11 @@ GGML_CALL static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const } return false; } break; - // case GGML_OP_REPEAT: - // { - // ggml_type src0_type = op->src[0]->type; - // return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16; - // } break; + case GGML_OP_REPEAT: + { + ggml_type src0_type = op->src[0]->type; + return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16; + } break; case GGML_OP_ROPE: return ggml_is_contiguous(op->src[0]); case GGML_OP_NONE: @@ -6283,18 +6649,25 @@ GGML_CALL static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: case GGML_OP_NORM: + case GGML_OP_GROUP_NORM: + case GGML_OP_RMS_NORM: case GGML_OP_ADD: case GGML_OP_MUL: case GGML_OP_DIV: - case GGML_OP_RMS_NORM: + case GGML_OP_CONCAT: + case GGML_OP_UPSCALE: case GGML_OP_SCALE: case GGML_OP_SQR: case GGML_OP_CLAMP: + case GGML_OP_PAD: case GGML_OP_CONT: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: case GGML_OP_ARGSORT: case GGML_OP_SUM_ROWS: + case GGML_OP_IM2COL: + case GGML_OP_TIMESTEP_EMBEDDING: + case GGML_OP_LEAKY_RELU: return true; default: return false; @@ -6509,10 +6882,12 @@ static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * d } } -static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tensor * tensor, const char * name) { +static void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name) { void * tensor_data = tensor->data; - if (ggml_backend_buffer_is_vk(tensor->buffer)) { + const bool is_gpu = tensor->buffer != nullptr && ggml_backend_buffer_is_vk(tensor->buffer); + + if (is_gpu) { const size_t tensor_size = ggml_nbytes(tensor); tensor_data = malloc(tensor_size); @@ -6533,13 +6908,10 @@ static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tenso std::cerr << std::endl << "Result:" << std::endl; ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0); std::cerr << std::endl; - std::cerr << std::endl << "Result:" << std::endl; - ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 1, 0); - std::cerr << std::endl; std::vector done; ggml_vk_print_graph_origin(tensor, done); - if (ggml_backend_buffer_is_vk(tensor->buffer)) { + if (is_gpu) { free(tensor_data); } } @@ -6548,8 +6920,8 @@ void * comp_result; size_t comp_size; size_t comp_nb[GGML_MAX_DIMS]; size_t check_counter = 0; -static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * tensor) { - if (tensor->op == GGML_OP_TRANSPOSE) { +static void ggml_vk_check_results_0(ggml_tensor * tensor) { + if (tensor->op == GGML_OP_TRANSPOSE) { return; } @@ -6565,7 +6937,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * ggml_tensor * src2 = tensor->src[2]; struct ggml_init_params iparams = { - /*.mem_size =*/ 1024*1024*1024, + /*.mem_size =*/ 2ul*1024ul*1024ul*1024ul, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ false, }; @@ -6624,7 +6996,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * } if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { - ggml_vk_print_tensor(ctx, src0, "src0"); + ggml_vk_print_tensor(src0, "src0"); } } if (src1 != nullptr) { @@ -6666,23 +7038,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * } if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { - ggml_vk_print_tensor(ctx, src1, "src1"); - std::cerr << "TENSOR CHECK: " << ggml_op_name(src1_clone->op) << " (check " << check_counter << ")" << std::endl; - std::cerr << "src1_clone=" << tensor << " src1_clone->type: " << ggml_type_name(src1_clone->type) << " ne0=" << src1_clone->ne[0] << " nb0=" << src1_clone->nb[0] << " ne1=" << src1_clone->ne[1] << " nb1=" << src1_clone->nb[1] << " ne2=" << src1_clone->ne[2] << " nb2=" << src1_clone->nb[2] << " ne3=" << src1_clone->ne[3] << " nb3=" << src1_clone->nb[3] << std::endl; - if (src1->src[0] != nullptr) { - std::cerr << "src1->src[0]=" << src1->src[0] << " op=" << ggml_op_name(src1->src[0]->op) << " type=" << ggml_type_name(src1->src[0]->type) << " ne0=" << src1->src[0]->ne[0] << " nb0=" << src1->src[0]->nb[0] << " ne1=" << src1->src[0]->ne[1] << " nb1=" << src1->src[0]->nb[1] << " ne2=" << src1->src[0]->ne[2] << " nb2=" << src1->src[0]->nb[2] << " ne3=" << src1->src[0]->ne[3] << " nb3=" << src1->src[0]->nb[3] << std::endl; - } - if (src1->src[1] != nullptr) { - std::cerr << "src1->src[1]=" << src1->src[1] << " op=" << ggml_op_name(src1->src[1]->op) << " type=" << ggml_type_name(src1->src[1]->type) << " ne0=" << src1->src[1]->ne[0] << " nb0=" << src1->src[1]->nb[0] << " ne1=" << src1->src[1]->ne[1] << " nb1=" << src1->src[1]->nb[1] << " ne2=" << src1->src[1]->ne[2] << " nb2=" << src1->src[1]->nb[2] << " ne3=" << src1->src[1]->ne[3] << " nb3=" << src1->src[1]->nb[3] << std::endl; - } - std::cerr << std::endl << "Result:" << std::endl; - ggml_vk_print_tensor_area(src1_clone, src1_clone->data, 5, 5, 0, 0); - std::cerr << std::endl; - std::cerr << std::endl << "Result:" << std::endl; - ggml_vk_print_tensor_area(src1_clone, src1_clone->data, 5, 5, 1, 0); - std::cerr << std::endl; - std::vector done; - ggml_vk_print_graph_origin(src1_clone, done); + ggml_vk_print_tensor(src1, "src1"); } } if (src2 != nullptr) { @@ -6724,23 +7080,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * } if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { - ggml_vk_print_tensor(ctx, src2, "src2"); - std::cerr << "TENSOR CHECK: " << ggml_op_name(src2_clone->op) << " (check " << check_counter << ")" << std::endl; - std::cerr << "src2_clone=" << tensor << " src2_clone->type: " << ggml_type_name(src2_clone->type) << " ne0=" << src2_clone->ne[0] << " nb0=" << src2_clone->nb[0] << " ne1=" << src2_clone->ne[1] << " nb1=" << src2_clone->nb[1] << " ne2=" << src2_clone->ne[2] << " nb2=" << src2_clone->nb[2] << " ne3=" << src2_clone->ne[3] << " nb3=" << src2_clone->nb[3] << std::endl; - if (src2->src[0] != nullptr) { - std::cerr << "src2->src[0]=" << src2->src[0] << " op=" << ggml_op_name(src2->src[0]->op) << " type=" << ggml_type_name(src2->src[0]->type) << " ne0=" << src2->src[0]->ne[0] << " nb0=" << src2->src[0]->nb[0] << " ne1=" << src2->src[0]->ne[1] << " nb1=" << src2->src[0]->nb[1] << " ne2=" << src2->src[0]->ne[2] << " nb2=" << src2->src[0]->nb[2] << " ne3=" << src2->src[0]->ne[3] << " nb3=" << src2->src[0]->nb[3] << std::endl; - } - if (src2->src[1] != nullptr) { - std::cerr << "src2->src[1]=" << src2->src[1] << " op=" << ggml_op_name(src2->src[1]->op) << " type=" << ggml_type_name(src2->src[1]->type) << " ne0=" << src2->src[1]->ne[0] << " nb0=" << src2->src[1]->nb[0] << " ne1=" << src2->src[1]->ne[1] << " nb1=" << src2->src[1]->nb[1] << " ne2=" << src2->src[1]->ne[2] << " nb2=" << src2->src[1]->nb[2] << " ne3=" << src2->src[1]->ne[3] << " nb3=" << src2->src[1]->nb[3] << std::endl; - } - std::cerr << std::endl << "Result:" << std::endl; - ggml_vk_print_tensor_area(src2_clone, src2_clone->data, 5, 5, 0, 0); - std::cerr << std::endl; - std::cerr << std::endl << "Result:" << std::endl; - ggml_vk_print_tensor_area(src2_clone, src2_clone->data, 5, 5, 1, 0); - std::cerr << std::endl; - std::vector done; - ggml_vk_print_graph_origin(src2_clone, done); + ggml_vk_print_tensor(src2, "src2"); } } @@ -6752,16 +7092,24 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * tensor_clone = ggml_mul(ggml_ctx, src0_clone, src1_clone); } else if (tensor->op == GGML_OP_DIV) { tensor_clone = ggml_div(ggml_ctx, src0_clone, src1_clone); + } else if (tensor->op == GGML_OP_CONCAT) { + tensor_clone = ggml_concat(ggml_ctx, src0_clone, src1_clone, *(int *)tensor->op_params); + } else if (tensor->op == GGML_OP_UPSCALE) { + tensor_clone = ggml_upscale_ext(ggml_ctx, src0_clone, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]); } else if (tensor->op == GGML_OP_SCALE) { tensor_clone = ggml_scale(ggml_ctx, src0_clone, ((float *)tensor->op_params)[0]); } else if (tensor->op == GGML_OP_SQR) { tensor_clone = ggml_sqr(ggml_ctx, src0_clone); } else if (tensor->op == GGML_OP_CLAMP) { tensor_clone = ggml_clamp(ggml_ctx, src0_clone, ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]); + } else if (tensor->op == GGML_OP_PAD) { + tensor_clone = ggml_pad(ggml_ctx, src0_clone, tensor->ne[0] - src0_clone->ne[0], tensor->ne[1] - src0_clone->ne[1], tensor->ne[2] - src0_clone->ne[2], tensor->ne[3] - src0_clone->ne[3]); } else if (tensor->op == GGML_OP_ADD) { tensor_clone = ggml_add(ggml_ctx, src0_clone, src1_clone); } else if (tensor->op == GGML_OP_NORM) { tensor_clone = ggml_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params); + } else if (tensor->op == GGML_OP_GROUP_NORM) { + tensor_clone = ggml_group_norm(ggml_ctx, src0_clone, *(int *)tensor->op_params); } else if (tensor->op == GGML_OP_RMS_NORM) { tensor_clone = ggml_rms_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params); } else if (tensor->op == GGML_OP_SOFT_MAX) { @@ -6777,12 +7125,12 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * const int mode = ((int32_t *) tensor->op_params)[2]; //const int n_ctx_ggml = ((int32_t *) tensor->op_params)[3]; const int n_ctx_orig_ggml = ((int32_t *) tensor->op_params)[4]; - float freq_base = ((float *) tensor->op_params)[5]; - float freq_scale = ((float *) tensor->op_params)[6]; - float ext_factor = ((float *) tensor->op_params)[7]; - float attn_factor = ((float *) tensor->op_params)[8]; - float beta_fast = ((float *) tensor->op_params)[9]; - float beta_slow = ((float *) tensor->op_params)[10]; + const float freq_base = ((float *) tensor->op_params)[5]; + const float freq_scale = ((float *) tensor->op_params)[6]; + const float ext_factor = ((float *) tensor->op_params)[7]; + const float attn_factor = ((float *) tensor->op_params)[8]; + const float beta_fast = ((float *) tensor->op_params)[9]; + const float beta_slow = ((float *) tensor->op_params)[10]; tensor_clone = ggml_rope_ext(ggml_ctx, src0_clone, src1_clone, src2_clone, n_dims, mode, n_ctx_orig_ggml, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); } else if (tensor->op == GGML_OP_UNARY) { switch (ggml_get_unary_op(tensor)) { @@ -6792,9 +7140,15 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * case GGML_UNARY_OP_GELU: tensor_clone = ggml_gelu(ggml_ctx, src0_clone); break; + case GGML_UNARY_OP_GELU_QUICK: + tensor_clone = ggml_gelu_quick(ggml_ctx, src0_clone); + break; case GGML_UNARY_OP_RELU: tensor_clone = ggml_relu(ggml_ctx, src0_clone); break; + case GGML_UNARY_OP_TANH: + tensor_clone = ggml_tanh(ggml_ctx, src0_clone); + break; default: std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl; GGML_ABORT("fatal error"); @@ -6823,6 +7177,23 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * tensor_clone = ggml_argsort(ggml_ctx, src0_clone, (ggml_sort_order) *(int *)tensor->op_params); } else if (tensor->op == GGML_OP_SUM_ROWS) { tensor_clone = ggml_sum_rows(ggml_ctx, src0_clone); + } else if (tensor->op == GGML_OP_IM2COL) { + const int32_t s0 = tensor->op_params[0]; + const int32_t s1 = tensor->op_params[1]; + const int32_t p0 = tensor->op_params[2]; + const int32_t p1 = tensor->op_params[3]; + const int32_t d0 = tensor->op_params[4]; + const int32_t d1 = tensor->op_params[5]; + + const bool is_2D = tensor->op_params[6] == 1; + tensor_clone = ggml_im2col(ggml_ctx, src0_clone, src1_clone, s0, s1, p0, p1, d0, d1, is_2D, tensor->type); + } else if (tensor->op == GGML_OP_TIMESTEP_EMBEDDING) { + const int32_t dim = tensor->op_params[0]; + const int32_t max_period = tensor->op_params[1]; + tensor_clone = ggml_timestep_embedding(ggml_ctx, src0_clone, dim, max_period); + } else if (tensor->op == GGML_OP_LEAKY_RELU) { + const float * op_params = (const float *)tensor->op_params; + tensor_clone = ggml_leaky_relu(ggml_ctx, src0_clone, op_params[0], false); } else { std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl; GGML_ABORT("fatal error"); @@ -6834,7 +7205,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 8); if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { - ggml_vk_print_tensor(ctx, tensor_clone, "tensor_clone"); + ggml_vk_print_tensor(tensor_clone, "tensor_clone"); } comp_size = ggml_nbytes(tensor_clone); @@ -6851,9 +7222,11 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor * } ggml_free(ggml_ctx); + + VK_LOG_DEBUG("END ggml_vk_check_results_0(" << tensor->name << ")"); } -static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_tensor * tensor) { +static void ggml_vk_check_results_1(ggml_tensor * tensor) { if (tensor->op == GGML_OP_TRANSPOSE) { return; } @@ -6977,11 +7350,6 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_tensor * std::cerr << std::endl << "Correct:" << std::endl; ggml_vk_print_tensor_area(tensor, comp_result, 5, 5, 0, 0); std::cerr << std::endl; - std::cerr << std::endl << "Result:" << std::endl; - ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 1, 0); - std::cerr << std::endl << "Correct:" << std::endl; - ggml_vk_print_tensor_area(tensor, comp_result, 5, 5, 1, 0); - std::cerr << std::endl; std::vector done; ggml_vk_print_graph_origin(tensor, done); } @@ -7018,5 +7386,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_tensor * if (ggml_backend_buffer_is_vk(tensor->buffer)) { free(tensor_data); } + + VK_LOG_DEBUG("END ggml_vk_check_results_1(" << tensor->name << ")"); } #endif diff --git a/ggml/src/vulkan-shaders/add.comp b/ggml/src/vulkan-shaders/add.comp index 8475b0119..3974845d6 100644 --- a/ggml/src/vulkan-shaders/add.comp +++ b/ggml/src/vulkan-shaders/add.comp @@ -4,9 +4,11 @@ #include "generic_binary_head.comp" void main() { - if (gl_GlobalInvocationID.x >= p.ne) { + const uint idx = get_idx(); + + if (idx >= p.ne) { return; } - data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]) + FLOAT_TYPE(data_b[src1_idx(gl_GlobalInvocationID.x)])); + data_d[p.d_offset + dst_idx(idx)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(idx)]) + FLOAT_TYPE(data_b[src1_idx(idx)])); } diff --git a/ggml/src/vulkan-shaders/clamp.comp b/ggml/src/vulkan-shaders/clamp.comp index ca272e227..7071302a4 100644 --- a/ggml/src/vulkan-shaders/clamp.comp +++ b/ggml/src/vulkan-shaders/clamp.comp @@ -4,10 +4,12 @@ #include "generic_unary_head.comp" void main() { - if (gl_GlobalInvocationID.x >= p.ne) { + const uint idx = get_idx(); + + if (idx >= p.ne) { return; } - const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]); - data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(val < p.param1 ? p.param1 : (val > p.param2 ? p.param2 : val)); + const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(idx)]); + data_d[p.d_offset + dst_idx(idx)] = D_TYPE(val < p.param1 ? p.param1 : (val > p.param2 ? p.param2 : val)); } diff --git a/ggml/src/vulkan-shaders/concat.comp b/ggml/src/vulkan-shaders/concat.comp new file mode 100644 index 000000000..08ab5514b --- /dev/null +++ b/ggml/src/vulkan-shaders/concat.comp @@ -0,0 +1,35 @@ +#version 450 + +#include "types.comp" +#include "generic_binary_head.comp" + +void main() { + const uint idx = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; + const int dim = p.param3; + + if (idx >= p.ne) { + return; + } + + const uint i3 = idx / (p.ne22*p.ne21*p.ne20); + const uint i3_offset = i3 * p.ne22*p.ne21*p.ne20; + const uint i2 = (idx - i3_offset) / (p.ne21*p.ne20); + const uint i2_offset = i2*p.ne21*p.ne20; + const uint i1 = (idx - i3_offset - i2_offset) / p.ne20; + const uint i0 = idx - i3_offset - i2_offset - i1*p.ne20; + + uint o[4] = {0, 0, 0, 0}; + o[dim] = dim == 0 ? p.ne00 : (dim == 1 ? p.ne01 : (dim == 2 ? p.ne02 : p.ne03)); + + const uint src0_idx = i3*p.nb03 + i2*p.nb02 + i1*p.nb01 + i0*p.nb00; + const uint src1_idx = (i3 - o[3])*p.nb13 + (i2 - o[2])*p.nb12 + (i1 - o[1])*p.nb11 + (i0 - o[0])*p.nb10; + const uint dst_idx = i3*p.nb23 + i2*p.nb22 + i1*p.nb21 + i0*p.nb20; + + const bool is_src0 = i0 < p.ne00 && i1 < p.ne01 && i2 < p.ne02 && i3 < p.ne03; + +#ifndef OPTIMIZATION_ERROR_WORKAROUND + data_d[p.d_offset + dst_idx] = D_TYPE(is_src0 ? data_a[src0_idx] : data_b[src1_idx]); +#else + data_d[p.d_offset + dst_idx] = is_src0 ? data_a[src0_idx] : data_b[src1_idx]; +#endif +} diff --git a/ggml/src/vulkan-shaders/copy.comp b/ggml/src/vulkan-shaders/copy.comp index efb55876e..c26917c0f 100644 --- a/ggml/src/vulkan-shaders/copy.comp +++ b/ggml/src/vulkan-shaders/copy.comp @@ -4,13 +4,15 @@ #include "generic_unary_head.comp" void main() { - if (gl_GlobalInvocationID.x >= p.ne) { + const uint idx = get_idx(); + + if (idx >= p.ne) { return; } #ifndef OPTIMIZATION_ERROR_WORKAROUND - data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]); + data_d[p.d_offset + dst_idx(idx)] = D_TYPE(data_a[src0_idx(idx)]); #else - data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = data_a[src0_idx(gl_GlobalInvocationID.x)]; + data_d[p.d_offset + dst_idx(idx)] = data_a[src0_idx(idx)]; #endif } diff --git a/ggml/src/vulkan-shaders/div.comp b/ggml/src/vulkan-shaders/div.comp index 8ee4bfc73..8cfce58b1 100644 --- a/ggml/src/vulkan-shaders/div.comp +++ b/ggml/src/vulkan-shaders/div.comp @@ -4,9 +4,11 @@ #include "generic_binary_head.comp" void main() { - if (gl_GlobalInvocationID.x >= p.ne) { + const uint idx = get_idx(); + + if (idx >= p.ne) { return; } - data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]) / FLOAT_TYPE(data_b[src1_idx(gl_GlobalInvocationID.x)])); + data_d[p.d_offset + dst_idx(idx)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(idx)]) / FLOAT_TYPE(data_b[src1_idx(idx)])); } diff --git a/ggml/src/vulkan-shaders/gelu.comp b/ggml/src/vulkan-shaders/gelu.comp index 9fe807cce..4cc7a68ca 100644 --- a/ggml/src/vulkan-shaders/gelu.comp +++ b/ggml/src/vulkan-shaders/gelu.comp @@ -13,7 +13,7 @@ layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; void main() { const float GELU_COEF_A = 0.044715f; const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f; - const uint i = gl_GlobalInvocationID.x; + const uint i = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; if (i >= p.KX) { return; diff --git a/ggml/src/vulkan-shaders/gelu_quick.comp b/ggml/src/vulkan-shaders/gelu_quick.comp new file mode 100644 index 000000000..e6e6fcfd2 --- /dev/null +++ b/ggml/src/vulkan-shaders/gelu_quick.comp @@ -0,0 +1,23 @@ +#version 450 + +#include "generic_head.comp" +#include "types.comp" + +#extension GL_EXT_control_flow_attributes : enable + +layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; + +layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; +layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; + +void main() { + const float GELU_QUICK_COEF = -1.702f; + const uint i = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; + + if (i >= p.KX) { + return; + } + + const float x = float(data_a[i]); + data_d[i] = D_TYPE(x * (1.0f / (1.0f + exp(GELU_QUICK_COEF * x)))); +} diff --git a/ggml/src/vulkan-shaders/generic_binary_head.comp b/ggml/src/vulkan-shaders/generic_binary_head.comp index ab45d2564..b6beaff1c 100644 --- a/ggml/src/vulkan-shaders/generic_binary_head.comp +++ b/ggml/src/vulkan-shaders/generic_binary_head.comp @@ -7,7 +7,7 @@ layout (push_constant) uniform parameter uint ne10; uint ne11; uint ne12; uint ne13; uint nb10; uint nb11; uint nb12; uint nb13; uint ne20; uint ne21; uint ne22; uint ne23; uint nb20; uint nb21; uint nb22; uint nb23; uint d_offset; - float param1; float param2; + float param1; float param2; int param3; } p; layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; @@ -16,6 +16,10 @@ layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; layout (binding = 2) writeonly buffer D {D_TYPE data_d[];}; +uint get_idx() { + return gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; +} + uint src0_idx(uint idx) { const uint i03 = idx / (p.ne02*p.ne01*p.ne00); const uint i03_offset = i03 * p.ne02*p.ne01*p.ne00; diff --git a/ggml/src/vulkan-shaders/generic_unary_head.comp b/ggml/src/vulkan-shaders/generic_unary_head.comp index de08de7cd..eacdefc7d 100644 --- a/ggml/src/vulkan-shaders/generic_unary_head.comp +++ b/ggml/src/vulkan-shaders/generic_unary_head.comp @@ -14,6 +14,10 @@ layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; +uint get_idx() { + return gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; +} + uint src0_idx(uint idx) { const uint i03 = idx / (p.ne02*p.ne01*p.ne00); const uint i03_offset = i03 * p.ne02*p.ne01*p.ne00; diff --git a/ggml/src/vulkan-shaders/group_norm.comp b/ggml/src/vulkan-shaders/group_norm.comp new file mode 100644 index 000000000..5ad9b28da --- /dev/null +++ b/ggml/src/vulkan-shaders/group_norm.comp @@ -0,0 +1,66 @@ +#version 450 + +#include "generic_head.comp" +#include "types.comp" + +#extension GL_EXT_control_flow_attributes : enable +#define BLOCK_SIZE 512 + +layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in; + +layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; +layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; + +shared float tmp[BLOCK_SIZE]; + +void main() { + const uint group_size = p.KX; + const float eps = p.param1; + + const uint tid = gl_LocalInvocationID.x; + const uint start = gl_WorkGroupID.x * group_size + tid; + const uint end = start + group_size; + + tmp[tid] = 0.0f; + + // Calculate mean + [[unroll]] for (uint col = start; col < end; col += BLOCK_SIZE) { + tmp[tid] += float(data_a[col]); + } + + // tmp up partial tmps and write back result + barrier(); + [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) { + if (tid < s) { + tmp[tid] += tmp[tid + s]; + } + barrier(); + } + + const float mean = tmp[0] / group_size; + barrier(); + tmp[tid] = 0.0f; + + // Calculate variance + [[unroll]] for (uint col = start; col < end; col += BLOCK_SIZE) { + const float xi = float(data_a[col]) - mean; + data_d[col] = D_TYPE(xi); + tmp[tid] += xi * xi; + } + + // sum up partial sums and write back result + barrier(); + [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) { + if (tid < s) { + tmp[tid] += tmp[tid + s]; + } + barrier(); + } + + const float variance = tmp[0] / group_size; + const float scale = inversesqrt(variance + eps); + + [[unroll]] for (uint col = start; col < end; col += BLOCK_SIZE) { + data_d[col] *= D_TYPE(scale); + } +} diff --git a/ggml/src/vulkan-shaders/im2col.comp b/ggml/src/vulkan-shaders/im2col.comp new file mode 100644 index 000000000..4d48610a3 --- /dev/null +++ b/ggml/src/vulkan-shaders/im2col.comp @@ -0,0 +1,57 @@ +#version 450 + +#extension GL_EXT_shader_16bit_storage : require + +layout (push_constant) uniform parameter +{ + uint batch_offset; uint offset_delta; + uint IC; + uint IW; uint IH; + uint OW; uint OH; + uint KW; uint KH; + uint pelements; + uint CHW; + int s0; int s1; + int p0; int p1; + int d0; int d1; +} p; + +#include "types.comp" + +#define BLOCK_SIZE 256 + +layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in; + +layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; +layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; + +void main() { + const uint i = gl_GlobalInvocationID.x; + if (i >= p.pelements) { + return; + } + + const uint ksize = p.OW * (p.KH > 1 ? p.KW : 1); + const uint kx = i / ksize; + const uint kd = kx * ksize; + const uint ky = (i - kd) / p.OW; + const uint ix = i % p.OW; + + const uint oh = gl_GlobalInvocationID.y; + const uint batch = gl_GlobalInvocationID.z / p.IC; + const uint ic = gl_GlobalInvocationID.z % p.IC; + + const uint iiw = ix * p.s0 + kx * p.d0 - p.p0; + const uint iih = oh * p.s1 + ky * p.d1 - p.p1; + + const uint offset_dst = + ((batch * p.OH + oh) * p.OW + ix) * p.CHW + + (ic * (p.KW * p.KH) + ky * p.KW + kx); + + if (iih < 0 || iih >= p.IH || iiw < 0 || iiw >= p.IW) { + data_d[offset_dst] = D_TYPE(0.0f); + } else { + const uint offset_src = ic * p.offset_delta + batch * p.batch_offset; + data_d[offset_dst] = D_TYPE(data_a[offset_src + iih * p.IW + iiw]); + } +} diff --git a/ggml/src/vulkan-shaders/leaky_relu.comp b/ggml/src/vulkan-shaders/leaky_relu.comp new file mode 100644 index 000000000..d90a99aea --- /dev/null +++ b/ggml/src/vulkan-shaders/leaky_relu.comp @@ -0,0 +1,22 @@ +#version 450 + +#include "generic_head.comp" +#include "types.comp" + +#extension GL_EXT_control_flow_attributes : enable + +layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; + +layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; +layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; + +void main() { + const uint i = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; + + if (i >= p.KX) { + return; + } + + const float val = float(data_a[i]); + data_d[i] = D_TYPE(max(val, 0.0f) + min(val, 0.0f) * p.param1); +} diff --git a/ggml/src/vulkan-shaders/mul.comp b/ggml/src/vulkan-shaders/mul.comp index bbb0aa1d2..bfb61c92d 100644 --- a/ggml/src/vulkan-shaders/mul.comp +++ b/ggml/src/vulkan-shaders/mul.comp @@ -4,9 +4,11 @@ #include "generic_binary_head.comp" void main() { - if (gl_GlobalInvocationID.x >= p.ne) { + const uint idx = get_idx(); + + if (idx >= p.ne) { return; } - data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]) * FLOAT_TYPE(data_b[src1_idx(gl_GlobalInvocationID.x)])); + data_d[p.d_offset + dst_idx(idx)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(idx)]) * FLOAT_TYPE(data_b[src1_idx(idx)])); } diff --git a/ggml/src/vulkan-shaders/norm.comp b/ggml/src/vulkan-shaders/norm.comp index 803dbdcb3..6627a50bd 100644 --- a/ggml/src/vulkan-shaders/norm.comp +++ b/ggml/src/vulkan-shaders/norm.comp @@ -14,7 +14,7 @@ layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; shared vec2 sum[BLOCK_SIZE]; void main() { - const uint row = gl_WorkGroupID.x; + const uint row = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x; const uint tid = gl_LocalInvocationID.x; sum[tid] = vec2(0.0f, 0.0f); diff --git a/ggml/src/vulkan-shaders/pad.comp b/ggml/src/vulkan-shaders/pad.comp new file mode 100644 index 000000000..a465cd52b --- /dev/null +++ b/ggml/src/vulkan-shaders/pad.comp @@ -0,0 +1,26 @@ +#version 450 + +#include "types.comp" +#include "generic_unary_head.comp" + +void main() { + const uint idx = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; + + if (idx >= p.ne) { + return; + } + + const uint i3 = idx / (p.ne12*p.ne11*p.ne10); + const uint i3_offset = i3 * p.ne12*p.ne11*p.ne10; + const uint i2 = (idx - i3_offset) / (p.ne11*p.ne10); + const uint i2_offset = i2*p.ne11*p.ne10; + const uint i1 = (idx - i3_offset - i2_offset) / p.ne10; + const uint i0 = idx - i3_offset - i2_offset - i1*p.ne10; + + const uint src0_idx = i3*p.nb03 + i2*p.nb02 + i1*p.nb01 + i0*p.nb00; + const uint dst_idx = i3*p.nb13 + i2*p.nb12 + i1*p.nb11 + i0*p.nb10; + + const bool is_src0 = i0 < p.ne00 && i1 < p.ne01 && i2 < p.ne02 && i3 < p.ne03; + + data_d[p.d_offset + dst_idx] = D_TYPE(is_src0 ? data_a[src0_idx] : 0.0f); +} diff --git a/ggml/src/vulkan-shaders/relu.comp b/ggml/src/vulkan-shaders/relu.comp index 7e5baa5b8..52a19b62a 100644 --- a/ggml/src/vulkan-shaders/relu.comp +++ b/ggml/src/vulkan-shaders/relu.comp @@ -11,7 +11,7 @@ layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; void main() { - const uint i = gl_GlobalInvocationID.x; + const uint i = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; if (i >= p.KX) { return; diff --git a/ggml/src/vulkan-shaders/rms_norm.comp b/ggml/src/vulkan-shaders/rms_norm.comp index cfd08d345..b554400ba 100644 --- a/ggml/src/vulkan-shaders/rms_norm.comp +++ b/ggml/src/vulkan-shaders/rms_norm.comp @@ -14,7 +14,7 @@ layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; shared FLOAT_TYPE sum[BLOCK_SIZE]; void main() { - const uint row = gl_WorkGroupID.x; + const uint row = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x; const uint tid = gl_LocalInvocationID.x; sum[tid] = FLOAT_TYPE(0.0f); // partial sum for thread in warp diff --git a/ggml/src/vulkan-shaders/scale.comp b/ggml/src/vulkan-shaders/scale.comp index 510cb7237..5cd2f668d 100644 --- a/ggml/src/vulkan-shaders/scale.comp +++ b/ggml/src/vulkan-shaders/scale.comp @@ -4,9 +4,11 @@ #include "generic_unary_head.comp" void main() { - if (gl_GlobalInvocationID.x >= p.ne) { + const uint idx = get_idx(); + + if (idx >= p.ne) { return; } - data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]) * FLOAT_TYPE(p.param1)); + data_d[p.d_offset + dst_idx(idx)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(idx)]) * FLOAT_TYPE(p.param1)); } diff --git a/ggml/src/vulkan-shaders/silu.comp b/ggml/src/vulkan-shaders/silu.comp index 15920f06e..4d36f88e0 100644 --- a/ggml/src/vulkan-shaders/silu.comp +++ b/ggml/src/vulkan-shaders/silu.comp @@ -11,7 +11,7 @@ layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; void main() { - const uint i = gl_GlobalInvocationID.x; + const uint i = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; if (i >= p.KX) { return; diff --git a/ggml/src/vulkan-shaders/soft_max.comp b/ggml/src/vulkan-shaders/soft_max.comp index 1b8419c7c..0bd51ecab 100644 --- a/ggml/src/vulkan-shaders/soft_max.comp +++ b/ggml/src/vulkan-shaders/soft_max.comp @@ -28,7 +28,7 @@ shared FLOAT_TYPE vals[BLOCK_SIZE]; void main() { const uint tid = gl_LocalInvocationID.x; - const uint rowx = gl_WorkGroupID.x; + const uint rowx = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x; const uint rowy = rowx % p.KY; float slope = 1.0f; diff --git a/ggml/src/vulkan-shaders/square.comp b/ggml/src/vulkan-shaders/square.comp index 8dd19333d..1fa118c99 100644 --- a/ggml/src/vulkan-shaders/square.comp +++ b/ggml/src/vulkan-shaders/square.comp @@ -4,10 +4,12 @@ #include "generic_unary_head.comp" void main() { - if (gl_GlobalInvocationID.x >= p.ne) { + const uint idx = get_idx(); + + if (idx >= p.ne) { return; } - const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]); - data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(val * val); + const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(idx)]); + data_d[p.d_offset + dst_idx(idx)] = D_TYPE(val * val); } diff --git a/ggml/src/vulkan-shaders/sum_rows.comp b/ggml/src/vulkan-shaders/sum_rows.comp index ce2f1e2f3..961e5ffa1 100644 --- a/ggml/src/vulkan-shaders/sum_rows.comp +++ b/ggml/src/vulkan-shaders/sum_rows.comp @@ -14,7 +14,7 @@ layout (constant_id = 0) const uint BLOCK_SIZE = 32; shared FLOAT_TYPE tmp[BLOCK_SIZE]; void main() { - const uint row = gl_WorkGroupID.x; + const uint row = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x; const uint col = gl_LocalInvocationID.x; tmp[col] = FLOAT_TYPE(0.0f); diff --git a/ggml/src/vulkan-shaders/tanh.comp b/ggml/src/vulkan-shaders/tanh.comp new file mode 100644 index 000000000..74630dc7f --- /dev/null +++ b/ggml/src/vulkan-shaders/tanh.comp @@ -0,0 +1,21 @@ +#version 450 + +#include "generic_head.comp" +#include "types.comp" + +#extension GL_EXT_control_flow_attributes : enable + +layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; + +layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; +layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; + +void main() { + const uint i = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; + + if (i >= p.KX) { + return; + } + + data_d[i] = D_TYPE(tanh(data_a[i])); +} diff --git a/ggml/src/vulkan-shaders/timestep_embedding.comp b/ggml/src/vulkan-shaders/timestep_embedding.comp new file mode 100644 index 000000000..79e065a93 --- /dev/null +++ b/ggml/src/vulkan-shaders/timestep_embedding.comp @@ -0,0 +1,41 @@ +#version 450 + +#extension GL_EXT_shader_16bit_storage : require + +layout (push_constant) uniform parameter +{ + uint nb1; + uint dim; + uint max_period; +} p; + +#include "types.comp" + +#extension GL_EXT_control_flow_attributes : enable +#define BLOCK_SIZE 256 + +layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in; + +layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; +layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; + +void main() { + const uint i = gl_WorkGroupID.y; + const uint j = gl_GlobalInvocationID.x; + const uint d_offset = i * p.nb1; + + if (p.dim % 2 != 0 && j == ((p.dim + 1) / 2)) { + data_d[d_offset + p.dim] = 0.f; + } + + const uint half_dim = p.dim / 2; + if (j >= half_dim) { + return; + } + + const float timestep = float(data_a[i]); + const float freq = float(exp(-log(p.max_period) * j / half_dim)); + const float arg = timestep * freq; + data_d[d_offset + j] = D_TYPE(cos(arg)); + data_d[d_offset + j + half_dim] = D_TYPE(sin(arg)); +} diff --git a/ggml/src/vulkan-shaders/types.comp b/ggml/src/vulkan-shaders/types.comp index d24c172ca..21dce72fc 100644 --- a/ggml/src/vulkan-shaders/types.comp +++ b/ggml/src/vulkan-shaders/types.comp @@ -6,7 +6,7 @@ #define QUANT_K 1 #define QUANT_R 1 -#ifndef LOAD_VEC_A +#if !defined(LOAD_VEC_A) || LOAD_VEC_A == 1 #define A_TYPE float #elif LOAD_VEC_A == 4 #define A_TYPE vec4 @@ -19,7 +19,7 @@ #define QUANT_K 1 #define QUANT_R 1 -#ifndef LOAD_VEC_A +#if !defined(LOAD_VEC_A) || LOAD_VEC_A == 1 #define A_TYPE float16_t #elif LOAD_VEC_A == 4 #define A_TYPE f16vec4 diff --git a/ggml/src/vulkan-shaders/upscale.comp b/ggml/src/vulkan-shaders/upscale.comp new file mode 100644 index 000000000..511a086ea --- /dev/null +++ b/ggml/src/vulkan-shaders/upscale.comp @@ -0,0 +1,36 @@ +#version 450 + +layout (push_constant) uniform parameter +{ + uint ne; uint d_offset; + uint nb00; uint nb01; uint nb02; uint nb03; + uint ne10; uint ne11; uint ne12; uint ne13; + float sf0; float sf1; float sf2; float sf3; +} p; + +#include "types.comp" + +layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; + +layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; +layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; + +void main() { + const uint idx = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; + + if (idx >= p.ne) { + return; + } + + const uint i10 = idx % p.ne10; + const uint i11 = (idx / p.ne10) % p.ne11; + const uint i12 = (idx / (p.ne10 * p.ne11)) % p.ne12; + const uint i13 = (idx / (p.ne10 * p.ne11 * p.ne12)) % p.ne13; + + const uint i00 = uint(i10 / p.sf0); + const uint i01 = uint(i11 / p.sf1); + const uint i02 = uint(i12 / p.sf2); + const uint i03 = uint(i13 / p.sf3); + + data_d[p.d_offset + idx] = D_TYPE(data_a[i03 * p.nb03 + i02 * p.nb02 + i01 * p.nb01 + i00 * p.nb00]); +} diff --git a/ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp b/ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp index c9dbf9dfd..258a1933f 100644 --- a/ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp +++ b/ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp @@ -30,20 +30,6 @@ #define ASYNCIO_CONCURRENCY 64 -// define prototypes -void execute_command(const std::string& command, std::string& stdout_str, std::string& stderr_str); -bool directory_exists(const std::string& path); -bool create_directory(const std::string& path); -std::string to_uppercase(const std::string& input); -bool string_ends_with(const std::string& str, const std::string& suffix); -std::string join_paths(const std::string& path1, const std::string& path2); -std::string basename(const std::string &path); -void string_to_spv(const std::string& _name, const std::string& in_fname, const std::map& defines, bool fp16); -std::map merge_maps(const std::map& a, const std::map& b); -void matmul_shaders(std::vector>& tasks, bool fp16, bool matmul_id); -void process_shaders(std::vector>& tasks); -void write_output_files(); - std::mutex lock; std::vector> shader_fnames; @@ -52,7 +38,7 @@ std::string input_dir = "vulkan-shaders"; std::string output_dir = "/tmp"; std::string target_hpp = "ggml-vulkan-shaders.hpp"; std::string target_cpp = "ggml-vulkan-shaders.cpp"; -bool clean = true; +bool no_clean = false; const std::vector type_names = { "f32", @@ -283,9 +269,12 @@ void matmul_shaders(std::vector>& tasks, bool fp16, bool matmu for (const auto& tname : type_names) { std::string data_a_key = "DATA_A_" + to_uppercase(tname); + // For unaligned, load one at a time for f32/f16, or two at a time for quants + std::string load_vec_a_unaligned = (tname == "f32" || tname == "f16") ? "1" : "2"; + // For aligned matmul loads std::string load_vec_a = (tname == "f32" || tname == "f16") ? load_vec : "2"; tasks.push_back(std::async(std::launch::async, [=] { - string_to_spv(shader_name + "_" + tname + "_f32", "mul_mm.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}), fp16); + string_to_spv(shader_name + "_" + tname + "_f32", "mul_mm.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}), fp16); })); tasks.push_back(std::async(std::launch::async, [=] { string_to_spv(shader_name + "_" + tname + "_f32_aligned", "mul_mm.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f32}, {"D_TYPE", "float"}}), fp16); @@ -354,6 +343,9 @@ void process_shaders(std::vector>& tasks) { tasks.push_back(std::async(std::launch::async, [=] { string_to_spv("norm_f32", "norm.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}})); })); + tasks.push_back(std::async(std::launch::async, [=] { + string_to_spv("group_norm_f32", "group_norm.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}})); + })); tasks.push_back(std::async(std::launch::async, [=] { string_to_spv("rms_norm_f32", "rms_norm.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}})); })); @@ -371,6 +363,9 @@ void process_shaders(std::vector>& tasks) { tasks.push_back(std::async(std::launch::async, [] { string_to_spv("add_f32", "add.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}}); })); + tasks.push_back(std::async(std::launch::async, [] { + string_to_spv("add_f16_f32_f16", "add.comp", {{"A_TYPE", "float16_t"}, {"B_TYPE", "float"}, {"D_TYPE", "float16_t"}, {"FLOAT_TYPE", "float"}}); + })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("split_k_reduce", "mul_mat_split_k_reduce.comp", {}); @@ -396,15 +391,42 @@ void process_shaders(std::vector>& tasks) { string_to_spv("clamp_f32", "clamp.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}}); })); + tasks.push_back(std::async(std::launch::async, [] { + string_to_spv("pad_f32", "pad.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); + })); + + tasks.push_back(std::async(std::launch::async, [] { + string_to_spv("concat_f32", "concat.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}); + })); + tasks.push_back(std::async(std::launch::async, [] { + string_to_spv("concat_f16", "concat.comp", {{"A_TYPE", "float16_t"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}}); + })); + tasks.push_back(std::async(std::launch::async, [] { + string_to_spv("concat_i32", "concat.comp", {{"A_TYPE", "int"}, {"B_TYPE", "int"}, {"D_TYPE", "int"}}); + })); + + tasks.push_back(std::async(std::launch::async, [] { + string_to_spv("upscale_f32", "upscale.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}); + })); + tasks.push_back(std::async(std::launch::async, [] { string_to_spv("gelu_f32", "gelu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); })); + tasks.push_back(std::async(std::launch::async, [] { + string_to_spv("gelu_quick_f32", "gelu_quick.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); + })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("silu_f32", "silu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("relu_f32", "relu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); })); + tasks.push_back(std::async(std::launch::async, [] { + string_to_spv("leaky_relu_f32", "leaky_relu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); + })); + tasks.push_back(std::async(std::launch::async, [] { + string_to_spv("tanh_f32", "tanh.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); + })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("diag_mask_inf_f32", "diag_mask_inf.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); @@ -438,6 +460,17 @@ void process_shaders(std::vector>& tasks) { tasks.push_back(std::async(std::launch::async, [=] { string_to_spv("sum_rows_f32", "sum_rows.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}})); })); + + tasks.push_back(std::async(std::launch::async, [=] { + string_to_spv("im2col_f32", "im2col.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}})); + })); + tasks.push_back(std::async(std::launch::async, [=] { + string_to_spv("im2col_f32_f16", "im2col.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}})); + })); + + tasks.push_back(std::async(std::launch::async, [=] { + string_to_spv("timestep_embedding_f32", "timestep_embedding.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}})); + })); } void write_output_files() { @@ -478,9 +511,8 @@ void write_output_files() { } fprintf(src, "\n};\n\n"); - if (clean) { + if (!no_clean) { std::remove(path.c_str()); - // fprintf(stderr, "Removed: %s\n", path.c_str()); } } @@ -496,18 +528,6 @@ int main(int argc, char** argv) { } } - if (argc <= 1 || args.find("--help") != args.end()) { - std::cout << "Usage:\n" - "\tvulkan-shaders-gen [options]\n\n" - "Options:\n" - "\t--glslc Path to glslc executable (default: /usr/bin/glslc)\n" - "\t--input-dir Directory containing shader sources (required)\n" - "\t--output-dir Output directory for generated SPIR-V files and optional C++ headers\n" - "\t--target-hpp Path to generate a header file with shader declarations in C++ format\n" - "\t--target-cpp Path to generate a source code file implementing the declared shaders (optional)\n" - "\t--no-clean Keep temporary SPIR-V files after build (default: remove them)\n"; - return EXIT_SUCCESS; - } if (args.find("--glslc") != args.end()) { GLSLC = args["--glslc"]; // Path to glslc } @@ -524,7 +544,7 @@ int main(int argc, char** argv) { target_cpp = args["--target-cpp"]; // Path to generated cpp file } if (args.find("--no-clean") != args.end()) { - clean = false; // Keep temporary SPIR-V files in output-dir after build + no_clean = true; // Keep temporary SPIR-V files in output-dir after build } if (!directory_exists(input_dir)) { From 5587e57a76630651752031223cc7024cb32cf308 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 4 Aug 2024 19:13:25 +0300 Subject: [PATCH 06/16] sync : ggml ggml-ci --- scripts/sync-ggml-am.sh | 1 + scripts/sync-ggml.last | 2 +- 2 files changed, 2 insertions(+), 1 deletion(-) diff --git a/scripts/sync-ggml-am.sh b/scripts/sync-ggml-am.sh index c40025356..aa4895c6d 100755 --- a/scripts/sync-ggml-am.sh +++ b/scripts/sync-ggml-am.sh @@ -64,6 +64,7 @@ while read c; do src/ggml*.cu \ src/ggml-cuda/* \ src/ggml-sycl/* \ + src/vulkan-shaders/* \ include/ggml*.h \ tests/test-opt.cpp \ tests/test-grad0.cpp \ diff --git a/scripts/sync-ggml.last b/scripts/sync-ggml.last index 998b23ac6..1b82b1047 100644 --- a/scripts/sync-ggml.last +++ b/scripts/sync-ggml.last @@ -1 +1 @@ -31d544f87835a55602883fe09156bb85a4c163d8 +18703ad600cc68dbdb04d57434c876989a841d12 From 064cdc265fb63590c7c8f04a609d36ef200d55a7 Mon Sep 17 00:00:00 2001 From: 0cc4m Date: Mon, 5 Aug 2024 07:52:55 +0200 Subject: [PATCH 07/16] vulkan : fix Qantized Mat-Vec Mul on AMD GPUs for ncols < 64 (#8855) * Fix Vulkan mul mat vec invalid results when ncols < warp size * Only run backend ops mul mat vec block size test if block size not already covered --- ggml/src/vulkan-shaders/mul_mat_vec.comp | 13 ++++++++++--- tests/test-backend-ops.cpp | 7 ++++--- 2 files changed, 14 insertions(+), 6 deletions(-) diff --git a/ggml/src/vulkan-shaders/mul_mat_vec.comp b/ggml/src/vulkan-shaders/mul_mat_vec.comp index 15d2a8063..46a6369bc 100644 --- a/ggml/src/vulkan-shaders/mul_mat_vec.comp +++ b/ggml/src/vulkan-shaders/mul_mat_vec.comp @@ -16,6 +16,13 @@ void main() { const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; const uint tid = gl_LocalInvocationID.x; + // There are not enough cols to use all threads + if (tid >= p.ncols) { + return; + } + + const uint block_size = min(p.ncols, BLOCK_SIZE); + uint a_offset, b_offset, d_offset; get_offsets(a_offset, b_offset, d_offset); @@ -23,8 +30,8 @@ void main() { tmp[tid] = FLOAT_TYPE(0.0f); - [[unroll]] for (uint i = 0; i < p.ncols/BLOCK_SIZE; i += 2) { - const uint col = i*BLOCK_SIZE + 2*tid; + [[unroll]] for (uint i = 0; i < p.ncols/block_size; i += 2) { + const uint col = i*block_size + 2*tid; const uint ib = (row*p.ncols + col)/QUANT_K; // block index const uint iqs = (col%QUANT_K)/QUANT_R; // quant index const uint iybs = col - col%QUANT_K; // y block start index @@ -38,7 +45,7 @@ void main() { // sum up partial sums and write back result barrier(); - [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) { + [[unroll]] for (uint s = block_size/2; s > 0; s >>= 1) { if (tid < s) { tmp[tid] += tmp[tid + s]; } diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index f5065f145..54cef05c3 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -2271,9 +2271,10 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op for (ggml_type type_a : other_types) { for (ggml_type type_b : {GGML_TYPE_F32}) { - - test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), { 1, 1}, {1, 1})); - test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1})); + if (ggml_blck_size(type_a) != 256) { + test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1})); + } + test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1})); } } From f1ea5146d741a0c9be6d8fbfab9323fea6c4a3f0 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 5 Aug 2024 08:53:39 +0300 Subject: [PATCH 08/16] llama : better replace_all (#8852) --- src/llama.cpp | 17 +++++++---------- 1 file changed, 7 insertions(+), 10 deletions(-) diff --git a/src/llama.cpp b/src/llama.cpp index e6f303d31..ff234565d 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -122,17 +122,14 @@ static std::string trim(const std::string & str) { } static void replace_all(std::string & s, const std::string & search, const std::string & replace) { - std::string result; - for (size_t pos = 0; ; pos += search.length()) { - auto new_pos = s.find(search, pos); - if (new_pos == std::string::npos) { - result += s.substr(pos, s.size() - pos); - break; - } - result += s.substr(pos, new_pos - pos) + replace; - pos = new_pos; + if (search.empty()) { + return; // Avoid infinite loop if 'search' is an empty string + } + size_t pos = 0; + while ((pos = s.find(search, pos)) != std::string::npos) { + s.replace(pos, search.length(), replace); + pos += replace.length(); } - s = std::move(result); } static bool is_float_close(float a, float b, float abs_tol) { From 400ae6f65f0b55babd48d1e3ec7fd663a97fc8d0 Mon Sep 17 00:00:00 2001 From: BarfingLemurs <128182951+BarfingLemurs@users.noreply.github.com> Date: Mon, 5 Aug 2024 01:54:10 -0400 Subject: [PATCH 09/16] readme : update model list (#8851) --- README.md | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/README.md b/README.md index 775ce2c88..34992b0af 100644 --- a/README.md +++ b/README.md @@ -95,8 +95,16 @@ Typically finetunes of the base models below are supported as well. - [x] [SEA-LION](https://huggingface.co/models?search=sea-lion) - [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B) - [x] [OLMo](https://allenai.org/olmo) +- [x] [Granite models](https://huggingface.co/collections/ibm-granite/granite-code-models-6624c5cec322e4c148c8b330) - [x] [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) + [Pythia](https://github.com/EleutherAI/pythia) +- [x] [Snowflake-Arctic MoE](https://huggingface.co/collections/Snowflake/arctic-66290090abe542894a5ac520) +- [x] [Smaug](https://huggingface.co/models?search=Smaug) +- [x] [Poro 34B](https://huggingface.co/LumiOpen/Poro-34B) +- [x] [Bitnet b1.58 models](https://huggingface.co/1bitLLM) +- [x] [Flan T5](https://huggingface.co/models?search=flan-t5) +- [x] [Open Elm models](https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca) - [x] [ChatGLM3-6b](https://huggingface.co/THUDM/chatglm3-6b) + [ChatGLM4-9b](https://huggingface.co/THUDM/glm-4-9b) +- [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966) (instructions for supporting more models: [HOWTO-add-model.md](./docs/development/HOWTO-add-model.md)) From e31a4f679779220312c165b0f5994c680a610e38 Mon Sep 17 00:00:00 2001 From: stduhpf Date: Mon, 5 Aug 2024 08:18:27 +0200 Subject: [PATCH 10/16] cmake: fix paths for vulkan shaders compilation on Windows (#8573) * Vulkan-shaders: attempt fix compilation on windows * fix miss-matched parenthesis --- .../src/vulkan-shaders/vulkan-shaders-gen.cpp | 24 ++++++++++++------- 1 file changed, 15 insertions(+), 9 deletions(-) diff --git a/ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp b/ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp index 258a1933f..f6f4f116a 100644 --- a/ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp +++ b/ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp @@ -179,11 +179,7 @@ bool string_ends_with(const std::string& str, const std::string& suffix) { return std::equal(suffix.rbegin(), suffix.rend(), str.rbegin()); } -#ifdef _WIN32 - static const char path_separator = '\\'; -#else - static const char path_separator = '/'; -#endif +static const char path_separator = '/'; std::string join_paths(const std::string& path1, const std::string& path2) { return path1 + path_separator + path2; @@ -198,7 +194,11 @@ void string_to_spv(const std::string& _name, const std::string& in_fname, const std::string out_fname = join_paths(output_dir, name + ".spv"); std::string in_path = join_paths(input_dir, in_fname); - std::vector cmd = {GLSLC, "-fshader-stage=compute", "--target-env=vulkan1.2", "-O", in_path, "-o", out_fname}; + #ifdef _WIN32 + std::vector cmd = {GLSLC, "-fshader-stage=compute", "--target-env=vulkan1.2", "-O", "\"" + in_path + "\"", "-o", "\"" + out_fname + "\""}; + #else + std::vector cmd = {GLSLC, "-fshader-stage=compute", "--target-env=vulkan1.2", "-O", in_path, "-o", out_fname}; + #endif for (const auto& define : defines) { cmd.push_back("-D" + define.first + "=" + define.second); } @@ -482,10 +482,16 @@ void write_output_files() { for (const auto& pair : shader_fnames) { const std::string& name = pair.first; - const std::string& path = pair.second; + #ifdef _WIN32 + std::string path = pair.second; + std::replace(path.begin(), path.end(), '/', '\\' ); + #else + const std::string& path = pair.second; + #endif + FILE* spv = fopen(path.c_str(), "rb"); if (!spv) { - std::cerr << "Error opening SPIR-V file: " << path << "\n"; + std::cerr << "Error opening SPIR-V file: " << path << " (" << strerror(errno) << ")\n"; continue; } @@ -497,7 +503,7 @@ void write_output_files() { size_t read_size = fread(data.data(), 1, size, spv); fclose(spv); if (read_size != size) { - std::cerr << "Error reading SPIR-V file: " << path << "\n"; + std::cerr << "Error reading SPIR-V file: " << path << " (" << strerror(errno) << ")\n"; continue; } From d3f0c7166adfa952237e0f437a5344362d8256d4 Mon Sep 17 00:00:00 2001 From: fairydreaming <166155368+fairydreaming@users.noreply.github.com> Date: Mon, 5 Aug 2024 09:38:01 +0200 Subject: [PATCH 11/16] Stop the generation when <|eom_id|> token is encountered - needed for Llama 3.1 tool call support (#8858) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * gguf-py, llama : add constants and methods related to Llama-3.1 <|eom_id|> token * llama : find Llama-3.1 <|eom_id|> token id during vocab loading * llama-vocab : add Llama-3.1 <|eom_id|> token to the set of tokens stopping the generation --------- Co-authored-by: Stanisław Szymczyk --- gguf-py/gguf/constants.py | 2 ++ gguf-py/gguf/gguf_writer.py | 3 +++ src/llama-vocab.cpp | 7 ++++++- src/llama-vocab.h | 2 ++ src/llama.cpp | 14 ++++++++++++++ 5 files changed, 27 insertions(+), 1 deletion(-) diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index e343c2ef1..59ffd92ea 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -161,6 +161,7 @@ class Keys: SUFFIX_ID = "tokenizer.ggml.suffix_token_id" MIDDLE_ID = "tokenizer.ggml.middle_token_id" EOT_ID = "tokenizer.ggml.eot_token_id" + EOM_ID = "tokenizer.ggml.eom_token_id" class Adapter: TYPE = "adapter.type" @@ -1327,3 +1328,4 @@ KEY_TOKENIZER_PRIFIX_ID = Keys.Tokenizer.PREFIX_ID KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID +KEY_TOKENIZER_EOM_ID = Keys.Tokenizer.EOM_ID diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index 2e0b335ee..76385a828 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -828,6 +828,9 @@ class GGUFWriter: def add_eot_token_id(self, id: int) -> None: self.add_uint32(Keys.Tokenizer.EOT_ID, id) + def add_eom_token_id(self, id: int) -> None: + self.add_uint32(Keys.Tokenizer.EOM_ID, id) + def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes: pack_prefix = '' if not skip_pack_prefix: diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index 133094904..9be076f6d 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -1444,7 +1444,8 @@ llama_token_attr llama_token_get_attr_impl(const struct llama_vocab & vocab, lla bool llama_token_is_eog_impl(const struct llama_vocab & vocab, llama_token token) { return token != -1 && ( token == llama_token_eos_impl(vocab) || - token == llama_token_eot_impl(vocab) + token == llama_token_eot_impl(vocab) || + token == llama_token_eom_impl(vocab) ); } @@ -1500,6 +1501,10 @@ llama_token llama_token_eot_impl(const struct llama_vocab & vocab) { return vocab.special_eot_id; } +llama_token llama_token_eom_impl(const struct llama_vocab & vocab) { + return vocab.special_eom_id; +} + int32_t llama_tokenize_impl( const struct llama_vocab & vocab, const char * text, diff --git a/src/llama-vocab.h b/src/llama-vocab.h index 30b565d55..7adfc16da 100644 --- a/src/llama-vocab.h +++ b/src/llama-vocab.h @@ -45,6 +45,7 @@ struct llama_vocab { id special_suffix_id = -1; id special_middle_id = -1; id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token + id special_eom_id = -1; // tokenizer flags bool tokenizer_add_space_prefix = false; @@ -101,6 +102,7 @@ llama_token llama_token_prefix_impl(const struct llama_vocab & vocab); llama_token llama_token_middle_impl(const struct llama_vocab & vocab); llama_token llama_token_suffix_impl(const struct llama_vocab & vocab); llama_token llama_token_eot_impl (const struct llama_vocab & vocab); +llama_token llama_token_eom_impl (const struct llama_vocab & vocab); int32_t llama_tokenize_impl( const struct llama_vocab & vocab, diff --git a/src/llama.cpp b/src/llama.cpp index ff234565d..a7b1c9ebd 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -359,6 +359,7 @@ enum llm_kv { LLM_KV_TOKENIZER_SUFFIX_ID, LLM_KV_TOKENIZER_MIDDLE_ID, LLM_KV_TOKENIZER_EOT_ID, + LLM_KV_TOKENIZER_EOM_ID, LLM_KV_ADAPTER_TYPE, LLM_KV_ADAPTER_LORA_ALPHA, @@ -456,6 +457,7 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" }, { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" }, { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" }, + { LLM_KV_TOKENIZER_EOM_ID, "tokenizer.ggml.eom_token_id" }, { LLM_KV_ADAPTER_TYPE, "adapter.type" }, { LLM_KV_ADAPTER_LORA_ALPHA, "adapter.lora.alpha" }, @@ -5583,6 +5585,7 @@ static void llm_load_vocab( { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id }, { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id }, { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id }, + { LLM_KV_TOKENIZER_EOM_ID, vocab.special_eom_id }, }; for (const auto & it : special_token_types) { @@ -5635,6 +5638,17 @@ static void llm_load_vocab( } } } + + // find EOM token: "<|eom_id|>" + // + // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOM_ID + // for now, we apply this workaround to find the EOM token based on its text + if (vocab.special_eom_id == -1) { + const auto & t = vocab.token_to_id.find("<|eom_id|>"); + if (t != vocab.token_to_id.end()) { + vocab.special_eom_id = t->second; + } + } } // build special tokens cache From 1ef14b30075da594cb24f0ab858a14bf1d8d1797 Mon Sep 17 00:00:00 2001 From: Brian Date: Mon, 5 Aug 2024 21:15:28 +1000 Subject: [PATCH 12/16] py: Add more authorship metadata from model card (#8810) * py: add more authorship metadata from model card * fixup! py: add more authorship metadata from model card --- gguf-py/gguf/metadata.py | 129 +++++++++++++++++++++------------------ 1 file changed, 68 insertions(+), 61 deletions(-) diff --git a/gguf-py/gguf/metadata.py b/gguf-py/gguf/metadata.py index 15189f717..ea4d02705 100644 --- a/gguf-py/gguf/metadata.py +++ b/gguf-py/gguf/metadata.py @@ -284,20 +284,67 @@ class Metadata: ######################## if model_card is not None: - if "model_name" in model_card and metadata.name is None: - # Not part of huggingface model card standard but notice some model creator using it - # such as TheBloke in 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF' - metadata.name = model_card.get("model_name") + def use_model_card_metadata(metadata_key: str, model_card_key: str): + if model_card_key in model_card and getattr(metadata, metadata_key, None) is None: + setattr(metadata, metadata_key, model_card.get(model_card_key)) - if "model_creator" in model_card and metadata.author is None: - # Not part of huggingface model card standard but notice some model creator using it - # such as TheBloke in 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF' - metadata.author = model_card.get("model_creator") + def use_array_model_card_metadata(metadata_key: str, model_card_key: str): + # Note: Will append rather than replace if already exist + tags_value = model_card.get(model_card_key, None) + if tags_value is None: + return - if "model_type" in model_card and metadata.basename is None: - # Not part of huggingface model card standard but notice some model creator using it - # such as TheBloke in 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF' - metadata.basename = model_card.get("model_type") + current_value = getattr(metadata, metadata_key, None) + if current_value is None: + current_value = [] + + if isinstance(tags_value, str): + current_value.append(tags_value) + elif isinstance(tags_value, list): + current_value.extend(tags_value) + + setattr(metadata, metadata_key, current_value) + + # LLAMA.cpp's direct internal convention + # (Definitely not part of hugging face formal/informal standard) + ######################################### + use_model_card_metadata("name", "name") + use_model_card_metadata("author", "author") + use_model_card_metadata("version", "version") + use_model_card_metadata("organization", "organization") + use_model_card_metadata("description", "description") + use_model_card_metadata("finetune", "finetune") + use_model_card_metadata("basename", "basename") + use_model_card_metadata("size_label", "size_label") + use_model_card_metadata("source_url", "url") + use_model_card_metadata("source_doi", "doi") + use_model_card_metadata("source_uuid", "uuid") + use_model_card_metadata("source_repo_url", "repo_url") + + # LLAMA.cpp's huggingface style convention + # (Definitely not part of hugging face formal/informal standard... but with model_ appended to match their style) + ########################################### + use_model_card_metadata("name", "model_name") + use_model_card_metadata("author", "model_author") + use_model_card_metadata("version", "model_version") + use_model_card_metadata("organization", "model_organization") + use_model_card_metadata("description", "model_description") + use_model_card_metadata("finetune", "model_finetune") + use_model_card_metadata("basename", "model_basename") + use_model_card_metadata("size_label", "model_size_label") + use_model_card_metadata("source_url", "model_url") + use_model_card_metadata("source_doi", "model_doi") + use_model_card_metadata("source_uuid", "model_uuid") + use_model_card_metadata("source_repo_url", "model_repo_url") + + # Hugging Face Direct Convention + ################################# + + # Not part of huggingface model card standard but notice some model creator using it + # such as TheBloke in 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF' + use_model_card_metadata("name", "model_name") + use_model_card_metadata("author", "model_creator") + use_model_card_metadata("basename", "model_type") if "base_model" in model_card: # This represents the parent models that this is based on @@ -329,58 +376,18 @@ class Metadata: base_model["repo_url"] = f"https://huggingface.co/{org_component}/{model_full_name_component}" metadata.base_models.append(base_model) - if "license" in model_card and metadata.license is None: - metadata.license = model_card.get("license") + use_model_card_metadata("license", "license") + use_model_card_metadata("license_name", "license_name") + use_model_card_metadata("license_link", "license_link") - if "license_name" in model_card and metadata.license_name is None: - metadata.license_name = model_card.get("license_name") + use_array_model_card_metadata("tags", "tags") + use_array_model_card_metadata("tags", "pipeline_tag") - if "license_link" in model_card and metadata.license_link is None: - metadata.license_link = model_card.get("license_link") + use_array_model_card_metadata("languages", "languages") + use_array_model_card_metadata("languages", "language") - tags_value = model_card.get("tags", None) - if tags_value is not None: - - if metadata.tags is None: - metadata.tags = [] - - if isinstance(tags_value, str): - metadata.tags.append(tags_value) - elif isinstance(tags_value, list): - metadata.tags.extend(tags_value) - - pipeline_tags_value = model_card.get("pipeline_tag", None) - if pipeline_tags_value is not None: - - if metadata.tags is None: - metadata.tags = [] - - if isinstance(pipeline_tags_value, str): - metadata.tags.append(pipeline_tags_value) - elif isinstance(pipeline_tags_value, list): - metadata.tags.extend(pipeline_tags_value) - - language_value = model_card.get("languages", model_card.get("language", None)) - if language_value is not None: - - if metadata.languages is None: - metadata.languages = [] - - if isinstance(language_value, str): - metadata.languages.append(language_value) - elif isinstance(language_value, list): - metadata.languages.extend(language_value) - - dataset_value = model_card.get("datasets", model_card.get("dataset", None)) - if dataset_value is not None: - - if metadata.datasets is None: - metadata.datasets = [] - - if isinstance(dataset_value, str): - metadata.datasets.append(dataset_value) - elif isinstance(dataset_value, list): - metadata.datasets.extend(dataset_value) + use_array_model_card_metadata("datasets", "datasets") + use_array_model_card_metadata("datasets", "dataset") # Hugging Face Parameter Heuristics #################################### From b9dfc25ca385a83bde9e9456c4d4fae15377bc7b Mon Sep 17 00:00:00 2001 From: Justine Tunney Date: Mon, 5 Aug 2024 05:43:40 -0700 Subject: [PATCH 13/16] ggml : fix overflows in elu function (#8866) It's helpful to use expm1f(x), because expf(x)-1 will result in overflow for 25% of single-precision floating point numbers. --- ggml/src/ggml.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index 42f4a34b8..910981e4a 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -2312,7 +2312,7 @@ inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); } inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; } inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); } -inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; } +inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expm1f(x[i]); } inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; } inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); } inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); } From b42978e7e4d56eaaa93588414e804d9fbbc3cae2 Mon Sep 17 00:00:00 2001 From: Eric Curtin Date: Mon, 5 Aug 2024 13:45:01 +0100 Subject: [PATCH 14/16] readme : add ramalama to the availables UI (#8811) ramalama is a repo agnostic boring CLI tool that supports pulling from ollama, huggingface and oci registries. Signed-off-by: Eric Curtin --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 34992b0af..1283f6805 100644 --- a/README.md +++ b/README.md @@ -153,6 +153,7 @@ Unless otherwise noted these projects are open-source with permissive licensing: - [Faraday](https://faraday.dev/) (proprietary) - [LMStudio](https://lmstudio.ai/) (proprietary) - [Layla](https://play.google.com/store/apps/details?id=com.laylalite) (proprietary) +- [ramalama](https://github.com/containers/ramalama) (MIT) - [LocalAI](https://github.com/mudler/LocalAI) (MIT) - [LostRuins/koboldcpp](https://github.com/LostRuins/koboldcpp) (AGPL) - [Mozilla-Ocho/llamafile](https://github.com/Mozilla-Ocho/llamafile) From bc0f887e159c0d78c28121e2c8b5c58094170875 Mon Sep 17 00:00:00 2001 From: wangshuai09 <391746016@qq.com> Date: Mon, 5 Aug 2024 21:10:37 +0800 Subject: [PATCH 15/16] cann: fix buffer_num and runtime speed slowly error (#8865) --- ggml/src/ggml-cann.cpp | 4 --- .../kernels/quantize_float_to_q4_0.cpp | 25 +++++++++++-------- 2 files changed, 15 insertions(+), 14 deletions(-) diff --git a/ggml/src/ggml-cann.cpp b/ggml/src/ggml-cann.cpp index a15bc8aa2..81783b7b1 100644 --- a/ggml/src/ggml-cann.cpp +++ b/ggml/src/ggml-cann.cpp @@ -1670,10 +1670,6 @@ GGML_CALL static bool ggml_backend_cann_supports_op(ggml_backend_t backend, // TODO: fix me // Current groupsize should not be greater than k-1 in // aclnnWeightQuantBatchMatmulV2GetWorkspaceSize(). - if (op->src[0]->ne[0]-1 > QK8_0) { - return true; - } - return false; case GGML_TYPE_Q4_0: return true; default: diff --git a/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp b/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp index f6deee3c5..9c8c86b66 100644 --- a/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +++ b/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp @@ -12,6 +12,9 @@ class QUANTIZE_FLOAT_TO_Q4_0 { __aicore__ inline void init(GM_ADDR input, GM_ADDR output, int64_t *input_ne_ub, size_t *input_nb_ub, int64_t *output_ne_ub) { + // TODO: fix test_case CPY(type_src=f16,type_dst=q4_0,ne=[256,4,4,4], + // permute=[0,0,0,0]): + // [CPY] NMSE = 0.000008343 > 0.000001000 FAIL int64_t op_block_num = GetBlockNum(); int64_t op_block_idx = GetBlockIdx(); @@ -61,13 +64,13 @@ class QUANTIZE_FLOAT_TO_Q4_0 { pipe.InitBuffer(input_queue, BUFFER_NUM, Group_Size * sizeof(SRC_T)); pipe.InitBuffer(output_queue, BUFFER_NUM, Group_Size * sizeof(int8_t) / 2); - pipe.InitBuffer(cast_queue , BUFFER_NUM, Group_Size * sizeof(float)); - pipe.InitBuffer(work_queue, BUFFER_NUM, Group_Size*sizeof(float)); - pipe.InitBuffer(max_queue, BUFFER_NUM, Group_Size*sizeof(float)); - pipe.InitBuffer(min_queue, BUFFER_NUM, Group_Size*sizeof(float)); - pipe.InitBuffer(scale_queue, BUFFER_NUM, 16*sizeof(half)); - pipe.InitBuffer(int8_queue, BUFFER_NUM, Group_Size * sizeof(int8_t)); - pipe.InitBuffer(half_queue, BUFFER_NUM, Group_Size * sizeof(half)); + pipe.InitBuffer(cast_queue , 1, Group_Size * sizeof(float)); + pipe.InitBuffer(work_queue, 1, Group_Size * sizeof(float)); + pipe.InitBuffer(max_queue, 1, Group_Size * sizeof(float)); + pipe.InitBuffer(min_queue, 1, Group_Size * sizeof(float)); + pipe.InitBuffer(scale_queue, 1, Group_Size / 2 * sizeof(half)); + pipe.InitBuffer(int8_queue, 1, Group_Size * sizeof(int8_t)); + pipe.InitBuffer(half_queue, 1, Group_Size * sizeof(half)); } __aicore__ inline void copy_in(uint32_t offset) { @@ -178,13 +181,15 @@ class QUANTIZE_FLOAT_TO_Q4_0 { for (int64_t j = 0; j < group_size_in_row; j++) { half scale = calculate_group(i, j); scale_local.SetValue(scale_local_offset++, scale); - if (scale_local_offset == 16) { + // Copy Group_Size/2 length data each time. + if (scale_local_offset == Group_Size / 2) { scale_local_offset = 0; // TODO: OPTIMIZE ME pipe_barrier(PIPE_ALL); - DataCopy(scale_gm[scale_global_offset], scale_local, 16); + DataCopy(scale_gm[scale_global_offset], scale_local, + Group_Size / 2); pipe_barrier(PIPE_ALL); - scale_global_offset += 16; + scale_global_offset += Group_Size / 2; } } } From 0a4ce786814b123096d18aadca89cd352b9e590b Mon Sep 17 00:00:00 2001 From: Liu Jia <109258120+Septa2112@users.noreply.github.com> Date: Tue, 6 Aug 2024 00:14:10 +0800 Subject: [PATCH 16/16] common : Changed tuple to struct (TODO fix) (#8823) * common : Changed tuple to struct (TODO fix) Use struct `llama_init_result` to replace the previous std::tuple * delete llama_init_default_params() * delete the extra whitespace --- common/common.cpp | 18 ++++++++++-------- common/common.h | 8 ++++++-- .../cvector-generator/cvector-generator.cpp | 7 ++++--- examples/embedding/embedding.cpp | 8 ++++---- examples/eval-callback/eval-callback.cpp | 7 ++++--- examples/imatrix/imatrix.cpp | 6 +++--- examples/infill/infill.cpp | 5 ++++- examples/lookahead/lookahead.cpp | 8 ++++---- examples/lookup/lookup-create.cpp | 8 ++++---- examples/lookup/lookup-stats.cpp | 8 ++++---- examples/lookup/lookup.cpp | 8 ++++---- examples/main/main.cpp | 5 ++++- examples/parallel/parallel.cpp | 8 ++++---- examples/perplexity/perplexity.cpp | 8 ++++---- examples/retrieval/retrieval.cpp | 9 +++++---- examples/save-load-state/save-load-state.cpp | 7 ++++--- examples/server/server.cpp | 5 ++++- examples/speculative/speculative.cpp | 8 ++++++-- 18 files changed, 82 insertions(+), 59 deletions(-) diff --git a/common/common.cpp b/common/common.cpp index 521f849e2..ee7fbcba3 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -2039,8 +2039,8 @@ std::string fs_get_cache_file(const std::string & filename) { // // Model utils // - -std::tuple llama_init_from_gpt_params(gpt_params & params) { +struct llama_init_result llama_init_from_gpt_params(gpt_params & params) { + llama_init_result iparams; auto mparams = llama_model_params_from_gpt_params(params); llama_model * model = nullptr; @@ -2055,7 +2055,7 @@ std::tuple llama_init_from_gpt_par if (model == NULL) { fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); - return std::make_tuple(nullptr, nullptr); + return iparams; } auto cparams = llama_context_params_from_gpt_params(params); @@ -2064,7 +2064,7 @@ std::tuple llama_init_from_gpt_par if (lctx == NULL) { fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str()); llama_free_model(model); - return std::make_tuple(nullptr, nullptr); + return iparams; } if (!params.control_vectors.empty()) { @@ -2075,7 +2075,7 @@ std::tuple llama_init_from_gpt_par if (cvec.n_embd == -1) { llama_free(lctx); llama_free_model(model); - return std::make_tuple(nullptr, nullptr); + return iparams; } int err = llama_control_vector_apply(lctx, @@ -2087,7 +2087,7 @@ std::tuple llama_init_from_gpt_par if (err) { llama_free(lctx); llama_free_model(model); - return std::make_tuple(nullptr, nullptr); + return iparams; } } @@ -2099,7 +2099,7 @@ std::tuple llama_init_from_gpt_par fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__); llama_free(lctx); llama_free_model(model); - return std::make_tuple(nullptr, nullptr); + return iparams; } llama_lora_adapter_set(lctx, adapter, lora_scale); } @@ -2135,7 +2135,9 @@ std::tuple llama_init_from_gpt_par llama_reset_timings(lctx); } - return std::make_tuple(model, lctx); + iparams.model = model; + iparams.context = lctx; + return iparams; } struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) { diff --git a/common/common.h b/common/common.h index 8240ff99b..51dcc0d39 100644 --- a/common/common.h +++ b/common/common.h @@ -308,8 +308,12 @@ std::string fs_get_cache_file(const std::string & filename); // Model utils // -// TODO: avoid tuplue, use struct -std::tuple llama_init_from_gpt_params(gpt_params & params); +struct llama_init_result { + struct llama_model * model = nullptr; + struct llama_context * context = nullptr; +}; + +struct llama_init_result llama_init_from_gpt_params(gpt_params & params); struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params); struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params); diff --git a/examples/cvector-generator/cvector-generator.cpp b/examples/cvector-generator/cvector-generator.cpp index d4e126ac2..a12e90d82 100644 --- a/examples/cvector-generator/cvector-generator.cpp +++ b/examples/cvector-generator/cvector-generator.cpp @@ -414,9 +414,10 @@ int main(int argc, char ** argv) { llama_numa_init(params.numa); // load the model to get hparams - llama_model * model; - llama_context * ctx; - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; // int n_ctx = llama_n_ctx(ctx); int n_layers = llama_n_layer(model); diff --git a/examples/embedding/embedding.cpp b/examples/embedding/embedding.cpp index 1466e5b2b..cd7b448a6 100644 --- a/examples/embedding/embedding.cpp +++ b/examples/embedding/embedding.cpp @@ -79,11 +79,11 @@ int main(int argc, char ** argv) { llama_backend_init(); llama_numa_init(params.numa); - llama_model * model; - llama_context * ctx; - // load the model - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; if (model == NULL) { fprintf(stderr, "%s: error: unable to load model\n", __func__); return 1; diff --git a/examples/eval-callback/eval-callback.cpp b/examples/eval-callback/eval-callback.cpp index 37d30ab8c..ef35ba2c0 100644 --- a/examples/eval-callback/eval-callback.cpp +++ b/examples/eval-callback/eval-callback.cpp @@ -163,9 +163,10 @@ int main(int argc, char ** argv) { params.warmup = false; // init - llama_model * model; - llama_context * ctx; - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; if (model == nullptr || ctx == nullptr) { fprintf(stderr, "%s : failed to init\n", __func__); return 1; diff --git a/examples/imatrix/imatrix.cpp b/examples/imatrix/imatrix.cpp index 6ce1863cf..58814b96e 100644 --- a/examples/imatrix/imatrix.cpp +++ b/examples/imatrix/imatrix.cpp @@ -611,10 +611,10 @@ int main(int argc, char ** argv) { params.warmup = false; // init - llama_model * model; - llama_context * ctx; + llama_init_result llama_init = llama_init_from_gpt_params(params); - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; if (model == nullptr || ctx == nullptr) { fprintf(stderr, "%s : failed to init\n", __func__); return 1; diff --git a/examples/infill/infill.cpp b/examples/infill/infill.cpp index dc93d2301..92d630b15 100644 --- a/examples/infill/infill.cpp +++ b/examples/infill/infill.cpp @@ -179,7 +179,10 @@ int main(int argc, char ** argv) { // load the model and apply lora adapter, if any LOG("%s: load the model and apply lora adapter, if any\n", __func__); - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + model = llama_init.model; + ctx = llama_init.context; if (model == NULL) { LOG_TEE("%s: error: unable to load model\n", __func__); diff --git a/examples/lookahead/lookahead.cpp b/examples/lookahead/lookahead.cpp index fb20ad93f..81cf1629c 100644 --- a/examples/lookahead/lookahead.cpp +++ b/examples/lookahead/lookahead.cpp @@ -58,11 +58,11 @@ int main(int argc, char ** argv) { llama_backend_init(); llama_numa_init(params.numa); - llama_model * model = NULL; - llama_context * ctx = NULL; - // load the target model - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; // Tokenize the prompt std::vector inp; diff --git a/examples/lookup/lookup-create.cpp b/examples/lookup/lookup-create.cpp index d713f6f21..5f04709f5 100644 --- a/examples/lookup/lookup-create.cpp +++ b/examples/lookup/lookup-create.cpp @@ -22,11 +22,11 @@ int main(int argc, char ** argv){ llama_backend_init(); llama_numa_init(params.numa); - llama_model * model = NULL; - llama_context * ctx = NULL; - // load the model - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; GGML_ASSERT(model != nullptr); // tokenize the prompt diff --git a/examples/lookup/lookup-stats.cpp b/examples/lookup/lookup-stats.cpp index 2fe67100e..400f3e0b0 100644 --- a/examples/lookup/lookup-stats.cpp +++ b/examples/lookup/lookup-stats.cpp @@ -26,11 +26,11 @@ int main(int argc, char ** argv){ llama_backend_init(); llama_numa_init(params.numa); - llama_model * model = NULL; - llama_context * ctx = NULL; - // load the model - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; // tokenize the prompt std::vector inp; diff --git a/examples/lookup/lookup.cpp b/examples/lookup/lookup.cpp index bb571bac4..d53a9828c 100644 --- a/examples/lookup/lookup.cpp +++ b/examples/lookup/lookup.cpp @@ -34,11 +34,11 @@ int main(int argc, char ** argv){ llama_backend_init(); llama_numa_init(params.numa); - llama_model * model = NULL; - llama_context * ctx = NULL; - // load the model - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; // tokenize the prompt std::vector inp; diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 61e960ea2..6e0635a66 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -207,7 +207,10 @@ int main(int argc, char ** argv) { // load the model and apply lora adapter, if any LOG("%s: load the model and apply lora adapter, if any\n", __func__); - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + model = llama_init.model; + ctx = llama_init.context; if (sparams.cfg_scale > 1.f) { struct llama_context_params lparams = llama_context_params_from_gpt_params(params); ctx_guidance = llama_new_context_with_model(model, lparams); diff --git a/examples/parallel/parallel.cpp b/examples/parallel/parallel.cpp index 7faeaec97..621a1c959 100644 --- a/examples/parallel/parallel.cpp +++ b/examples/parallel/parallel.cpp @@ -129,11 +129,11 @@ int main(int argc, char ** argv) { llama_backend_init(); llama_numa_init(params.numa); - llama_model * model = NULL; - llama_context * ctx = NULL; - // load the target model - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; // load the prompts from an external file if there are any if (params.prompt.empty()) { diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index dbe445391..372684f09 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -2018,11 +2018,11 @@ int main(int argc, char ** argv) { llama_backend_init(); llama_numa_init(params.numa); - llama_model * model; - llama_context * ctx; - // load the model and apply lora adapter, if any - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; if (model == NULL) { fprintf(stderr, "%s: error: unable to load model\n", __func__); return 1; diff --git a/examples/retrieval/retrieval.cpp b/examples/retrieval/retrieval.cpp index eb89d16da..65b19ce71 100644 --- a/examples/retrieval/retrieval.cpp +++ b/examples/retrieval/retrieval.cpp @@ -148,11 +148,12 @@ int main(int argc, char ** argv) { llama_backend_init(); llama_numa_init(params.numa); - llama_model * model; - llama_context * ctx; - // load the model - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; + if (model == NULL) { fprintf(stderr, "%s: error: unable to load model\n", __func__); return 1; diff --git a/examples/save-load-state/save-load-state.cpp b/examples/save-load-state/save-load-state.cpp index d8afdc141..3ea7c790d 100644 --- a/examples/save-load-state/save-load-state.cpp +++ b/examples/save-load-state/save-load-state.cpp @@ -28,10 +28,11 @@ int main(int argc, char ** argv) { std::string result2; // init - llama_model * model; - llama_context * ctx; + llama_init_result llama_init = llama_init_from_gpt_params(params); + + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; - std::tie(model, ctx) = llama_init_from_gpt_params(params); if (model == nullptr || ctx == nullptr) { fprintf(stderr, "%s : failed to init\n", __func__); return 1; diff --git a/examples/server/server.cpp b/examples/server/server.cpp index d5f131d9b..d178ca0f7 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -677,7 +677,10 @@ struct server_context { // dedicate one sequence to the system prompt params.n_parallel += 1; - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + model = llama_init.model; + ctx = llama_init.context; params.n_parallel -= 1; // but be sneaky about it if (model == nullptr) { LOG_ERROR("unable to load model", {{"model", params.model}}); diff --git a/examples/speculative/speculative.cpp b/examples/speculative/speculative.cpp index 0939a1a6a..b051a18f1 100644 --- a/examples/speculative/speculative.cpp +++ b/examples/speculative/speculative.cpp @@ -66,7 +66,9 @@ int main(int argc, char ** argv) { llama_context * ctx_dft = NULL; // load the target model - std::tie(model_tgt, ctx_tgt) = llama_init_from_gpt_params(params); + llama_init_result llama_init_tgt = llama_init_from_gpt_params(params); + model_tgt = llama_init_tgt.model; + ctx_tgt = llama_init_tgt.context; // load the draft model params.model = params.model_draft; @@ -75,7 +77,9 @@ int main(int argc, char ** argv) { params.n_threads = params.n_threads_draft; } params.n_threads_batch = params.n_threads_batch_draft; - std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params); + llama_init_result llama_init_dft = llama_init_from_gpt_params(params); + model_dft = llama_init_dft.model; + ctx_dft = llama_init_dft.context; const bool vocab_type_tgt = llama_vocab_type(model_tgt); LOG("vocab_type tgt: %d\n", vocab_type_tgt);