Merge branch 'master' of https://github.com/ggerganov/llama.cpp into ntkv2
This commit is contained in:
commit
237f1e7912
59 changed files with 2070 additions and 5484 deletions
11
Makefile
11
Makefile
|
@ -1,7 +1,7 @@
|
||||||
# Define the default target now so that it is always the first target
|
# Define the default target now so that it is always the first target
|
||||||
BUILD_TARGETS = \
|
BUILD_TARGETS = \
|
||||||
main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
|
main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
|
||||||
simple batched batched-bench save-load-state server embd-input-test gguf llama-bench llava baby-llama beam-search \
|
simple batched batched-bench save-load-state server gguf llama-bench llava baby-llama beam-search \
|
||||||
speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o
|
speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o
|
||||||
|
|
||||||
# Binaries only useful for tests
|
# Binaries only useful for tests
|
||||||
|
@ -545,7 +545,7 @@ llama.o: llama.cpp ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h l
|
||||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||||
|
|
||||||
COMMON_H_DEPS = common/common.h common/sampling.h build-info.h common/log.h
|
COMMON_H_DEPS = common/common.h common/sampling.h build-info.h common/log.h
|
||||||
COMMON_DEPS = $(COMMON_H_DEPS) common.o sampling.o
|
COMMON_DEPS = $(COMMON_H_DEPS) common.o sampling.o grammar-parser.o
|
||||||
|
|
||||||
common.o: common/common.cpp $(COMMON_H_DEPS)
|
common.o: common/common.cpp $(COMMON_H_DEPS)
|
||||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||||
|
@ -608,13 +608,6 @@ save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.
|
||||||
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp build-info.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp build-info.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
||||||
|
|
||||||
$(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-input/embd-input-lib.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
|
||||||
$(CXX) --shared $(CXXFLAGS) $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS)
|
|
||||||
|
|
||||||
|
|
||||||
embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-test.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %$(DSO_EXT),$(filter-out %.h,$(filter-out %.hpp,$^))) -o $@ $(LDFLAGS) -L. -lembdinput
|
|
||||||
|
|
||||||
gguf: examples/gguf/gguf.cpp ggml.o llama.o $(OBJS)
|
gguf: examples/gguf/gguf.cpp ggml.o llama.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
|
|
33
README.md
33
README.md
|
@ -11,12 +11,8 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||||
|
|
||||||
### Hot topics
|
### Hot topics
|
||||||
|
|
||||||
- ‼️ Breaking change: `rope_freq_base` and `rope_freq_scale` must be set to zero to use the model default values: [#3401](https://github.com/ggerganov/llama.cpp/pull/3401)
|
- LLaVA support: https://github.com/ggerganov/llama.cpp/pull/3436
|
||||||
- Parallel decoding + continuous batching support added: [#3228](https://github.com/ggerganov/llama.cpp/pull/3228) \
|
- ‼️ BPE tokenizer update: existing Falcon and Starcoder `.gguf` models will need to be reconverted: [#3252](https://github.com/ggerganov/llama.cpp/pull/3252)
|
||||||
**Devs should become familiar with the new API**
|
|
||||||
- Local Falcon 180B inference on Mac Studio
|
|
||||||
|
|
||||||
https://github.com/ggerganov/llama.cpp/assets/1991296/98abd4e8-7077-464c-ae89-aebabca7757e
|
|
||||||
|
|
||||||
----
|
----
|
||||||
|
|
||||||
|
@ -89,15 +85,17 @@ as the main playground for developing new features for the [ggml](https://github
|
||||||
- [X] [Vicuna](https://github.com/ggerganov/llama.cpp/discussions/643#discussioncomment-5533894)
|
- [X] [Vicuna](https://github.com/ggerganov/llama.cpp/discussions/643#discussioncomment-5533894)
|
||||||
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
|
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
|
||||||
- [X] [OpenBuddy 🐶 (Multilingual)](https://github.com/OpenBuddy/OpenBuddy)
|
- [X] [OpenBuddy 🐶 (Multilingual)](https://github.com/OpenBuddy/OpenBuddy)
|
||||||
- [X] [Pygmalion 7B / Metharme 7B](#using-pygmalion-7b--metharme-7b)
|
- [X] [Pygmalion/Metharme](#using-pygmalion-7b--metharme-7b)
|
||||||
- [X] [WizardLM](https://github.com/nlpxucan/WizardLM)
|
- [X] [WizardLM](https://github.com/nlpxucan/WizardLM)
|
||||||
- [X] [Baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B) and its derivations (such as [baichuan-7b-sft](https://huggingface.co/hiyouga/baichuan-7b-sft))
|
- [X] [Baichuan 1 & 2](https://huggingface.co/models?search=baichuan-inc/Baichuan) + [derivations](https://huggingface.co/hiyouga/baichuan-7b-sft)
|
||||||
- [X] [Aquila-7B](https://huggingface.co/BAAI/Aquila-7B) / [AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B)
|
- [X] [Aquila 1 & 2](https://huggingface.co/models?search=BAAI/Aquila)
|
||||||
- [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187)
|
- [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187)
|
||||||
- [X] [Mistral AI v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
- [X] [Mistral AI v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
||||||
- [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim)
|
- [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim)
|
||||||
- [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553)
|
- [X] [Persimmon 8B](https://github.com/ggerganov/llama.cpp/pull/3410)
|
||||||
- [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417)
|
- [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417)
|
||||||
|
- [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553)
|
||||||
|
|
||||||
|
|
||||||
**Bindings:**
|
**Bindings:**
|
||||||
|
|
||||||
|
@ -206,7 +204,7 @@ https://user-images.githubusercontent.com/1991296/224442907-7693d4be-acaa-4e01-8
|
||||||
|
|
||||||
## Usage
|
## Usage
|
||||||
|
|
||||||
Here are the steps for the LLaMA-7B model.
|
Here are the end-to-end binary build and model conversion steps for the LLaMA-7B model.
|
||||||
|
|
||||||
### Get the Code
|
### Get the Code
|
||||||
|
|
||||||
|
@ -573,6 +571,18 @@ python3 convert.py models/7B/
|
||||||
|
|
||||||
When running the larger models, make sure you have enough disk space to store all the intermediate files.
|
When running the larger models, make sure you have enough disk space to store all the intermediate files.
|
||||||
|
|
||||||
|
### Running on Windows with prebuilt binaries
|
||||||
|
|
||||||
|
You will find prebuilt Windows binaries on the release page.
|
||||||
|
|
||||||
|
Simply download and extract the latest zip package of choice: (e.g. `llama-b1380-bin-win-avx2-x64.zip`)
|
||||||
|
|
||||||
|
From the unzipped folder, open a terminal/cmd window here and place a pre-converted `.gguf` model file. Test out the main example like so:
|
||||||
|
|
||||||
|
```
|
||||||
|
.\main -m llama-2-7b.Q4_0.gguf -n 128
|
||||||
|
```
|
||||||
|
|
||||||
### Memory/Disk Requirements
|
### Memory/Disk Requirements
|
||||||
|
|
||||||
As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same.
|
As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same.
|
||||||
|
@ -952,7 +962,6 @@ docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /
|
||||||
|
|
||||||
- [main](./examples/main/README.md)
|
- [main](./examples/main/README.md)
|
||||||
- [server](./examples/server/README.md)
|
- [server](./examples/server/README.md)
|
||||||
- [embd-input](./examples/embd-input/README.md)
|
|
||||||
- [jeopardy](./examples/jeopardy/README.md)
|
- [jeopardy](./examples/jeopardy/README.md)
|
||||||
- [BLIS](./docs/BLIS.md)
|
- [BLIS](./docs/BLIS.md)
|
||||||
- [Performance troubleshooting](./docs/token_generation_performance_tips.md)
|
- [Performance troubleshooting](./docs/token_generation_performance_tips.md)
|
||||||
|
|
|
@ -208,6 +208,8 @@ function gg_run_open_llama_3b_v2 {
|
||||||
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||||
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||||
|
|
||||||
|
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||||
|
|
||||||
function check_ppl {
|
function check_ppl {
|
||||||
qnt="$1"
|
qnt="$1"
|
||||||
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||||
|
@ -296,6 +298,7 @@ function gg_sum_open_llama_3b_v2 {
|
||||||
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
|
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
|
||||||
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
|
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
|
||||||
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
|
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
|
||||||
|
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
|
||||||
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
|
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
|
||||||
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
|
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
|
||||||
gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
|
gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
|
||||||
|
@ -382,6 +385,8 @@ function gg_run_open_llama_7b_v2 {
|
||||||
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||||
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||||
|
|
||||||
|
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||||
|
|
||||||
function check_ppl {
|
function check_ppl {
|
||||||
qnt="$1"
|
qnt="$1"
|
||||||
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||||
|
@ -470,6 +475,7 @@ function gg_sum_open_llama_7b_v2 {
|
||||||
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
|
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
|
||||||
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
|
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
|
||||||
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
|
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
|
||||||
|
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
|
||||||
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
|
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
|
||||||
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
|
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
|
||||||
#gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
|
#gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
|
||||||
|
|
|
@ -107,7 +107,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||||
std::string arg;
|
std::string arg;
|
||||||
gpt_params default_params;
|
gpt_params default_params;
|
||||||
const std::string arg_prefix = "--";
|
const std::string arg_prefix = "--";
|
||||||
llama_sampling_params & sparams = params.sampling_params;
|
llama_sampling_params & sparams = params.sparams;
|
||||||
|
|
||||||
for (int i = 1; i < argc; i++) {
|
for (int i = 1; i < argc; i++) {
|
||||||
arg = argv[i];
|
arg = argv[i];
|
||||||
|
@ -281,25 +281,26 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
sparams.repeat_last_n = std::stoi(argv[i]);
|
sparams.penalty_last_n = std::stoi(argv[i]);
|
||||||
|
sparams.n_prev = std::max(sparams.n_prev, sparams.penalty_last_n);
|
||||||
} else if (arg == "--repeat-penalty") {
|
} else if (arg == "--repeat-penalty") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
sparams.repeat_penalty = std::stof(argv[i]);
|
sparams.penalty_repeat = std::stof(argv[i]);
|
||||||
} else if (arg == "--frequency-penalty") {
|
} else if (arg == "--frequency-penalty") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
sparams.frequency_penalty = std::stof(argv[i]);
|
sparams.penalty_freq = std::stof(argv[i]);
|
||||||
} else if (arg == "--presence-penalty") {
|
} else if (arg == "--presence-penalty") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
sparams.presence_penalty = std::stof(argv[i]);
|
sparams.penalty_present = std::stof(argv[i]);
|
||||||
} else if (arg == "--mirostat") {
|
} else if (arg == "--mirostat") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
|
@ -612,7 +613,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
params.grammar = argv[i];
|
sparams.grammar = argv[i];
|
||||||
} else if (arg == "--grammar-file") {
|
} else if (arg == "--grammar-file") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
|
@ -627,7 +628,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||||
std::copy(
|
std::copy(
|
||||||
std::istreambuf_iterator<char>(file),
|
std::istreambuf_iterator<char>(file),
|
||||||
std::istreambuf_iterator<char>(),
|
std::istreambuf_iterator<char>(),
|
||||||
std::back_inserter(params.grammar)
|
std::back_inserter(sparams.grammar)
|
||||||
);
|
);
|
||||||
#ifndef LOG_DISABLE_LOGS
|
#ifndef LOG_DISABLE_LOGS
|
||||||
// Parse args for logging parameters
|
// Parse args for logging parameters
|
||||||
|
@ -680,7 +681,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||||
}
|
}
|
||||||
|
|
||||||
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||||
const llama_sampling_params & sparams = params.sampling_params;
|
const llama_sampling_params & sparams = params.sparams;
|
||||||
|
|
||||||
printf("usage: %s [options]\n", argv[0]);
|
printf("usage: %s [options]\n", argv[0]);
|
||||||
printf("\n");
|
printf("\n");
|
||||||
|
@ -718,10 +719,10 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||||
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
|
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
|
||||||
printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z);
|
printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z);
|
||||||
printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p);
|
printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p);
|
||||||
printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.repeat_last_n);
|
printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.penalty_last_n);
|
||||||
printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.repeat_penalty);
|
printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.penalty_repeat);
|
||||||
printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.presence_penalty);
|
printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_present);
|
||||||
printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.frequency_penalty);
|
printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_freq);
|
||||||
printf(" --mirostat N use Mirostat sampling.\n");
|
printf(" --mirostat N use Mirostat sampling.\n");
|
||||||
printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
|
printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
|
||||||
printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat);
|
printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat);
|
||||||
|
@ -873,6 +874,27 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
||||||
return cparams;
|
return cparams;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void llama_batch_clear(struct llama_batch & batch) {
|
||||||
|
batch.n_tokens = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void llama_batch_add(
|
||||||
|
struct llama_batch & batch,
|
||||||
|
llama_token id,
|
||||||
|
llama_pos pos,
|
||||||
|
const std::vector<llama_seq_id> & seq_ids,
|
||||||
|
bool logits) {
|
||||||
|
batch.token [batch.n_tokens] = id;
|
||||||
|
batch.pos [batch.n_tokens] = pos,
|
||||||
|
batch.n_seq_id[batch.n_tokens] = seq_ids.size();
|
||||||
|
for (size_t i = 0; i < seq_ids.size(); ++i) {
|
||||||
|
batch.seq_id[batch.n_tokens][i] = seq_ids[i];
|
||||||
|
}
|
||||||
|
batch.logits [batch.n_tokens] = logits;
|
||||||
|
|
||||||
|
batch.n_tokens++;
|
||||||
|
}
|
||||||
|
|
||||||
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
|
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
|
||||||
auto mparams = llama_model_params_from_gpt_params(params);
|
auto mparams = llama_model_params_from_gpt_params(params);
|
||||||
|
|
||||||
|
@ -910,7 +932,7 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
||||||
}
|
}
|
||||||
|
|
||||||
if (params.ignore_eos) {
|
if (params.ignore_eos) {
|
||||||
params.sampling_params.logit_bias[llama_token_eos(lctx)] = -INFINITY;
|
params.sparams.logit_bias[llama_token_eos(lctx)] = -INFINITY;
|
||||||
}
|
}
|
||||||
|
|
||||||
{
|
{
|
||||||
|
@ -932,21 +954,23 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
||||||
std::vector<llama_token> llama_tokenize(
|
std::vector<llama_token> llama_tokenize(
|
||||||
const struct llama_context * ctx,
|
const struct llama_context * ctx,
|
||||||
const std::string & text,
|
const std::string & text,
|
||||||
bool add_bos) {
|
bool add_bos,
|
||||||
return llama_tokenize(llama_get_model(ctx), text, add_bos);
|
bool special) {
|
||||||
|
return llama_tokenize(llama_get_model(ctx), text, add_bos, special);
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<llama_token> llama_tokenize(
|
std::vector<llama_token> llama_tokenize(
|
||||||
const struct llama_model * model,
|
const struct llama_model * model,
|
||||||
const std::string & text,
|
const std::string & text,
|
||||||
bool add_bos) {
|
bool add_bos,
|
||||||
|
bool special) {
|
||||||
// upper limit for the number of tokens
|
// upper limit for the number of tokens
|
||||||
int n_tokens = text.length() + add_bos;
|
int n_tokens = text.length() + add_bos;
|
||||||
std::vector<llama_token> result(n_tokens);
|
std::vector<llama_token> result(n_tokens);
|
||||||
n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos);
|
n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
|
||||||
if (n_tokens < 0) {
|
if (n_tokens < 0) {
|
||||||
result.resize(-n_tokens);
|
result.resize(-n_tokens);
|
||||||
int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos);
|
int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
|
||||||
GGML_ASSERT(check == -n_tokens);
|
GGML_ASSERT(check == -n_tokens);
|
||||||
} else {
|
} else {
|
||||||
result.resize(n_tokens);
|
result.resize(n_tokens);
|
||||||
|
@ -1153,28 +1177,28 @@ std::string get_sortable_timestamp() {
|
||||||
|
|
||||||
void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx,
|
void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx,
|
||||||
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
|
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
|
||||||
const llama_sampling_params & sparams = params.sampling_params;
|
const llama_sampling_params & sparams = params.sparams;
|
||||||
|
|
||||||
fprintf(stream, "build_commit: %s\n", BUILD_COMMIT);
|
fprintf(stream, "build_commit: %s\n", BUILD_COMMIT);
|
||||||
fprintf(stream, "build_number: %d\n", BUILD_NUMBER);
|
fprintf(stream, "build_number: %d\n", BUILD_NUMBER);
|
||||||
fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
|
fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
|
fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
|
fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
|
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
|
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
|
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
|
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
|
fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
|
fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
|
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
|
fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
|
fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
|
fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
|
fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
|
fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
|
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
|
fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
|
fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
|
||||||
|
|
||||||
#ifdef NDEBUG
|
#ifdef NDEBUG
|
||||||
fprintf(stream, "debug: false\n");
|
fprintf(stream, "debug: false\n");
|
||||||
|
@ -1208,8 +1232,8 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||||
fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
|
fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
|
||||||
fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
|
fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
|
||||||
fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
|
fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
|
||||||
fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.frequency_penalty);
|
fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
|
||||||
dump_string_yaml_multiline(stream, "grammar", params.grammar.c_str());
|
dump_string_yaml_multiline(stream, "grammar", sparams.grammar.c_str());
|
||||||
fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
|
fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
|
||||||
fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
|
fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
|
||||||
fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
|
fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
|
||||||
|
@ -1268,14 +1292,14 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||||
fprintf(stream, "numa: %s # default: false\n", params.numa ? "true" : "false");
|
fprintf(stream, "numa: %s # default: false\n", params.numa ? "true" : "false");
|
||||||
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
|
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
|
||||||
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
|
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
|
||||||
fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.presence_penalty);
|
fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
|
||||||
dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str());
|
dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str());
|
||||||
fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
|
fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
|
||||||
fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
|
fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
|
||||||
fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
|
fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
|
||||||
dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens);
|
dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens);
|
||||||
fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false");
|
fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false");
|
||||||
fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.repeat_penalty);
|
fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
|
||||||
|
|
||||||
fprintf(stream, "reverse_prompt:\n");
|
fprintf(stream, "reverse_prompt:\n");
|
||||||
for (std::string ap : params.antiprompt) {
|
for (std::string ap : params.antiprompt) {
|
||||||
|
|
|
@ -63,7 +63,7 @@ struct gpt_params {
|
||||||
int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED;
|
int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED;
|
||||||
|
|
||||||
// // sampling parameters
|
// // sampling parameters
|
||||||
struct llama_sampling_params sampling_params;
|
struct llama_sampling_params sparams;
|
||||||
|
|
||||||
std::string model = "models/7B/ggml-model-f16.gguf"; // model path
|
std::string model = "models/7B/ggml-model-f16.gguf"; // model path
|
||||||
std::string model_draft = ""; // draft model for speculative decoding
|
std::string model_draft = ""; // draft model for speculative decoding
|
||||||
|
@ -73,10 +73,10 @@ struct gpt_params {
|
||||||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
|
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
|
||||||
std::string input_prefix = ""; // string to prefix user inputs with
|
std::string input_prefix = ""; // string to prefix user inputs with
|
||||||
std::string input_suffix = ""; // string to suffix user inputs with
|
std::string input_suffix = ""; // string to suffix user inputs with
|
||||||
std::string grammar = ""; // optional BNF-like grammar to constrain sampling
|
|
||||||
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
||||||
std::string logdir = ""; // directory in which to save YAML log files
|
std::string logdir = ""; // directory in which to save YAML log files
|
||||||
|
|
||||||
|
// TODO: avoid tuple, use struct
|
||||||
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
|
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
|
||||||
std::string lora_base = ""; // base model path for the lora adapter
|
std::string lora_base = ""; // base model path for the lora adapter
|
||||||
|
|
||||||
|
@ -131,10 +131,23 @@ void process_escapes(std::string& input);
|
||||||
// Model utils
|
// Model utils
|
||||||
//
|
//
|
||||||
|
|
||||||
|
// TODO: avoid tuplue, use struct
|
||||||
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
|
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
|
||||||
struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params);
|
|
||||||
|
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
|
||||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
|
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
|
||||||
|
|
||||||
|
// Batch utils
|
||||||
|
|
||||||
|
void llama_batch_clear(struct llama_batch & batch);
|
||||||
|
|
||||||
|
void llama_batch_add(
|
||||||
|
struct llama_batch & batch,
|
||||||
|
llama_token id,
|
||||||
|
llama_pos pos,
|
||||||
|
const std::vector<llama_seq_id> & seq_ids,
|
||||||
|
bool logits);
|
||||||
|
|
||||||
//
|
//
|
||||||
// Vocab utils
|
// Vocab utils
|
||||||
//
|
//
|
||||||
|
@ -144,12 +157,14 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
||||||
std::vector<llama_token> llama_tokenize(
|
std::vector<llama_token> llama_tokenize(
|
||||||
const struct llama_context * ctx,
|
const struct llama_context * ctx,
|
||||||
const std::string & text,
|
const std::string & text,
|
||||||
bool add_bos);
|
bool add_bos,
|
||||||
|
bool special = false);
|
||||||
|
|
||||||
std::vector<llama_token> llama_tokenize(
|
std::vector<llama_token> llama_tokenize(
|
||||||
const struct llama_model * model,
|
const struct llama_model * model,
|
||||||
const std::string & text,
|
const std::string & text,
|
||||||
bool add_bos);
|
bool add_bos,
|
||||||
|
bool special = false);
|
||||||
|
|
||||||
// tokenizes a token into a piece
|
// tokenizes a token into a piece
|
||||||
// should work similar to Python's `tokenizer.id_to_piece`
|
// should work similar to Python's `tokenizer.id_to_piece`
|
||||||
|
|
|
@ -399,7 +399,7 @@ namespace grammar_parser {
|
||||||
void print_grammar(FILE * file, const parse_state & state) {
|
void print_grammar(FILE * file, const parse_state & state) {
|
||||||
try {
|
try {
|
||||||
std::map<uint32_t, std::string> symbol_id_names;
|
std::map<uint32_t, std::string> symbol_id_names;
|
||||||
for (auto kv : state.symbol_ids) {
|
for (const auto & kv : state.symbol_ids) {
|
||||||
symbol_id_names[kv.second] = kv.first;
|
symbol_id_names[kv.second] = kv.first;
|
||||||
}
|
}
|
||||||
for (size_t i = 0, end = state.rules.size(); i < end; i++) {
|
for (size_t i = 0, end = state.rules.size(); i < end; i++) {
|
||||||
|
|
101
common/log.h
101
common/log.h
|
@ -579,38 +579,75 @@ inline std::string log_var_to_string_impl(const std::vector<int> & var)
|
||||||
return buf.str();
|
return buf.str();
|
||||||
}
|
}
|
||||||
|
|
||||||
#define LOG_TOKENS_TOSTR_PRETTY(ctx, tokens) \
|
template <typename C, typename T>
|
||||||
[&tokens, &ctx]() \
|
inline std::string LOG_TOKENS_TOSTR_PRETTY(const C & ctx, const T & tokens)
|
||||||
{ \
|
{
|
||||||
std::stringstream buf; \
|
std::stringstream buf;
|
||||||
buf << "[ "; \
|
buf << "[ ";
|
||||||
\
|
|
||||||
bool first = true; \
|
bool first = true;
|
||||||
for (const auto &token : tokens) \
|
for (const auto &token : tokens)
|
||||||
{ \
|
{
|
||||||
if (!first) \
|
if (!first) {
|
||||||
buf << ", "; \
|
buf << ", ";
|
||||||
else \
|
} else {
|
||||||
first = false; \
|
first = false;
|
||||||
\
|
}
|
||||||
auto detokenized = llama_token_to_piece(ctx, token); \
|
|
||||||
\
|
auto detokenized = llama_token_to_piece(ctx, token);
|
||||||
detokenized.erase( \
|
|
||||||
std::remove_if( \
|
detokenized.erase(
|
||||||
detokenized.begin(), \
|
std::remove_if(
|
||||||
detokenized.end(), \
|
detokenized.begin(),
|
||||||
[](const unsigned char c) { return !std::isprint(c); }), \
|
detokenized.end(),
|
||||||
detokenized.end()); \
|
[](const unsigned char c) { return !std::isprint(c); }),
|
||||||
\
|
detokenized.end());
|
||||||
buf \
|
|
||||||
<< "'" << detokenized << "'" \
|
buf
|
||||||
<< ":" << std::to_string(token); \
|
<< "'" << detokenized << "'"
|
||||||
} \
|
<< ":" << std::to_string(token);
|
||||||
buf << " ]"; \
|
}
|
||||||
\
|
buf << " ]";
|
||||||
return buf.str(); \
|
|
||||||
}() \
|
return buf.str();
|
||||||
.c_str()
|
}
|
||||||
|
|
||||||
|
template <typename C, typename B>
|
||||||
|
inline std::string LOG_BATCH_TOSTR_PRETTY(const C & ctx, const B & batch)
|
||||||
|
{
|
||||||
|
std::stringstream buf;
|
||||||
|
buf << "[ ";
|
||||||
|
|
||||||
|
bool first = true;
|
||||||
|
for (int i = 0; i < batch.n_tokens; ++i)
|
||||||
|
{
|
||||||
|
if (!first) {
|
||||||
|
buf << ", ";
|
||||||
|
} else {
|
||||||
|
first = false;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto detokenized = llama_token_to_piece(ctx, batch.token[i]);
|
||||||
|
|
||||||
|
detokenized.erase(
|
||||||
|
std::remove_if(
|
||||||
|
detokenized.begin(),
|
||||||
|
detokenized.end(),
|
||||||
|
[](const unsigned char c) { return !std::isprint(c); }),
|
||||||
|
detokenized.end());
|
||||||
|
|
||||||
|
buf
|
||||||
|
<< "\n" << std::to_string(i)
|
||||||
|
<< ":token '" << detokenized << "'"
|
||||||
|
<< ":pos " << std::to_string(batch.pos[i])
|
||||||
|
<< ":n_seq_id " << std::to_string(batch.n_seq_id[i])
|
||||||
|
<< ":seq_id " << std::to_string(batch.seq_id[i][0])
|
||||||
|
<< ":logits " << std::to_string(batch.logits[i]);
|
||||||
|
}
|
||||||
|
buf << " ]";
|
||||||
|
|
||||||
|
return buf.str();
|
||||||
|
}
|
||||||
|
|
||||||
#ifdef LOG_DISABLE_LOGS
|
#ifdef LOG_DISABLE_LOGS
|
||||||
|
|
||||||
|
|
|
@ -1,113 +1,161 @@
|
||||||
#include "sampling.h"
|
#include "sampling.h"
|
||||||
|
|
||||||
llama_sampling_context::~llama_sampling_context() {
|
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
|
||||||
for (auto & it : sequence_contexts) {
|
struct llama_sampling_context * result = new llama_sampling_context();
|
||||||
if (it.second.grammar != NULL) {
|
|
||||||
llama_grammar_free(it.second.grammar);
|
result->params = params;
|
||||||
it.second.grammar = NULL;
|
result->grammar = nullptr;
|
||||||
|
|
||||||
|
// if there is a grammar, parse it
|
||||||
|
if (!params.grammar.empty()) {
|
||||||
|
result->parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||||
|
|
||||||
|
// will be empty (default) if there are parse errors
|
||||||
|
if (result->parsed_grammar.rules.empty()) {
|
||||||
|
fprintf(stderr, "%s: failed to parse grammar\n", __func__);
|
||||||
|
return nullptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
|
||||||
|
|
||||||
|
result->grammar = llama_grammar_init(
|
||||||
|
grammar_rules.data(),
|
||||||
|
grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
result->prev.resize(params.n_prev);
|
||||||
|
|
||||||
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_sampling_context llama_sampling_context_init(
|
void llama_sampling_free(struct llama_sampling_context * ctx) {
|
||||||
const struct gpt_params & params,
|
if (ctx->grammar != NULL) {
|
||||||
llama_grammar * grammar) {
|
llama_grammar_free(ctx->grammar);
|
||||||
llama_sampling_context result;
|
}
|
||||||
|
|
||||||
result.params = params.sampling_params;
|
delete ctx;
|
||||||
result.grammar = grammar;
|
|
||||||
return result;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Note: Creates the context if it doesn't exist, so this always return something.
|
void llama_sampling_reset(llama_sampling_context * ctx) {
|
||||||
llama_sampler_sequence_context & llama_sampling_get_sequence_context(
|
if (ctx->grammar != NULL) {
|
||||||
llama_sampling_context & ctx_sampling,
|
llama_grammar_free(ctx->grammar);
|
||||||
const llama_seq_id seq) {
|
|
||||||
const auto it = ctx_sampling.sequence_contexts.find(seq);
|
|
||||||
if (it != ctx_sampling.sequence_contexts.end()) {
|
|
||||||
return it->second;
|
|
||||||
}
|
}
|
||||||
llama_sampler_sequence_context new_ctx = {
|
|
||||||
2.0f * ctx_sampling.params.mirostat_tau,
|
if (!ctx->parsed_grammar.rules.empty()) {
|
||||||
ctx_sampling.grammar != NULL ? llama_grammar_copy(ctx_sampling.grammar) : NULL,
|
std::vector<const llama_grammar_element *> grammar_rules(ctx->parsed_grammar.c_rules());
|
||||||
};
|
|
||||||
return ctx_sampling.sequence_contexts.insert({seq, new_ctx}).first->second;
|
ctx->grammar = llama_grammar_init(
|
||||||
|
grammar_rules.data(),
|
||||||
|
grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root"));
|
||||||
|
}
|
||||||
|
|
||||||
|
std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
|
||||||
|
ctx->cur.clear();
|
||||||
}
|
}
|
||||||
|
|
||||||
bool llama_sampling_context_reset(
|
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
|
||||||
llama_sampling_context & ctx_sampling,
|
if (dst->grammar) {
|
||||||
const llama_seq_id seq) {
|
llama_grammar_free(dst->grammar);
|
||||||
const auto it = ctx_sampling.sequence_contexts.find(seq);
|
dst->grammar = nullptr;
|
||||||
if (it == ctx_sampling.sequence_contexts.end()) return false;
|
|
||||||
if (it->second.grammar != NULL) {
|
|
||||||
llama_grammar_free(it->second.grammar);
|
|
||||||
it->second.grammar = NULL;
|
|
||||||
}
|
}
|
||||||
ctx_sampling.sequence_contexts.erase(it);
|
|
||||||
return true;
|
if (src->grammar) {
|
||||||
|
dst->grammar = llama_grammar_copy(src->grammar);
|
||||||
|
}
|
||||||
|
|
||||||
|
dst->prev = src->prev;
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_token llama_sampling_last(llama_sampling_context * ctx) {
|
||||||
|
return ctx->prev.back();
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n) {
|
||||||
|
const int size = ctx_sampling->prev.size();
|
||||||
|
|
||||||
|
n = std::min(n, size);
|
||||||
|
|
||||||
|
std::string result;
|
||||||
|
|
||||||
|
for (int i = size - n; i < size; i++) {
|
||||||
|
result += llama_token_to_piece(ctx_main, ctx_sampling->prev[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string llama_sampling_print(const llama_sampling_params & params) {
|
||||||
|
char result[1024];
|
||||||
|
|
||||||
|
snprintf(result, sizeof(result),
|
||||||
|
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
|
||||||
|
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, typical_p = %.3f, temp = %.3f\n"
|
||||||
|
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
|
||||||
|
params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present,
|
||||||
|
params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp,
|
||||||
|
params.mirostat, params.mirostat_eta, params.mirostat_tau);
|
||||||
|
|
||||||
|
return std::string(result);
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_token llama_sampling_sample(
|
llama_token llama_sampling_sample(
|
||||||
struct llama_context * ctx,
|
struct llama_sampling_context * ctx_sampling,
|
||||||
struct llama_context * ctx_guidance,
|
struct llama_context * ctx_main,
|
||||||
struct llama_sampling_context & ctx_sampling,
|
struct llama_context * ctx_cfg,
|
||||||
const std::vector<llama_token> & last_tokens,
|
const int idx) {
|
||||||
std::vector<llama_token_data> & candidates,
|
const llama_sampling_params & params = ctx_sampling->params;
|
||||||
const int idx,
|
|
||||||
llama_seq_id seq) {
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
|
||||||
const int n_ctx = llama_n_ctx(ctx);
|
|
||||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
|
||||||
|
|
||||||
const llama_sampling_params & params = ctx_sampling.params;
|
|
||||||
const float temp = params.temp;
|
const float temp = params.temp;
|
||||||
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
|
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
|
||||||
const float top_p = params.top_p;
|
const float top_p = params.top_p;
|
||||||
const float tfs_z = params.tfs_z;
|
const float tfs_z = params.tfs_z;
|
||||||
const float typical_p = params.typical_p;
|
const float typical_p = params.typical_p;
|
||||||
const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
|
||||||
const float repeat_penalty = params.repeat_penalty;
|
const float penalty_repeat = params.penalty_repeat;
|
||||||
const float alpha_presence = params.presence_penalty;
|
const float penalty_freq = params.penalty_freq;
|
||||||
const float alpha_frequency = params.frequency_penalty;
|
const float penalty_present = params.penalty_present;
|
||||||
const int mirostat = params.mirostat;
|
const int mirostat = params.mirostat;
|
||||||
const float mirostat_tau = params.mirostat_tau;
|
const float mirostat_tau = params.mirostat_tau;
|
||||||
const float mirostat_eta = params.mirostat_eta;
|
const float mirostat_eta = params.mirostat_eta;
|
||||||
const bool penalize_nl = params.penalize_nl;
|
const bool penalize_nl = params.penalize_nl;
|
||||||
|
|
||||||
|
auto & prev = ctx_sampling->prev;
|
||||||
|
auto & cur = ctx_sampling->cur;
|
||||||
|
|
||||||
llama_token id = 0;
|
llama_token id = 0;
|
||||||
|
|
||||||
float * logits = llama_get_logits_ith(ctx, idx);
|
float * logits = llama_get_logits_ith(ctx_main, idx);
|
||||||
|
|
||||||
// Apply params.logit_bias map
|
// apply params.logit_bias map
|
||||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||||
logits[it->first] += it->second;
|
logits[it->first] += it->second;
|
||||||
}
|
}
|
||||||
|
|
||||||
candidates.clear();
|
cur.clear();
|
||||||
|
|
||||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
|
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
|
||||||
|
|
||||||
if (ctx_guidance) {
|
if (ctx_cfg) {
|
||||||
llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale);
|
llama_sample_classifier_free_guidance(ctx_main, &cur_p, ctx_cfg, params.cfg_scale);
|
||||||
}
|
}
|
||||||
|
|
||||||
// apply penalties
|
// apply penalties
|
||||||
if (!last_tokens.empty()) {
|
if (!prev.empty()) {
|
||||||
const float nl_logit = logits[llama_token_nl(ctx)];
|
const float nl_logit = logits[llama_token_nl(ctx_main)];
|
||||||
const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx);
|
|
||||||
|
|
||||||
llama_sample_repetition_penalty(ctx, &cur_p,
|
llama_sample_repetition_penalties(ctx_main, &cur_p,
|
||||||
last_tokens.data() + last_tokens.size() - last_n_repeat,
|
prev.data() + prev.size() - penalty_last_n,
|
||||||
last_n_repeat, repeat_penalty);
|
penalty_last_n, penalty_repeat, penalty_freq, penalty_present);
|
||||||
llama_sample_frequency_and_presence_penalties(ctx, &cur_p,
|
|
||||||
last_tokens.data() + last_tokens.size() - last_n_repeat,
|
|
||||||
last_n_repeat, alpha_frequency, alpha_presence);
|
|
||||||
|
|
||||||
if (!penalize_nl) {
|
if (!penalize_nl) {
|
||||||
for (size_t idx = 0; idx < cur_p.size; idx++) {
|
for (size_t idx = 0; idx < cur_p.size; idx++) {
|
||||||
if (cur_p.data[idx].id == llama_token_nl(ctx)) {
|
if (cur_p.data[idx].id == llama_token_nl(ctx_main)) {
|
||||||
cur_p.data[idx].logit = nl_logit;
|
cur_p.data[idx].logit = nl_logit;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
@ -115,52 +163,60 @@ llama_token llama_sampling_sample(
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_sampler_sequence_context & ctx_seq = llama_sampling_get_sequence_context(ctx_sampling, seq);
|
if (ctx_sampling->grammar != NULL) {
|
||||||
|
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
|
||||||
if (ctx_seq.grammar != NULL) {
|
|
||||||
llama_sample_grammar(ctx, &cur_p, ctx_seq.grammar);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if (temp <= 0) {
|
if (temp <= 0) {
|
||||||
// Greedy sampling
|
// greedy sampling
|
||||||
id = llama_sample_token_greedy(ctx, &cur_p);
|
id = llama_sample_token_greedy(ctx_main, &cur_p);
|
||||||
} else {
|
} else {
|
||||||
if (mirostat == 1) {
|
if (mirostat == 1) {
|
||||||
const int mirostat_m = 100;
|
const int mirostat_m = 100;
|
||||||
llama_sample_temp(ctx, &cur_p, temp);
|
llama_sample_temp(ctx_main, &cur_p, temp);
|
||||||
id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_seq.mirostat_mu);
|
id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
|
||||||
} else if (mirostat == 2) {
|
} else if (mirostat == 2) {
|
||||||
llama_sample_temp(ctx, &cur_p, temp);
|
llama_sample_temp(ctx_main, &cur_p, temp);
|
||||||
id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &ctx_seq.mirostat_mu);
|
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
|
||||||
} else {
|
} else {
|
||||||
// Temperature sampling
|
// temperature sampling
|
||||||
size_t min_keep = std::max(1, params.n_probs);
|
size_t min_keep = std::max(1, params.n_probs);
|
||||||
llama_sample_top_k (ctx, &cur_p, top_k, min_keep);
|
|
||||||
llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep);
|
|
||||||
llama_sample_typical (ctx, &cur_p, typical_p, min_keep);
|
|
||||||
llama_sample_top_p (ctx, &cur_p, top_p, min_keep);
|
|
||||||
llama_sample_temp(ctx, &cur_p, temp);
|
|
||||||
|
|
||||||
{
|
llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep);
|
||||||
const int n_top = 10;
|
llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep);
|
||||||
LOG("top %d candidates:\n", n_top);
|
llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep);
|
||||||
|
llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep);
|
||||||
|
llama_sample_temp (ctx_main, &cur_p, temp);
|
||||||
|
|
||||||
for (int i = 0; i < n_top; i++) {
|
id = llama_sample_token(ctx_main, &cur_p);
|
||||||
const llama_token id = cur_p.data[i].id;
|
|
||||||
(void)id; // To avoid a warning that id is unused when logging is disabled.
|
|
||||||
LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
id = llama_sample_token(ctx, &cur_p);
|
//{
|
||||||
|
// const int n_top = 10;
|
||||||
|
// LOG("top %d candidates:\n", n_top);
|
||||||
|
|
||||||
LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str());
|
// for (int i = 0; i < n_top; i++) {
|
||||||
|
// const llama_token id = cur_p.data[i].id;
|
||||||
|
// (void)id; // To avoid a warning that id is unused when logging is disabled.
|
||||||
|
// LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
|
||||||
|
// }
|
||||||
|
//}
|
||||||
|
|
||||||
|
LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (ctx_seq.grammar != NULL) {
|
|
||||||
llama_grammar_accept_token(ctx, ctx_seq.grammar, id);
|
|
||||||
}
|
|
||||||
|
|
||||||
return id;
|
return id;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void llama_sampling_accept(
|
||||||
|
struct llama_sampling_context * ctx_sampling,
|
||||||
|
struct llama_context * ctx_main,
|
||||||
|
llama_token id,
|
||||||
|
bool apply_grammar) {
|
||||||
|
ctx_sampling->prev.erase(ctx_sampling->prev.begin());
|
||||||
|
ctx_sampling->prev.push_back(id);
|
||||||
|
|
||||||
|
if (ctx_sampling->grammar != NULL && apply_grammar) {
|
||||||
|
llama_grammar_accept_token(ctx_main, ctx_sampling->grammar, id);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
|
@ -2,107 +2,108 @@
|
||||||
|
|
||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
|
|
||||||
|
#include "grammar-parser.h"
|
||||||
|
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include <unordered_map>
|
#include <unordered_map>
|
||||||
|
|
||||||
// sampling parameters
|
// sampling parameters
|
||||||
typedef struct llama_sampling_params {
|
typedef struct llama_sampling_params {
|
||||||
|
int32_t n_prev = 64; // number of previous tokens to remember
|
||||||
|
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||||
int32_t top_k = 40; // <= 0 to use vocab size
|
int32_t top_k = 40; // <= 0 to use vocab size
|
||||||
float top_p = 0.95f; // 1.0 = disabled
|
float top_p = 0.95f; // 1.0 = disabled
|
||||||
float tfs_z = 1.00f; // 1.0 = disabled
|
float tfs_z = 1.00f; // 1.0 = disabled
|
||||||
float typical_p = 1.00f; // 1.0 = disabled
|
float typical_p = 1.00f; // 1.0 = disabled
|
||||||
float temp = 0.80f; // 1.0 = disabled
|
float temp = 0.80f; // 1.0 = disabled
|
||||||
float repeat_penalty = 1.10f; // 1.0 = disabled
|
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||||
int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
float penalty_repeat = 1.10f; // 1.0 = disabled
|
||||||
float frequency_penalty = 0.00f; // 0.0 = disabled
|
float penalty_freq = 0.00f; // 0.0 = disabled
|
||||||
float presence_penalty = 0.00f; // 0.0 = disabled
|
float penalty_present = 0.00f; // 0.0 = disabled
|
||||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||||
float mirostat_tau = 5.00f; // target entropy
|
float mirostat_tau = 5.00f; // target entropy
|
||||||
float mirostat_eta = 0.10f; // learning rate
|
float mirostat_eta = 0.10f; // learning rate
|
||||||
|
|
||||||
bool penalize_nl = true; // consider newlines as a repeatable token
|
bool penalize_nl = true; // consider newlines as a repeatable token
|
||||||
|
|
||||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
std::string grammar; // optional BNF-like grammar to constrain sampling
|
||||||
|
|
||||||
// Classifier-Free Guidance
|
// Classifier-Free Guidance
|
||||||
// https://arxiv.org/abs/2306.17806
|
// https://arxiv.org/abs/2306.17806
|
||||||
std::string cfg_negative_prompt; // string to help guidance
|
std::string cfg_negative_prompt; // string to help guidance
|
||||||
float cfg_scale = 1.f; // How strong is guidance
|
float cfg_scale = 1.f; // how strong is guidance
|
||||||
|
|
||||||
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
|
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
|
||||||
|
|
||||||
} llama_sampling_params;
|
} llama_sampling_params;
|
||||||
|
|
||||||
// per-sequence sampler context
|
|
||||||
typedef struct llama_sampler_sequence_context {
|
|
||||||
float mirostat_mu; // mirostat sampler state
|
|
||||||
llama_grammar * grammar;
|
|
||||||
} llama_sampler_sequence_context;
|
|
||||||
|
|
||||||
// general sampler context
|
// general sampler context
|
||||||
typedef struct llama_sampling_context {
|
// TODO: move to llama.h
|
||||||
~llama_sampling_context();
|
struct llama_sampling_context {
|
||||||
|
// parameters that will be used for sampling
|
||||||
// parameters that will be used for sampling and when creating
|
|
||||||
// new llama_sampler_sequence_context instances
|
|
||||||
llama_sampling_params params;
|
llama_sampling_params params;
|
||||||
|
|
||||||
// map of sequence ids to sampler contexts
|
// mirostat sampler state
|
||||||
std::unordered_map<llama_seq_id, llama_sampler_sequence_context> sequence_contexts;
|
float mirostat_mu;
|
||||||
|
|
||||||
// when non-NULL, new instances of llama_sampler_sequence_context
|
|
||||||
// will get a copy of the grammar here
|
|
||||||
// note: only the pointer is stored here, it is not a copy of
|
|
||||||
// the grammar and shouldn't be freed
|
|
||||||
llama_grammar * grammar;
|
llama_grammar * grammar;
|
||||||
} llama_sampling_context;
|
|
||||||
|
// internal
|
||||||
|
grammar_parser::parse_state parsed_grammar;
|
||||||
|
|
||||||
|
// TODO: replace with ring-buffer
|
||||||
|
std::vector<llama_token> prev;
|
||||||
|
std::vector<llama_token_data> cur;
|
||||||
|
};
|
||||||
|
|
||||||
#include "common.h"
|
#include "common.h"
|
||||||
|
|
||||||
// Create a new sampling context instance.
|
// Create a new sampling context instance.
|
||||||
llama_sampling_context llama_sampling_context_init(
|
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params);
|
||||||
const struct gpt_params & params,
|
|
||||||
llama_grammar * grammar = NULL);
|
|
||||||
|
|
||||||
// Fetches the sampler context for the specified sequence id (defaults to 0).
|
void llama_sampling_free(struct llama_sampling_context * ctx);
|
||||||
// If the context for that sequence id doesn't already exist, it will be created with
|
|
||||||
// default values based on the parameters in the ctx_sampling argument.
|
|
||||||
llama_sampler_sequence_context & llama_sampling_get_sequence_context(
|
|
||||||
llama_sampling_context & ctx_sampling,
|
|
||||||
const llama_seq_id seq = 0);
|
|
||||||
|
|
||||||
// Reset the sampler context for the supplied sequence id (defaults to 0).
|
// Reset the sampler context
|
||||||
// This is necessary to reuse a sequence id or free memory used by sequences
|
// - clear prev tokens
|
||||||
// that are no longer required.
|
// - reset grammar
|
||||||
bool llama_sampling_context_reset(
|
void llama_sampling_reset(llama_sampling_context * ctx);
|
||||||
llama_sampling_context & ctx_sampling,
|
|
||||||
const llama_seq_id seq = 0);
|
// Copy the sampler context
|
||||||
|
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst);
|
||||||
|
|
||||||
|
// Get the last sampled token
|
||||||
|
llama_token llama_sampling_last(llama_sampling_context * ctx);
|
||||||
|
|
||||||
|
// Get a string representation of the last sampled tokens
|
||||||
|
std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n);
|
||||||
|
|
||||||
|
// Print sampling parameters into a string
|
||||||
|
std::string llama_sampling_print(const llama_sampling_params & params);
|
||||||
|
|
||||||
// this is a common sampling function used across the examples for convenience
|
// this is a common sampling function used across the examples for convenience
|
||||||
// it can serve as a starting point for implementing your own sampling function
|
// it can serve as a starting point for implementing your own sampling function
|
||||||
// Note: When using multiple sequences, it is the caller's responsibility to call
|
// Note: When using multiple sequences, it is the caller's responsibility to call
|
||||||
// llama_sampling_context_reset when a sequence ends
|
// llama_sampling_reset when a sequence ends
|
||||||
//
|
//
|
||||||
// required:
|
// required:
|
||||||
// - ctx: context to use for sampling
|
// - ctx_main: context to use for sampling
|
||||||
// - ctx_sampling: sampling-specific context
|
// - ctx_sampling: sampling-specific context
|
||||||
//
|
//
|
||||||
// optional:
|
// optional:
|
||||||
// - ctx_guidance: context to use for classifier-free guidance, ignore if NULL
|
// - ctx_cfg: context to use for classifier-free guidance
|
||||||
// - last_tokens: needed for repetition penalty, ignore if empty
|
// - idx: sample from llama_get_logits_ith(ctx, idx)
|
||||||
// - idx: sample from llama_get_logits_ith(ctx, idx)
|
|
||||||
// - seq: sequence id to associate sampler state with
|
|
||||||
//
|
//
|
||||||
// returns:
|
// returns:
|
||||||
// - token: sampled token
|
// - token: sampled token
|
||||||
// - candidates: vector of candidate tokens
|
// - candidates: vector of candidate tokens
|
||||||
//
|
//
|
||||||
llama_token llama_sampling_sample(
|
llama_token llama_sampling_sample(
|
||||||
struct llama_context * ctx,
|
struct llama_sampling_context * ctx_sampling,
|
||||||
struct llama_context * ctx_guidance,
|
struct llama_context * ctx_main,
|
||||||
struct llama_sampling_context & ctx_sampling,
|
struct llama_context * ctx_cfg,
|
||||||
const std::vector<llama_token> & last_tokens,
|
int idx = 0);
|
||||||
std::vector<llama_token_data> & candidates,
|
|
||||||
const int idx = 0,
|
void llama_sampling_accept(
|
||||||
llama_seq_id seq = 0);
|
struct llama_sampling_context * ctx_sampling,
|
||||||
|
struct llama_context * ctx_main,
|
||||||
|
llama_token id,
|
||||||
|
bool apply_grammar);
|
||||||
|
|
|
@ -863,7 +863,7 @@ size_t tokenize_file(
|
||||||
(int) buf.size(),
|
(int) buf.size(),
|
||||||
out_tokens.data(),
|
out_tokens.data(),
|
||||||
(int) out_tokens.size(),
|
(int) out_tokens.size(),
|
||||||
false);
|
false, false);
|
||||||
if (n_tokens < 0) {
|
if (n_tokens < 0) {
|
||||||
out_tokens.resize(-n_tokens);
|
out_tokens.resize(-n_tokens);
|
||||||
n_tokens = llama_tokenize(
|
n_tokens = llama_tokenize(
|
||||||
|
@ -872,7 +872,7 @@ size_t tokenize_file(
|
||||||
(int) buf.size(),
|
(int) buf.size(),
|
||||||
out_tokens.data(),
|
out_tokens.data(),
|
||||||
(int) out_tokens.size(),
|
(int) out_tokens.size(),
|
||||||
false);
|
false, false);
|
||||||
}
|
}
|
||||||
if (n_tokens >= 0) {
|
if (n_tokens >= 0) {
|
||||||
out_tokens.resize(n_tokens);
|
out_tokens.resize(n_tokens);
|
||||||
|
@ -966,7 +966,7 @@ size_t tokenize_file(
|
||||||
(int) buf_sample.size(),
|
(int) buf_sample.size(),
|
||||||
tok_sample.data(),
|
tok_sample.data(),
|
||||||
(int) tok_sample.size(),
|
(int) tok_sample.size(),
|
||||||
false);
|
false, false);
|
||||||
if (n_tokens < 0) {
|
if (n_tokens < 0) {
|
||||||
tok_sample.resize(-n_tokens);
|
tok_sample.resize(-n_tokens);
|
||||||
n_tokens = llama_tokenize(llama_get_model(lctx),
|
n_tokens = llama_tokenize(llama_get_model(lctx),
|
||||||
|
@ -974,7 +974,7 @@ size_t tokenize_file(
|
||||||
(int) buf_sample.size(),
|
(int) buf_sample.size(),
|
||||||
tok_sample.data(),
|
tok_sample.data(),
|
||||||
(int) tok_sample.size(),
|
(int) tok_sample.size(),
|
||||||
false);
|
false, false);
|
||||||
GGML_ASSERT(n_tokens >= 0);
|
GGML_ASSERT(n_tokens >= 0);
|
||||||
}
|
}
|
||||||
GGML_ASSERT(n_tokens <= (int) tok_sample.size());
|
GGML_ASSERT(n_tokens <= (int) tok_sample.size());
|
||||||
|
@ -1425,7 +1425,7 @@ void train_opt_callback(void * vdata, int accum_step, float * sched, bool * canc
|
||||||
|
|
||||||
int impr_plot = -(int)(1 + (opt->loss_before - opt->loss_after) * 10.0f + 0.5f);
|
int impr_plot = -(int)(1 + (opt->loss_before - opt->loss_after) * 10.0f + 0.5f);
|
||||||
if (impr_plot > 0) impr_plot = 0;
|
if (impr_plot > 0) impr_plot = 0;
|
||||||
if (std::isnan(opt->loss_before) || std::isnan(opt->loss_before)) impr_plot = 0;
|
if (std::isnan(opt->loss_before) || std::isnan(opt->loss_after)) impr_plot = 0;
|
||||||
printf("%s: iter=%6d sample=%zu/%zu sched=%f loss=%f",
|
printf("%s: iter=%6d sample=%zu/%zu sched=%f loss=%f",
|
||||||
__func__, opt->iter, std::min(1+train->shuffle_next_sample, train->shuffle_sample_count), train->shuffle_sample_count,
|
__func__, opt->iter, std::min(1+train->shuffle_next_sample, train->shuffle_sample_count), train->shuffle_sample_count,
|
||||||
*sched, opt->loss_after);
|
*sched, opt->loss_after);
|
||||||
|
|
|
@ -76,6 +76,7 @@ def parse_args() -> argparse.Namespace:
|
||||||
"ftype", type=int, choices=[0, 1], default=1, nargs='?',
|
"ftype", type=int, choices=[0, 1], default=1, nargs='?',
|
||||||
help="output format - use 0 for float32, 1 for float16",
|
help="output format - use 0 for float32, 1 for float16",
|
||||||
)
|
)
|
||||||
|
parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
|
||||||
return parser.parse_args()
|
return parser.parse_args()
|
||||||
|
|
||||||
args = parse_args()
|
args = parse_args()
|
||||||
|
@ -86,6 +87,11 @@ if not dir_model.is_dir():
|
||||||
print(f'Error: {args.model} is not a directory', file = sys.stderr)
|
print(f'Error: {args.model} is not a directory', file = sys.stderr)
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|
||||||
|
endianess = gguf.GGUFEndian.LITTLE
|
||||||
|
if args.bigendian:
|
||||||
|
endianess = gguf.GGUFEndian.BIG
|
||||||
|
endianess_str = "Big Endian" if args.bigendian else "Little Endian"
|
||||||
|
print(f"gguf: Conversion Endianess {endianess}")
|
||||||
# possible tensor data types
|
# possible tensor data types
|
||||||
# ftype == 0 -> float32
|
# ftype == 0 -> float32
|
||||||
# ftype == 1 -> float16
|
# ftype == 1 -> float16
|
||||||
|
@ -113,7 +119,7 @@ if hparams["architectures"][0] != "BaichuanForCausalLM":
|
||||||
num_parts = count_model_parts(dir_model)
|
num_parts = count_model_parts(dir_model)
|
||||||
print(f"num_parts:{num_parts}\n")
|
print(f"num_parts:{num_parts}\n")
|
||||||
ARCH=gguf.MODEL_ARCH.BAICHUAN
|
ARCH=gguf.MODEL_ARCH.BAICHUAN
|
||||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
|
||||||
|
|
||||||
print("gguf: get model metadata")
|
print("gguf: get model metadata")
|
||||||
|
|
||||||
|
|
|
@ -78,7 +78,7 @@ print("gguf: loading model "+dir_model.name)
|
||||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||||
hparams = json.load(f)
|
hparams = json.load(f)
|
||||||
|
|
||||||
if hparams["architectures"][0] != "FalconForCausalLM":
|
if hparams["architectures"][0] not in ("RWForCausalLM", "FalconForCausalLM"):
|
||||||
print("Model architecture not supported: " + hparams["architectures"][0])
|
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||||
|
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
@ -97,7 +97,17 @@ gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||||
|
|
||||||
print("gguf: get model metadata")
|
print("gguf: get model metadata")
|
||||||
|
|
||||||
block_count = hparams["num_hidden_layers"]
|
block_count = hparams.get("num_hidden_layers")
|
||||||
|
if block_count is None:
|
||||||
|
block_count = hparams["n_layer"] # old name
|
||||||
|
|
||||||
|
n_head = hparams.get("num_attention_heads")
|
||||||
|
if n_head is None:
|
||||||
|
n_head = hparams["n_head"] # old name
|
||||||
|
|
||||||
|
n_head_kv = hparams.get("num_kv_heads")
|
||||||
|
if n_head_kv is None:
|
||||||
|
n_head_kv = hparams.get("n_head_kv", 1) # old name
|
||||||
|
|
||||||
gguf_writer.add_name("Falcon")
|
gguf_writer.add_name("Falcon")
|
||||||
gguf_writer.add_context_length(2048) # not in config.json
|
gguf_writer.add_context_length(2048) # not in config.json
|
||||||
|
@ -105,11 +115,8 @@ gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
|
||||||
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||||
gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"])
|
gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"])
|
||||||
gguf_writer.add_block_count(block_count)
|
gguf_writer.add_block_count(block_count)
|
||||||
gguf_writer.add_head_count(hparams["num_attention_heads"])
|
gguf_writer.add_head_count(n_head)
|
||||||
if "num_kv_heads" in hparams:
|
gguf_writer.add_head_count_kv(n_head_kv)
|
||||||
gguf_writer.add_head_count_kv(hparams["num_kv_heads"])
|
|
||||||
else:
|
|
||||||
gguf_writer.add_head_count_kv(1)
|
|
||||||
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
|
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
|
||||||
gguf_writer.add_file_type(ftype)
|
gguf_writer.add_file_type(ftype)
|
||||||
|
|
||||||
|
@ -152,10 +159,6 @@ special_vocab.add_to_gguf(gguf_writer)
|
||||||
|
|
||||||
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
||||||
|
|
||||||
# params for qkv transform
|
|
||||||
n_head = hparams["num_attention_heads"]
|
|
||||||
n_head_kv = hparams["num_kv_heads"] if "num_kv_heads" in hparams else 1
|
|
||||||
|
|
||||||
head_dim = hparams["hidden_size"] // n_head
|
head_dim = hparams["hidden_size"] // n_head
|
||||||
|
|
||||||
# tensor info
|
# tensor info
|
||||||
|
|
|
@ -98,6 +98,8 @@ gguf_writer.add_embedding_length(hparams["d_model"])
|
||||||
gguf_writer.add_block_count(block_count)
|
gguf_writer.add_block_count(block_count)
|
||||||
gguf_writer.add_feed_forward_length(4 * hparams["d_model"])
|
gguf_writer.add_feed_forward_length(4 * hparams["d_model"])
|
||||||
gguf_writer.add_head_count(hparams["n_heads"])
|
gguf_writer.add_head_count(hparams["n_heads"])
|
||||||
|
if kv_n_heads := hparams["attn_config"].get("kv_n_heads"):
|
||||||
|
gguf_writer.add_head_count_kv(kv_n_heads)
|
||||||
gguf_writer.add_layer_norm_eps(1e-05)
|
gguf_writer.add_layer_norm_eps(1e-05)
|
||||||
if hparams["attn_config"]["clip_qkv"] is not None:
|
if hparams["attn_config"]["clip_qkv"] is not None:
|
||||||
gguf_writer.add_clamp_kqv(hparams["attn_config"]["clip_qkv"])
|
gguf_writer.add_clamp_kqv(hparams["attn_config"]["clip_qkv"])
|
||||||
|
|
20
convert.py
20
convert.py
|
@ -794,8 +794,8 @@ def check_vocab_size(params: Params, vocab: Vocab) -> None:
|
||||||
|
|
||||||
|
|
||||||
class OutputFile:
|
class OutputFile:
|
||||||
def __init__(self, fname_out: Path) -> None:
|
def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian=gguf.GGUFEndian.LITTLE) -> None:
|
||||||
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
|
||||||
|
|
||||||
def add_meta_arch(self, params: Params) -> None:
|
def add_meta_arch(self, params: Params) -> None:
|
||||||
name = "LLaMA"
|
name = "LLaMA"
|
||||||
|
@ -874,10 +874,10 @@ class OutputFile:
|
||||||
self.gguf.close()
|
self.gguf.close()
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab) -> None:
|
def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, endianess:gguf.GGUFEndian=gguf.GGUFEndian.LITTLE) -> None:
|
||||||
check_vocab_size(params, vocab)
|
check_vocab_size(params, vocab)
|
||||||
|
|
||||||
of = OutputFile(fname_out)
|
of = OutputFile(fname_out, endianess=endianess)
|
||||||
|
|
||||||
# meta data
|
# meta data
|
||||||
of.add_meta_arch(params)
|
of.add_meta_arch(params)
|
||||||
|
@ -902,10 +902,10 @@ class OutputFile:
|
||||||
return dt.quantize(arr)
|
return dt.quantize(arr)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY) -> None:
|
def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY, endianess=gguf.GGUFEndian.LITTLE) -> None:
|
||||||
check_vocab_size(params, vocab)
|
check_vocab_size(params, vocab)
|
||||||
|
|
||||||
of = OutputFile(fname_out)
|
of = OutputFile(fname_out, endianess=endianess)
|
||||||
|
|
||||||
# meta data
|
# meta data
|
||||||
of.add_meta_arch(params)
|
of.add_meta_arch(params)
|
||||||
|
@ -1122,8 +1122,9 @@ def main(args_in: list[str] | None = None) -> None:
|
||||||
parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format (default: spm)", default="spm")
|
parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format (default: spm)", default="spm")
|
||||||
parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
|
parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
|
||||||
parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default = DEFAULT_CONCURRENCY)
|
parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default = DEFAULT_CONCURRENCY)
|
||||||
args = parser.parse_args(args_in)
|
parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
|
||||||
|
|
||||||
|
args = parser.parse_args(args_in)
|
||||||
if args.dump_single:
|
if args.dump_single:
|
||||||
model_plus = lazy_load_file(args.model)
|
model_plus = lazy_load_file(args.model)
|
||||||
do_dump_model(model_plus)
|
do_dump_model(model_plus)
|
||||||
|
@ -1137,6 +1138,9 @@ def main(args_in: list[str] | None = None) -> None:
|
||||||
if args.dump:
|
if args.dump:
|
||||||
do_dump_model(model_plus)
|
do_dump_model(model_plus)
|
||||||
return
|
return
|
||||||
|
endianess = gguf.GGUFEndian.LITTLE
|
||||||
|
if args.bigendian:
|
||||||
|
endianess = gguf.GGUFEndian.BIG
|
||||||
|
|
||||||
params = Params.load(model_plus)
|
params = Params.load(model_plus)
|
||||||
if params.n_ctx == -1:
|
if params.n_ctx == -1:
|
||||||
|
@ -1184,7 +1188,7 @@ def main(args_in: list[str] | None = None) -> None:
|
||||||
params.ftype = ftype
|
params.ftype = ftype
|
||||||
print(f"Writing {outfile}, format {ftype}")
|
print(f"Writing {outfile}, format {ftype}")
|
||||||
|
|
||||||
OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab, concurrency = args.concurrency)
|
OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab, concurrency = args.concurrency, endianess=endianess)
|
||||||
print(f"Wrote {outfile}")
|
print(f"Wrote {outfile}")
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -12,26 +12,26 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||||
|
|
||||||
if (EMSCRIPTEN)
|
if (EMSCRIPTEN)
|
||||||
else()
|
else()
|
||||||
add_subdirectory(main)
|
|
||||||
add_subdirectory(quantize)
|
|
||||||
add_subdirectory(quantize-stats)
|
|
||||||
add_subdirectory(perplexity)
|
|
||||||
add_subdirectory(embedding)
|
|
||||||
add_subdirectory(save-load-state)
|
|
||||||
add_subdirectory(benchmark)
|
|
||||||
add_subdirectory(baby-llama)
|
add_subdirectory(baby-llama)
|
||||||
add_subdirectory(train-text-from-scratch)
|
|
||||||
add_subdirectory(finetune)
|
|
||||||
add_subdirectory(convert-llama2c-to-ggml)
|
|
||||||
add_subdirectory(simple)
|
|
||||||
add_subdirectory(batched)
|
add_subdirectory(batched)
|
||||||
add_subdirectory(batched-bench)
|
add_subdirectory(batched-bench)
|
||||||
add_subdirectory(speculative)
|
|
||||||
add_subdirectory(parallel)
|
|
||||||
add_subdirectory(embd-input)
|
|
||||||
add_subdirectory(llava)
|
|
||||||
add_subdirectory(llama-bench)
|
|
||||||
add_subdirectory(beam-search)
|
add_subdirectory(beam-search)
|
||||||
|
add_subdirectory(benchmark)
|
||||||
|
add_subdirectory(convert-llama2c-to-ggml)
|
||||||
|
add_subdirectory(embedding)
|
||||||
|
add_subdirectory(finetune)
|
||||||
|
add_subdirectory(infill)
|
||||||
|
add_subdirectory(llama-bench)
|
||||||
|
add_subdirectory(llava)
|
||||||
|
add_subdirectory(main)
|
||||||
|
add_subdirectory(parallel)
|
||||||
|
add_subdirectory(perplexity)
|
||||||
|
add_subdirectory(quantize)
|
||||||
|
add_subdirectory(quantize-stats)
|
||||||
|
add_subdirectory(save-load-state)
|
||||||
|
add_subdirectory(simple)
|
||||||
|
add_subdirectory(speculative)
|
||||||
|
add_subdirectory(train-text-from-scratch)
|
||||||
if (LLAMA_METAL)
|
if (LLAMA_METAL)
|
||||||
add_subdirectory(metal)
|
add_subdirectory(metal)
|
||||||
endif()
|
endif()
|
||||||
|
|
|
@ -114,7 +114,7 @@ int main(int argc, char ** argv) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_batch batch = llama_batch_init(n_kv_max, 0);
|
llama_batch batch = llama_batch_init(n_kv_max, 0, 1);
|
||||||
|
|
||||||
// decode in batches of ctx_params.n_batch tokens
|
// decode in batches of ctx_params.n_batch tokens
|
||||||
auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
|
auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
|
||||||
|
@ -123,11 +123,12 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
llama_batch batch_view = {
|
llama_batch batch_view = {
|
||||||
n_tokens,
|
n_tokens,
|
||||||
batch.token + i,
|
batch.token + i,
|
||||||
nullptr,
|
nullptr,
|
||||||
batch.pos + i,
|
batch.pos + i,
|
||||||
batch.seq_id + i,
|
batch.n_seq_id + i,
|
||||||
batch.logits + i,
|
batch.seq_id + i,
|
||||||
|
batch.logits + i,
|
||||||
0, 0, 0, // unused
|
0, 0, 0, // unused
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -143,13 +144,8 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
// warm up
|
// warm up
|
||||||
{
|
{
|
||||||
batch.n_tokens = 16;
|
for (int i = 0; i < 16; ++i) {
|
||||||
|
llama_batch_add(batch, 0, i, { 0 }, false);
|
||||||
for (int i = 0; i < batch.n_tokens; ++i) {
|
|
||||||
batch.token[i] = 0;
|
|
||||||
batch.pos[i] = i;
|
|
||||||
batch.seq_id[i] = 0;
|
|
||||||
batch.logits[i] = false;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||||
|
@ -174,13 +170,12 @@ int main(int argc, char ** argv) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
batch.n_tokens = is_pp_shared ? pp : pl*pp;
|
llama_batch_clear(batch);
|
||||||
|
|
||||||
for (int i = 0; i < batch.n_tokens; ++i) {
|
const int n_tokens = is_pp_shared ? pp : pl*pp;
|
||||||
batch.token[i] = 0;
|
|
||||||
batch.pos[i] = i;
|
for (int i = 0; i < n_tokens; ++i) {
|
||||||
batch.seq_id[i] = 0;
|
llama_batch_add(batch, 0, i, { 0 }, false);
|
||||||
batch.logits[i] = false;
|
|
||||||
}
|
}
|
||||||
batch.logits[batch.n_tokens - 1] = true;
|
batch.logits[batch.n_tokens - 1] = true;
|
||||||
|
|
||||||
|
@ -204,13 +199,10 @@ int main(int argc, char ** argv) {
|
||||||
const auto t_tg_start = ggml_time_us();
|
const auto t_tg_start = ggml_time_us();
|
||||||
|
|
||||||
for (int i = 0; i < tg; ++i) {
|
for (int i = 0; i < tg; ++i) {
|
||||||
batch.n_tokens = pl;
|
llama_batch_clear(batch);
|
||||||
|
|
||||||
for (int j = 0; j < pl; ++j) {
|
for (int j = 0; j < pl; ++j) {
|
||||||
batch.token[j] = 0;
|
llama_batch_add(batch, 0, pp + i, { j }, true);
|
||||||
batch.pos[j] = pp + i;
|
|
||||||
batch.seq_id[j] = j;
|
|
||||||
batch.logits[j] = true;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||||
|
|
|
@ -69,7 +69,7 @@ for id: llama_token in tokens {
|
||||||
|
|
||||||
print("\n")
|
print("\n")
|
||||||
|
|
||||||
var batch = llama_batch_init(max(Int32(tokens.count), Int32(n_parallel)), 0)
|
var batch = llama_batch_init(max(Int32(tokens.count), Int32(n_parallel)), 0, 1)
|
||||||
defer {
|
defer {
|
||||||
llama_batch_free(batch)
|
llama_batch_free(batch)
|
||||||
}
|
}
|
||||||
|
@ -80,7 +80,12 @@ batch.n_tokens = Int32(tokens.count)
|
||||||
for (i, token) in tokens.enumerated() {
|
for (i, token) in tokens.enumerated() {
|
||||||
batch.token[i] = token
|
batch.token[i] = token
|
||||||
batch.pos[i] = Int32(i)
|
batch.pos[i] = Int32(i)
|
||||||
batch.seq_id[i] = 0
|
batch.n_seq_id[i] = 1
|
||||||
|
// batch.seq_id[i][0] = 0
|
||||||
|
// TODO: is this the proper way to do this?
|
||||||
|
if let seq_id = batch.seq_id[i] {
|
||||||
|
seq_id[0] = 0
|
||||||
|
}
|
||||||
batch.logits[i] = 0
|
batch.logits[i] = 0
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -169,7 +174,10 @@ while n_cur <= n_len {
|
||||||
// push this new token for next evaluation
|
// push this new token for next evaluation
|
||||||
batch.token[Int(batch.n_tokens)] = new_token_id
|
batch.token[Int(batch.n_tokens)] = new_token_id
|
||||||
batch.pos[Int(batch.n_tokens)] = n_cur
|
batch.pos[Int(batch.n_tokens)] = n_cur
|
||||||
batch.seq_id[Int(batch.n_tokens)] = Int32(i)
|
batch.n_seq_id[Int(batch.n_tokens)] = 1
|
||||||
|
if let seq_id = batch.seq_id[Int(batch.n_tokens)] {
|
||||||
|
seq_id[0] = Int32(i)
|
||||||
|
}
|
||||||
batch.logits[Int(batch.n_tokens)] = 1
|
batch.logits[Int(batch.n_tokens)] = 1
|
||||||
|
|
||||||
i_batch[i] = batch.n_tokens
|
i_batch[i] = batch.n_tokens
|
||||||
|
@ -209,7 +217,7 @@ llama_print_timings(context)
|
||||||
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
|
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
|
||||||
let n_tokens = text.count + (add_bos ? 1 : 0)
|
let n_tokens = text.count + (add_bos ? 1 : 0)
|
||||||
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
|
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
|
||||||
let tokenCount = llama_tokenize(model, text, Int32(text.count), tokens, Int32(n_tokens), add_bos)
|
let tokenCount = llama_tokenize(model, text, Int32(text.count), tokens, Int32(n_tokens), add_bos, /*special tokens*/ false)
|
||||||
var swiftTokens: [llama_token] = []
|
var swiftTokens: [llama_token] = []
|
||||||
for i in 0 ..< tokenCount {
|
for i in 0 ..< tokenCount {
|
||||||
swiftTokens.append(tokens[Int(i)])
|
swiftTokens.append(tokens[Int(i)])
|
||||||
|
|
|
@ -11,12 +11,16 @@ int main(int argc, char ** argv) {
|
||||||
gpt_params params;
|
gpt_params params;
|
||||||
|
|
||||||
if (argc == 1 || argv[1][0] == '-') {
|
if (argc == 1 || argv[1][0] == '-') {
|
||||||
printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL]\n" , argv[0]);
|
printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL] [LEN]\n" , argv[0]);
|
||||||
return 1 ;
|
return 1 ;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// number of parallel batches
|
||||||
int n_parallel = 1;
|
int n_parallel = 1;
|
||||||
|
|
||||||
|
// total length of the sequences including the prompt
|
||||||
|
int n_len = 32;
|
||||||
|
|
||||||
if (argc >= 2) {
|
if (argc >= 2) {
|
||||||
params.model = argv[1];
|
params.model = argv[1];
|
||||||
}
|
}
|
||||||
|
@ -29,13 +33,14 @@ int main(int argc, char ** argv) {
|
||||||
n_parallel = std::atoi(argv[3]);
|
n_parallel = std::atoi(argv[3]);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (argc >= 5) {
|
||||||
|
n_len = std::atoi(argv[4]);
|
||||||
|
}
|
||||||
|
|
||||||
if (params.prompt.empty()) {
|
if (params.prompt.empty()) {
|
||||||
params.prompt = "Hello my name is";
|
params.prompt = "Hello my name is";
|
||||||
}
|
}
|
||||||
|
|
||||||
// total length of the sequences including the prompt
|
|
||||||
const int n_len = 32;
|
|
||||||
|
|
||||||
// init LLM
|
// init LLM
|
||||||
|
|
||||||
llama_backend_init(params.numa);
|
llama_backend_init(params.numa);
|
||||||
|
@ -97,20 +102,15 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
fflush(stderr);
|
fflush(stderr);
|
||||||
|
|
||||||
// create a llama_batch with size 512
|
// create a llama_batch
|
||||||
// we use this object to submit token data for decoding
|
// we use this object to submit token data for decoding
|
||||||
|
llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t)n_parallel), 0, 1);
|
||||||
llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t)n_parallel), 0);
|
|
||||||
|
|
||||||
// evaluate the initial prompt
|
// evaluate the initial prompt
|
||||||
batch.n_tokens = tokens_list.size();
|
for (size_t i = 0; i < tokens_list.size(); ++i) {
|
||||||
|
llama_batch_add(batch, tokens_list[i], i, { 0 }, false);
|
||||||
for (int32_t i = 0; i < batch.n_tokens; i++) {
|
|
||||||
batch.token[i] = tokens_list[i];
|
|
||||||
batch.pos[i] = i;
|
|
||||||
batch.seq_id[i] = 0;
|
|
||||||
batch.logits[i] = false;
|
|
||||||
}
|
}
|
||||||
|
GGML_ASSERT(batch.n_tokens == (int) tokens_list.size());
|
||||||
|
|
||||||
// llama_decode will output logits only for the last token of the prompt
|
// llama_decode will output logits only for the last token of the prompt
|
||||||
batch.logits[batch.n_tokens - 1] = true;
|
batch.logits[batch.n_tokens - 1] = true;
|
||||||
|
@ -146,7 +146,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
while (n_cur <= n_len) {
|
while (n_cur <= n_len) {
|
||||||
// prepare the next batch
|
// prepare the next batch
|
||||||
batch.n_tokens = 0;
|
llama_batch_clear(batch);
|
||||||
|
|
||||||
// sample the next token for each parallel sequence / stream
|
// sample the next token for each parallel sequence / stream
|
||||||
for (int32_t i = 0; i < n_parallel; ++i) {
|
for (int32_t i = 0; i < n_parallel; ++i) {
|
||||||
|
@ -198,15 +198,10 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
streams[i] += llama_token_to_piece(ctx, new_token_id);
|
streams[i] += llama_token_to_piece(ctx, new_token_id);
|
||||||
|
|
||||||
// push this new token for next evaluation
|
|
||||||
batch.token [batch.n_tokens] = new_token_id;
|
|
||||||
batch.pos [batch.n_tokens] = n_cur;
|
|
||||||
batch.seq_id[batch.n_tokens] = i;
|
|
||||||
batch.logits[batch.n_tokens] = true;
|
|
||||||
|
|
||||||
i_batch[i] = batch.n_tokens;
|
i_batch[i] = batch.n_tokens;
|
||||||
|
|
||||||
batch.n_tokens += 1;
|
// push this new token for next evaluation
|
||||||
|
llama_batch_add(batch, new_token_id, n_cur, { i }, true);
|
||||||
|
|
||||||
n_decode += 1;
|
n_decode += 1;
|
||||||
}
|
}
|
||||||
|
|
|
@ -536,7 +536,7 @@ static bool is_ggml_file(const char * filename) {
|
||||||
if (file.size < 4) {
|
if (file.size < 4) {
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
uint32_t magic = file.read_u32();
|
std::string magic = file.read_string(4);
|
||||||
return magic == GGUF_MAGIC;
|
return magic == GGUF_MAGIC;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
4
examples/embd-input/.gitignore
vendored
4
examples/embd-input/.gitignore
vendored
|
@ -1,4 +0,0 @@
|
||||||
PandaGPT
|
|
||||||
MiniGPT-4
|
|
||||||
*.pth
|
|
||||||
|
|
|
@ -1,17 +0,0 @@
|
||||||
set(TARGET embdinput)
|
|
||||||
add_library(${TARGET} embd-input-lib.cpp embd-input.h)
|
|
||||||
install(TARGETS ${TARGET} LIBRARY)
|
|
||||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
|
||||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
|
||||||
if(TARGET BUILD_INFO)
|
|
||||||
add_dependencies(${TARGET} BUILD_INFO)
|
|
||||||
endif()
|
|
||||||
|
|
||||||
set(TARGET embd-input-test)
|
|
||||||
add_executable(${TARGET} embd-input-test.cpp)
|
|
||||||
install(TARGETS ${TARGET} RUNTIME)
|
|
||||||
target_link_libraries(${TARGET} PRIVATE common llama embdinput ${CMAKE_THREAD_LIBS_INIT})
|
|
||||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
|
||||||
if(TARGET BUILD_INFO)
|
|
||||||
add_dependencies(${TARGET} BUILD_INFO)
|
|
||||||
endif()
|
|
|
@ -1,63 +0,0 @@
|
||||||
### Examples for input embedding directly
|
|
||||||
|
|
||||||
## Requirement
|
|
||||||
build `libembdinput.so`
|
|
||||||
run the following comman in main dir (../../).
|
|
||||||
```
|
|
||||||
make
|
|
||||||
```
|
|
||||||
|
|
||||||
## [LLaVA](https://github.com/haotian-liu/LLaVA/) example (llava.py)
|
|
||||||
|
|
||||||
1. Obtian LLaVA model (following https://github.com/haotian-liu/LLaVA/ , use https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/).
|
|
||||||
2. Convert it to ggml format.
|
|
||||||
3. `llava_projection.pth` is [pytorch_model-00003-of-00003.bin](https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/blob/main/pytorch_model-00003-of-00003.bin).
|
|
||||||
|
|
||||||
```
|
|
||||||
import torch
|
|
||||||
|
|
||||||
bin_path = "../LLaVA-13b-delta-v1-1/pytorch_model-00003-of-00003.bin"
|
|
||||||
pth_path = "./examples/embd-input/llava_projection.pth"
|
|
||||||
|
|
||||||
dic = torch.load(bin_path)
|
|
||||||
used_key = ["model.mm_projector.weight","model.mm_projector.bias"]
|
|
||||||
torch.save({k: dic[k] for k in used_key}, pth_path)
|
|
||||||
```
|
|
||||||
4. Check the path of LLaVA model and `llava_projection.pth` in `llava.py`.
|
|
||||||
|
|
||||||
|
|
||||||
## [PandaGPT](https://github.com/yxuansu/PandaGPT) example (panda_gpt.py)
|
|
||||||
|
|
||||||
1. Obtian PandaGPT lora model from https://github.com/yxuansu/PandaGPT. Rename the file to `adapter_model.bin`. Use [convert-lora-to-ggml.py](../../convert-lora-to-ggml.py) to convert it to ggml format.
|
|
||||||
The `adapter_config.json` is
|
|
||||||
```
|
|
||||||
{
|
|
||||||
"peft_type": "LORA",
|
|
||||||
"fan_in_fan_out": false,
|
|
||||||
"bias": null,
|
|
||||||
"modules_to_save": null,
|
|
||||||
"r": 32,
|
|
||||||
"lora_alpha": 32,
|
|
||||||
"lora_dropout": 0.1,
|
|
||||||
"target_modules": ["q_proj", "k_proj", "v_proj", "o_proj"]
|
|
||||||
}
|
|
||||||
```
|
|
||||||
2. Papare the `vicuna` v0 model.
|
|
||||||
3. Obtain the [ImageBind](https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth) model.
|
|
||||||
4. Clone the PandaGPT source.
|
|
||||||
```
|
|
||||||
git clone https://github.com/yxuansu/PandaGPT
|
|
||||||
```
|
|
||||||
5. Install the requirement of PandaGPT.
|
|
||||||
6. Check the path of PandaGPT source, ImageBind model, lora model and vicuna model in panda_gpt.py.
|
|
||||||
|
|
||||||
## [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4/) example (minigpt4.py)
|
|
||||||
|
|
||||||
1. Obtain MiniGPT-4 model from https://github.com/Vision-CAIR/MiniGPT-4/ and put it in `embd-input`.
|
|
||||||
2. Clone the MiniGPT-4 source.
|
|
||||||
```
|
|
||||||
git clone https://github.com/Vision-CAIR/MiniGPT-4/
|
|
||||||
```
|
|
||||||
3. Install the requirement of PandaGPT.
|
|
||||||
4. Papare the `vicuna` v0 model.
|
|
||||||
5. Check the path of MiniGPT-4 source, MiniGPT-4 model and vicuna model in `minigpt4.py`.
|
|
|
@ -1,221 +0,0 @@
|
||||||
#include "build-info.h"
|
|
||||||
#include "common.h"
|
|
||||||
#include "embd-input.h"
|
|
||||||
|
|
||||||
#include <cassert>
|
|
||||||
#include <cinttypes>
|
|
||||||
#include <cmath>
|
|
||||||
#include <cstdio>
|
|
||||||
#include <cstring>
|
|
||||||
#include <ctime>
|
|
||||||
#include <fstream>
|
|
||||||
#include <iostream>
|
|
||||||
#include <string>
|
|
||||||
#include <vector>
|
|
||||||
|
|
||||||
static llama_context ** g_ctx;
|
|
||||||
|
|
||||||
extern "C" {
|
|
||||||
|
|
||||||
struct MyModel* create_mymodel(int argc, char ** argv) {
|
|
||||||
gpt_params params;
|
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params)) {
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
|
|
||||||
print_build_info();
|
|
||||||
|
|
||||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
|
||||||
params.seed = uint32_t(time(NULL));
|
|
||||||
}
|
|
||||||
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
|
||||||
|
|
||||||
llama_backend_init(params.numa);
|
|
||||||
|
|
||||||
llama_model * model;
|
|
||||||
llama_context * ctx;
|
|
||||||
|
|
||||||
g_ctx = &ctx;
|
|
||||||
|
|
||||||
// load the model and apply lora adapter, if any
|
|
||||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
|
||||||
if (model == NULL) {
|
|
||||||
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
|
|
||||||
// print system information
|
|
||||||
{
|
|
||||||
fprintf(stderr, "\n");
|
|
||||||
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
|
||||||
}
|
|
||||||
struct MyModel * ret = new MyModel();
|
|
||||||
ret->ctx = ctx;
|
|
||||||
ret->params = params;
|
|
||||||
ret->n_past = 0;
|
|
||||||
// printf("ctx: %d\n", ret->ctx);
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
void free_mymodel(struct MyModel * mymodel) {
|
|
||||||
llama_context * ctx = mymodel->ctx;
|
|
||||||
llama_print_timings(ctx);
|
|
||||||
llama_free(ctx);
|
|
||||||
delete mymodel;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
bool eval_float(void * model, float * input, int N){
|
|
||||||
MyModel * mymodel = (MyModel*)model;
|
|
||||||
llama_context * ctx = mymodel->ctx;
|
|
||||||
gpt_params params = mymodel->params;
|
|
||||||
int n_emb = llama_n_embd(llama_get_model(ctx));
|
|
||||||
int n_past = mymodel->n_past;
|
|
||||||
int n_batch = N; // params.n_batch;
|
|
||||||
|
|
||||||
for (int i = 0; i < (int) N; i += n_batch) {
|
|
||||||
int n_eval = (int) N - i;
|
|
||||||
if (n_eval > n_batch) {
|
|
||||||
n_eval = n_batch;
|
|
||||||
}
|
|
||||||
llama_batch batch = { int32_t(n_eval), nullptr, (input+i*n_emb), nullptr, nullptr, nullptr, n_past, 1, 0, };
|
|
||||||
if (llama_decode(ctx, batch)) {
|
|
||||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
n_past += n_eval;
|
|
||||||
}
|
|
||||||
mymodel->n_past = n_past;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool eval_tokens(void * model, std::vector<llama_token> tokens) {
|
|
||||||
MyModel * mymodel = (MyModel* )model;
|
|
||||||
llama_context * ctx;
|
|
||||||
ctx = mymodel->ctx;
|
|
||||||
gpt_params params = mymodel->params;
|
|
||||||
int n_past = mymodel->n_past;
|
|
||||||
for (int i = 0; i < (int) tokens.size(); i += params.n_batch) {
|
|
||||||
int n_eval = (int) tokens.size() - i;
|
|
||||||
if (n_eval > params.n_batch) {
|
|
||||||
n_eval = params.n_batch;
|
|
||||||
}
|
|
||||||
if (llama_decode(ctx, llama_batch_get_one(&tokens[i], n_eval, n_past, 0))) {
|
|
||||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
n_past += n_eval;
|
|
||||||
}
|
|
||||||
mymodel->n_past = n_past;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool eval_id(struct MyModel* mymodel, int id) {
|
|
||||||
std::vector<llama_token> tokens;
|
|
||||||
tokens.push_back(id);
|
|
||||||
return eval_tokens(mymodel, tokens);
|
|
||||||
}
|
|
||||||
|
|
||||||
bool eval_string(struct MyModel * mymodel,const char* str){
|
|
||||||
llama_context * ctx = mymodel->ctx;
|
|
||||||
std::string str2 = str;
|
|
||||||
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx, str2, true);
|
|
||||||
eval_tokens(mymodel, embd_inp);
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
llama_token sampling_id(struct MyModel* mymodel) {
|
|
||||||
llama_context* ctx = mymodel->ctx;
|
|
||||||
gpt_params params = mymodel->params;
|
|
||||||
llama_sampling_params & sparams = params.sampling_params;
|
|
||||||
// int n_ctx = llama_n_ctx(ctx);
|
|
||||||
|
|
||||||
// out of user input, sample next token
|
|
||||||
const float temp = sparams.temp;
|
|
||||||
const int32_t top_k = sparams.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx)) : sparams.top_k;
|
|
||||||
const float top_p = sparams.top_p;
|
|
||||||
const float tfs_z = sparams.tfs_z;
|
|
||||||
const float typical_p = sparams.typical_p;
|
|
||||||
// const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
|
||||||
// const float repeat_penalty = params.repeat_penalty;
|
|
||||||
// const float alpha_presence = params.presence_penalty;
|
|
||||||
// const float alpha_frequency = params.frequency_penalty;
|
|
||||||
const int mirostat = sparams.mirostat;
|
|
||||||
const float mirostat_tau = sparams.mirostat_tau;
|
|
||||||
const float mirostat_eta = sparams.mirostat_eta;
|
|
||||||
// const bool penalize_nl = params.penalize_nl;
|
|
||||||
|
|
||||||
llama_token id = 0;
|
|
||||||
{
|
|
||||||
auto logits = llama_get_logits(ctx);
|
|
||||||
auto n_vocab = llama_n_vocab(llama_get_model(ctx));
|
|
||||||
|
|
||||||
// Apply params.logit_bias map
|
|
||||||
for (auto it = sparams.logit_bias.begin(); it != sparams.logit_bias.end(); it++) {
|
|
||||||
logits[it->first] += it->second;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<llama_token_data> candidates;
|
|
||||||
candidates.reserve(n_vocab);
|
|
||||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
|
||||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
|
||||||
}
|
|
||||||
|
|
||||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
||||||
|
|
||||||
// TODO: Apply penalties
|
|
||||||
// float nl_logit = logits[llama_token_nl(ctx)];
|
|
||||||
// auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
|
||||||
// llama_sample_repetition_penalty(ctx, &candidates_p,
|
|
||||||
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
|
||||||
// last_n_repeat, repeat_penalty);
|
|
||||||
// llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
|
|
||||||
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
|
||||||
// last_n_repeat, alpha_frequency, alpha_presence);
|
|
||||||
// if (!penalize_nl) {
|
|
||||||
// logits[llama_token_nl(ctx)] = nl_logit;
|
|
||||||
// }
|
|
||||||
|
|
||||||
if (temp <= 0) {
|
|
||||||
// Greedy sampling
|
|
||||||
id = llama_sample_token_greedy(ctx, &candidates_p);
|
|
||||||
} else {
|
|
||||||
if (mirostat == 1) {
|
|
||||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
|
||||||
const int mirostat_m = 100;
|
|
||||||
llama_sample_temp(ctx, &candidates_p, temp);
|
|
||||||
id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
|
||||||
} else if (mirostat == 2) {
|
|
||||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
|
||||||
llama_sample_temp(ctx, &candidates_p, temp);
|
|
||||||
id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
|
||||||
} else {
|
|
||||||
// Temperature sampling
|
|
||||||
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
|
|
||||||
llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
|
|
||||||
llama_sample_typical(ctx, &candidates_p, typical_p, 1);
|
|
||||||
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
|
|
||||||
llama_sample_temp(ctx, &candidates_p, temp);
|
|
||||||
id = llama_sample_token(ctx, &candidates_p);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return id;
|
|
||||||
}
|
|
||||||
|
|
||||||
const char * sampling(struct MyModel * mymodel) {
|
|
||||||
llama_context * ctx = mymodel->ctx;
|
|
||||||
int id = sampling_id(mymodel);
|
|
||||||
static std::string ret;
|
|
||||||
if (id == llama_token_eos(ctx)) {
|
|
||||||
ret = "</s>";
|
|
||||||
} else {
|
|
||||||
ret = llama_token_to_piece(ctx, id);
|
|
||||||
}
|
|
||||||
eval_id(mymodel, id);
|
|
||||||
return ret.c_str();
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
|
@ -1,35 +0,0 @@
|
||||||
#include "embd-input.h"
|
|
||||||
#include <stdlib.h>
|
|
||||||
#include <random>
|
|
||||||
#include <string.h>
|
|
||||||
|
|
||||||
int main(int argc, char** argv) {
|
|
||||||
|
|
||||||
auto mymodel = create_mymodel(argc, argv);
|
|
||||||
int N = 10;
|
|
||||||
int max_tgt_len = 500;
|
|
||||||
int n_embd = llama_n_embd(llama_get_model(mymodel->ctx));
|
|
||||||
|
|
||||||
// add random float embd to test evaluation
|
|
||||||
float * data = new float[N*n_embd];
|
|
||||||
std::default_random_engine e;
|
|
||||||
std::uniform_real_distribution<float> u(0,1);
|
|
||||||
for (int i=0;i<N*n_embd;i++) {
|
|
||||||
data[i] = u(e);
|
|
||||||
}
|
|
||||||
|
|
||||||
eval_string(mymodel, "user: what is the color of the flag of UN?");
|
|
||||||
eval_float(mymodel, data, N);
|
|
||||||
eval_string(mymodel, "assistant:");
|
|
||||||
eval_string(mymodel, mymodel->params.prompt.c_str());
|
|
||||||
const char* tmp;
|
|
||||||
for (int i=0; i<max_tgt_len; i++) {
|
|
||||||
tmp = sampling(mymodel);
|
|
||||||
if (strcmp(tmp, "</s>")==0) break;
|
|
||||||
printf("%s", tmp);
|
|
||||||
fflush(stdout);
|
|
||||||
}
|
|
||||||
printf("\n");
|
|
||||||
free_mymodel(mymodel);
|
|
||||||
return 0;
|
|
||||||
}
|
|
|
@ -1,27 +0,0 @@
|
||||||
#ifndef _EMBD_INPUT_H_
|
|
||||||
#define _EMBD_INPUT_H_ 1
|
|
||||||
|
|
||||||
#include "common.h"
|
|
||||||
#include "llama.h"
|
|
||||||
|
|
||||||
extern "C" {
|
|
||||||
|
|
||||||
typedef struct MyModel {
|
|
||||||
llama_context* ctx;
|
|
||||||
gpt_params params;
|
|
||||||
int n_past = 0;
|
|
||||||
} MyModel;
|
|
||||||
|
|
||||||
struct MyModel* create_mymodel(int argc, char ** argv);
|
|
||||||
|
|
||||||
bool eval_float(void* model, float* input, int N);
|
|
||||||
bool eval_tokens(void* model, std::vector<llama_token> tokens);
|
|
||||||
bool eval_id(struct MyModel* mymodel, int id);
|
|
||||||
bool eval_string(struct MyModel* mymodel, const char* str);
|
|
||||||
const char * sampling(struct MyModel* mymodel);
|
|
||||||
llama_token sampling_id(struct MyModel* mymodel);
|
|
||||||
void free_mymodel(struct MyModel* mymodel);
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif
|
|
|
@ -1,72 +0,0 @@
|
||||||
#!/usr/bin/env python3
|
|
||||||
import ctypes
|
|
||||||
from ctypes import cdll, c_char_p, c_void_p, POINTER, c_float, c_int
|
|
||||||
import numpy as np
|
|
||||||
import os
|
|
||||||
|
|
||||||
libc = cdll.LoadLibrary("./libembdinput.so")
|
|
||||||
libc.sampling.restype=c_char_p
|
|
||||||
libc.create_mymodel.restype=c_void_p
|
|
||||||
libc.eval_string.argtypes=[c_void_p, c_char_p]
|
|
||||||
libc.sampling.argtypes=[c_void_p]
|
|
||||||
libc.eval_float.argtypes=[c_void_p, POINTER(c_float), c_int]
|
|
||||||
|
|
||||||
|
|
||||||
class MyModel:
|
|
||||||
def __init__(self, args):
|
|
||||||
argc = len(args)
|
|
||||||
c_str = [c_char_p(i.encode()) for i in args]
|
|
||||||
args_c = (c_char_p * argc)(*c_str)
|
|
||||||
self.model = c_void_p(libc.create_mymodel(argc, args_c))
|
|
||||||
self.max_tgt_len = 512
|
|
||||||
self.print_string_eval = True
|
|
||||||
|
|
||||||
def __del__(self):
|
|
||||||
libc.free_mymodel(self.model)
|
|
||||||
|
|
||||||
def eval_float(self, x):
|
|
||||||
libc.eval_float(self.model, x.astype(np.float32).ctypes.data_as(POINTER(c_float)), x.shape[1])
|
|
||||||
|
|
||||||
def eval_string(self, x):
|
|
||||||
libc.eval_string(self.model, x.encode()) # c_char_p(x.encode()))
|
|
||||||
if self.print_string_eval:
|
|
||||||
print(x)
|
|
||||||
|
|
||||||
def eval_token(self, x):
|
|
||||||
libc.eval_id(self.model, x)
|
|
||||||
|
|
||||||
def sampling(self):
|
|
||||||
s = libc.sampling(self.model)
|
|
||||||
return s
|
|
||||||
|
|
||||||
def stream_generate(self, end="</s>"):
|
|
||||||
ret = b""
|
|
||||||
end = end.encode()
|
|
||||||
for _ in range(self.max_tgt_len):
|
|
||||||
tmp = self.sampling()
|
|
||||||
ret += tmp
|
|
||||||
yield tmp
|
|
||||||
if ret.endswith(end):
|
|
||||||
break
|
|
||||||
|
|
||||||
def generate_with_print(self, end="</s>"):
|
|
||||||
ret = b""
|
|
||||||
for i in self.stream_generate(end=end):
|
|
||||||
ret += i
|
|
||||||
print(i.decode(errors="replace"), end="", flush=True)
|
|
||||||
print("")
|
|
||||||
return ret.decode(errors="replace")
|
|
||||||
|
|
||||||
|
|
||||||
def generate(self, end="</s>"):
|
|
||||||
text = b"".join(self.stream_generate(end=end))
|
|
||||||
return text.decode(errors="replace")
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
model = MyModel(["main", "--model", "../llama.cpp/models/ggml-vic13b-q4_1.bin", "-c", "2048"])
|
|
||||||
model.eval_string("""user: what is the color of the flag of UN?""")
|
|
||||||
x = np.random.random((5120,10))# , dtype=np.float32)
|
|
||||||
model.eval_float(x)
|
|
||||||
model.eval_string("""assistant:""")
|
|
||||||
for i in model.generate():
|
|
||||||
print(i.decode(errors="replace"), end="", flush=True)
|
|
|
@ -1,71 +0,0 @@
|
||||||
#!/usr/bin/env python3
|
|
||||||
import sys
|
|
||||||
import os
|
|
||||||
sys.path.insert(0, os.path.dirname(__file__))
|
|
||||||
from embd_input import MyModel
|
|
||||||
import numpy as np
|
|
||||||
from torch import nn
|
|
||||||
import torch
|
|
||||||
from transformers import CLIPVisionModel, CLIPImageProcessor
|
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
# model parameters from 'liuhaotian/LLaVA-13b-delta-v1-1'
|
|
||||||
vision_tower = "openai/clip-vit-large-patch14"
|
|
||||||
select_hidden_state_layer = -2
|
|
||||||
# (vision_config.image_size // vision_config.patch_size) ** 2
|
|
||||||
image_token_len = (224//14)**2
|
|
||||||
|
|
||||||
class Llava:
|
|
||||||
def __init__(self, args):
|
|
||||||
self.image_processor = CLIPImageProcessor.from_pretrained(vision_tower)
|
|
||||||
self.vision_tower = CLIPVisionModel.from_pretrained(vision_tower)
|
|
||||||
self.mm_projector = nn.Linear(1024, 5120)
|
|
||||||
self.model = MyModel(["main", *args])
|
|
||||||
|
|
||||||
def load_projection(self, path):
|
|
||||||
state = torch.load(path)
|
|
||||||
self.mm_projector.load_state_dict({
|
|
||||||
"weight": state["model.mm_projector.weight"],
|
|
||||||
"bias": state["model.mm_projector.bias"]})
|
|
||||||
|
|
||||||
def chat(self, question):
|
|
||||||
self.model.eval_string("user: ")
|
|
||||||
self.model.eval_string(question)
|
|
||||||
self.model.eval_string("\nassistant: ")
|
|
||||||
return self.model.generate_with_print()
|
|
||||||
|
|
||||||
def chat_with_image(self, image, question):
|
|
||||||
with torch.no_grad():
|
|
||||||
embd_image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
|
||||||
image_forward_out = self.vision_tower(embd_image.unsqueeze(0), output_hidden_states=True)
|
|
||||||
select_hidden_state = image_forward_out.hidden_states[select_hidden_state_layer]
|
|
||||||
image_feature = select_hidden_state[:, 1:]
|
|
||||||
embd_image = self.mm_projector(image_feature)
|
|
||||||
embd_image = embd_image.cpu().numpy()[0]
|
|
||||||
self.model.eval_string("user: ")
|
|
||||||
self.model.eval_token(32003-2) # im_start
|
|
||||||
self.model.eval_float(embd_image.T)
|
|
||||||
for i in range(image_token_len-embd_image.shape[0]):
|
|
||||||
self.model.eval_token(32003-3) # im_patch
|
|
||||||
self.model.eval_token(32003-1) # im_end
|
|
||||||
self.model.eval_string(question)
|
|
||||||
self.model.eval_string("\nassistant: ")
|
|
||||||
return self.model.generate_with_print()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__=="__main__":
|
|
||||||
# model form liuhaotian/LLaVA-13b-delta-v1-1
|
|
||||||
a = Llava(["--model", "./models/ggml-llava-13b-v1.1.bin", "-c", "2048"])
|
|
||||||
# Extract from https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/blob/main/pytorch_model-00003-of-00003.bin.
|
|
||||||
# Also here can use pytorch_model-00003-of-00003.bin directly.
|
|
||||||
a.load_projection(os.path.join(
|
|
||||||
os.path.dirname(__file__) ,
|
|
||||||
"llava_projection.pth"))
|
|
||||||
respose = a.chat_with_image(
|
|
||||||
Image.open("./media/llama1-logo.png").convert('RGB'),
|
|
||||||
"what is the text in the picture?")
|
|
||||||
respose
|
|
||||||
a.chat("what is the color of it?")
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,129 +0,0 @@
|
||||||
#!/usr/bin/env python3
|
|
||||||
import sys
|
|
||||||
import os
|
|
||||||
sys.path.insert(0, os.path.dirname(__file__))
|
|
||||||
from embd_input import MyModel
|
|
||||||
import numpy as np
|
|
||||||
from torch import nn
|
|
||||||
import torch
|
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
minigpt4_path = os.path.join(os.path.dirname(__file__), "MiniGPT-4")
|
|
||||||
sys.path.insert(0, minigpt4_path)
|
|
||||||
from minigpt4.models.blip2 import Blip2Base
|
|
||||||
from minigpt4.processors.blip_processors import Blip2ImageEvalProcessor
|
|
||||||
|
|
||||||
|
|
||||||
class MiniGPT4(Blip2Base):
|
|
||||||
"""
|
|
||||||
MiniGPT4 model from https://github.com/Vision-CAIR/MiniGPT-4
|
|
||||||
"""
|
|
||||||
def __init__(self,
|
|
||||||
args,
|
|
||||||
vit_model="eva_clip_g",
|
|
||||||
q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth",
|
|
||||||
img_size=224,
|
|
||||||
drop_path_rate=0,
|
|
||||||
use_grad_checkpoint=False,
|
|
||||||
vit_precision="fp32",
|
|
||||||
freeze_vit=True,
|
|
||||||
freeze_qformer=True,
|
|
||||||
num_query_token=32,
|
|
||||||
llama_model="",
|
|
||||||
prompt_path="",
|
|
||||||
prompt_template="",
|
|
||||||
max_txt_len=32,
|
|
||||||
end_sym='\n',
|
|
||||||
low_resource=False, # use 8 bit and put vit in cpu
|
|
||||||
device_8bit=0
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.img_size = img_size
|
|
||||||
self.low_resource = low_resource
|
|
||||||
self.preprocessor = Blip2ImageEvalProcessor(img_size)
|
|
||||||
|
|
||||||
print('Loading VIT')
|
|
||||||
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
|
|
||||||
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
|
|
||||||
)
|
|
||||||
print('Loading VIT Done')
|
|
||||||
print('Loading Q-Former')
|
|
||||||
self.Qformer, self.query_tokens = self.init_Qformer(
|
|
||||||
num_query_token, self.visual_encoder.num_features
|
|
||||||
)
|
|
||||||
self.Qformer.cls = None
|
|
||||||
self.Qformer.bert.embeddings.word_embeddings = None
|
|
||||||
self.Qformer.bert.embeddings.position_embeddings = None
|
|
||||||
for layer in self.Qformer.bert.encoder.layer:
|
|
||||||
layer.output = None
|
|
||||||
layer.intermediate = None
|
|
||||||
self.load_from_pretrained(url_or_filename=q_former_model)
|
|
||||||
print('Loading Q-Former Done')
|
|
||||||
self.llama_proj = nn.Linear(
|
|
||||||
self.Qformer.config.hidden_size, 5120 # self.llama_model.config.hidden_size
|
|
||||||
)
|
|
||||||
self.max_txt_len = max_txt_len
|
|
||||||
self.end_sym = end_sym
|
|
||||||
self.model = MyModel(["main", *args])
|
|
||||||
# system prompt
|
|
||||||
self.model.eval_string("Give the following image: <Img>ImageContent</Img>. "
|
|
||||||
"You will be able to see the image once I provide it to you. Please answer my questions."
|
|
||||||
"###")
|
|
||||||
|
|
||||||
def encode_img(self, image):
|
|
||||||
image = self.preprocessor(image)
|
|
||||||
image = image.unsqueeze(0)
|
|
||||||
device = image.device
|
|
||||||
if self.low_resource:
|
|
||||||
self.vit_to_cpu()
|
|
||||||
image = image.to("cpu")
|
|
||||||
|
|
||||||
with self.maybe_autocast():
|
|
||||||
image_embeds = self.ln_vision(self.visual_encoder(image)).to(device)
|
|
||||||
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
|
|
||||||
|
|
||||||
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
|
||||||
query_output = self.Qformer.bert(
|
|
||||||
query_embeds=query_tokens,
|
|
||||||
encoder_hidden_states=image_embeds,
|
|
||||||
encoder_attention_mask=image_atts,
|
|
||||||
return_dict=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
inputs_llama = self.llama_proj(query_output.last_hidden_state)
|
|
||||||
# atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
|
|
||||||
return inputs_llama
|
|
||||||
|
|
||||||
def load_projection(self, path):
|
|
||||||
state = torch.load(path)["model"]
|
|
||||||
self.llama_proj.load_state_dict({
|
|
||||||
"weight": state["llama_proj.weight"],
|
|
||||||
"bias": state["llama_proj.bias"]})
|
|
||||||
|
|
||||||
def chat(self, question):
|
|
||||||
self.model.eval_string("Human: ")
|
|
||||||
self.model.eval_string(question)
|
|
||||||
self.model.eval_string("\n### Assistant:")
|
|
||||||
return self.model.generate_with_print(end="###")
|
|
||||||
|
|
||||||
def chat_with_image(self, image, question):
|
|
||||||
with torch.no_grad():
|
|
||||||
embd_image = self.encode_img(image)
|
|
||||||
embd_image = embd_image.cpu().numpy()[0]
|
|
||||||
self.model.eval_string("Human: <Img>")
|
|
||||||
self.model.eval_float(embd_image.T)
|
|
||||||
self.model.eval_string("</Img> ")
|
|
||||||
self.model.eval_string(question)
|
|
||||||
self.model.eval_string("\n### Assistant:")
|
|
||||||
return self.model.generate_with_print(end="###")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__=="__main__":
|
|
||||||
a = MiniGPT4(["--model", "./models/ggml-vicuna-13b-v0-q4_1.bin", "-c", "2048"])
|
|
||||||
a.load_projection(os.path.join(
|
|
||||||
os.path.dirname(__file__) ,
|
|
||||||
"pretrained_minigpt4.pth"))
|
|
||||||
respose = a.chat_with_image(
|
|
||||||
Image.open("./media/llama1-logo.png").convert('RGB'),
|
|
||||||
"what is the text in the picture?")
|
|
||||||
a.chat("what is the color of it?")
|
|
|
@ -1,99 +0,0 @@
|
||||||
#!/usr/bin/env python3
|
|
||||||
import sys
|
|
||||||
import os
|
|
||||||
sys.path.insert(0, os.path.dirname(__file__))
|
|
||||||
from embd_input import MyModel
|
|
||||||
import numpy as np
|
|
||||||
from torch import nn
|
|
||||||
import torch
|
|
||||||
|
|
||||||
# use PandaGPT path
|
|
||||||
panda_gpt_path = os.path.join(os.path.dirname(__file__), "PandaGPT")
|
|
||||||
imagebind_ckpt_path = "./models/panda_gpt/"
|
|
||||||
|
|
||||||
sys.path.insert(0, os.path.join(panda_gpt_path,"code","model"))
|
|
||||||
from ImageBind.models import imagebind_model
|
|
||||||
from ImageBind import data
|
|
||||||
|
|
||||||
ModalityType = imagebind_model.ModalityType
|
|
||||||
max_tgt_len = 400
|
|
||||||
|
|
||||||
class PandaGPT:
|
|
||||||
def __init__(self, args):
|
|
||||||
self.visual_encoder,_ = imagebind_model.imagebind_huge(pretrained=True, store_path=imagebind_ckpt_path)
|
|
||||||
self.visual_encoder.eval()
|
|
||||||
self.llama_proj = nn.Linear(1024, 5120) # self.visual_hidden_size, 5120)
|
|
||||||
self.max_tgt_len = max_tgt_len
|
|
||||||
self.model = MyModel(["main", *args])
|
|
||||||
self.generated_text = ""
|
|
||||||
self.device = "cpu"
|
|
||||||
|
|
||||||
def load_projection(self, path):
|
|
||||||
state = torch.load(path, map_location="cpu")
|
|
||||||
self.llama_proj.load_state_dict({
|
|
||||||
"weight": state["llama_proj.weight"],
|
|
||||||
"bias": state["llama_proj.bias"]})
|
|
||||||
|
|
||||||
def eval_inputs(self, inputs):
|
|
||||||
self.model.eval_string("<Img>")
|
|
||||||
embds = self.extract_multimoal_feature(inputs)
|
|
||||||
for i in embds:
|
|
||||||
self.model.eval_float(i.T)
|
|
||||||
self.model.eval_string("</Img> ")
|
|
||||||
|
|
||||||
def chat(self, question):
|
|
||||||
return self.chat_with_image(None, question)
|
|
||||||
|
|
||||||
def chat_with_image(self, inputs, question):
|
|
||||||
if self.generated_text == "":
|
|
||||||
self.model.eval_string("###")
|
|
||||||
self.model.eval_string(" Human: ")
|
|
||||||
if inputs:
|
|
||||||
self.eval_inputs(inputs)
|
|
||||||
self.model.eval_string(question)
|
|
||||||
self.model.eval_string("\n### Assistant:")
|
|
||||||
ret = self.model.generate_with_print(end="###")
|
|
||||||
self.generated_text += ret
|
|
||||||
return ret
|
|
||||||
|
|
||||||
def extract_multimoal_feature(self, inputs):
|
|
||||||
features = []
|
|
||||||
for key in ["image", "audio", "video", "thermal"]:
|
|
||||||
if key + "_paths" in inputs:
|
|
||||||
embeds = self.encode_data(key, inputs[key+"_paths"])
|
|
||||||
features.append(embeds)
|
|
||||||
return features
|
|
||||||
|
|
||||||
def encode_data(self, data_type, data_paths):
|
|
||||||
|
|
||||||
type_map = {
|
|
||||||
"image": ModalityType.VISION,
|
|
||||||
"audio": ModalityType.AUDIO,
|
|
||||||
"video": ModalityType.VISION,
|
|
||||||
"thermal": ModalityType.THERMAL,
|
|
||||||
}
|
|
||||||
load_map = {
|
|
||||||
"image": data.load_and_transform_vision_data,
|
|
||||||
"audio": data.load_and_transform_audio_data,
|
|
||||||
"video": data.load_and_transform_video_data,
|
|
||||||
"thermal": data.load_and_transform_thermal_data
|
|
||||||
}
|
|
||||||
|
|
||||||
load_function = load_map[data_type]
|
|
||||||
key = type_map[data_type]
|
|
||||||
|
|
||||||
inputs = {key: load_function(data_paths, self.device)}
|
|
||||||
with torch.no_grad():
|
|
||||||
embeddings = self.visual_encoder(inputs)
|
|
||||||
embeds = embeddings[key]
|
|
||||||
embeds = self.llama_proj(embeds).cpu().numpy()
|
|
||||||
return embeds
|
|
||||||
|
|
||||||
|
|
||||||
if __name__=="__main__":
|
|
||||||
a = PandaGPT(["--model", "./models/ggml-vicuna-13b-v0-q4_1.bin", "-c", "2048", "--lora", "./models/panda_gpt/ggml-adapter-model.bin","--temp", "0"])
|
|
||||||
a.load_projection("./models/panda_gpt/adapter_model.bin")
|
|
||||||
a.chat_with_image(
|
|
||||||
{"image_paths": ["./media/llama1-logo.png"]},
|
|
||||||
"what is the text in the picture? 'llama' or 'lambda'?")
|
|
||||||
a.chat("what is the color of it?")
|
|
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
|
@ -4,5 +4,5 @@ install(TARGETS ${TARGET} RUNTIME)
|
||||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||||
if(TARGET BUILD_INFO)
|
if(TARGET BUILD_INFO)
|
||||||
add_dependencies(${TARGET} BUILD_INFO)
|
add_dependencies(${TARGET} BUILD_INFO)
|
||||||
endif()
|
endif()
|
||||||
|
|
|
@ -39,8 +39,8 @@ static gpt_params * g_params;
|
||||||
static std::vector<llama_token> * g_input_tokens;
|
static std::vector<llama_token> * g_input_tokens;
|
||||||
static std::ostringstream * g_output_ss;
|
static std::ostringstream * g_output_ss;
|
||||||
static std::vector<llama_token> * g_output_tokens;
|
static std::vector<llama_token> * g_output_tokens;
|
||||||
static bool is_interacting = false;
|
|
||||||
|
|
||||||
|
static bool is_interacting = false;
|
||||||
|
|
||||||
static void write_logfile(
|
static void write_logfile(
|
||||||
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
||||||
|
@ -104,7 +104,7 @@ static void sigint_handler(int signo) {
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
gpt_params params;
|
gpt_params params;
|
||||||
llama_sampling_params & sparams = params.sampling_params;
|
llama_sampling_params & sparams = params.sparams;
|
||||||
g_params = ¶ms;
|
g_params = ¶ms;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params)) {
|
if (!gpt_params_parse(argc, argv, params)) {
|
||||||
|
@ -257,12 +257,12 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
LOG("prefix: \"%s\"\n", log_tostr(params.input_prefix));
|
LOG("prefix: \"%s\"\n", log_tostr(params.input_prefix));
|
||||||
LOG("suffix: \"%s\"\n", log_tostr(params.input_suffix));
|
LOG("suffix: \"%s\"\n", log_tostr(params.input_suffix));
|
||||||
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
|
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
||||||
|
|
||||||
// Should not run without any tokens
|
// Should not run without any tokens
|
||||||
if (embd_inp.empty()) {
|
if (embd_inp.empty()) {
|
||||||
embd_inp.push_back(llama_token_bos(ctx));
|
embd_inp.push_back(llama_token_bos(ctx));
|
||||||
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
|
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
// Tokenize negative prompt
|
// Tokenize negative prompt
|
||||||
|
@ -273,10 +273,10 @@ int main(int argc, char ** argv) {
|
||||||
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
|
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
|
||||||
|
|
||||||
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos);
|
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos);
|
||||||
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp));
|
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str());
|
||||||
|
|
||||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
|
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||||
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp));
|
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str());
|
||||||
|
|
||||||
original_prompt_len = original_inp.size();
|
original_prompt_len = original_inp.size();
|
||||||
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
|
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
|
||||||
|
@ -294,8 +294,8 @@ int main(int argc, char ** argv) {
|
||||||
params.n_keep = (int)embd_inp.size();
|
params.n_keep = (int)embd_inp.size();
|
||||||
}
|
}
|
||||||
|
|
||||||
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx));
|
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str());
|
||||||
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx));
|
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str());
|
||||||
|
|
||||||
|
|
||||||
// enable interactive mode if interactive start is specified
|
// enable interactive mode if interactive start is specified
|
||||||
|
@ -358,39 +358,10 @@ int main(int argc, char ** argv) {
|
||||||
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
|
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
LOG_TEE("sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
|
LOG_TEE("sampling: \n%s\n", llama_sampling_print(sparams).c_str());
|
||||||
sparams.repeat_last_n, sparams.repeat_penalty, sparams.presence_penalty, sparams.frequency_penalty, sparams.top_k, sparams.tfs_z, sparams.top_p, sparams.typical_p, sparams.temp, sparams.mirostat, sparams.mirostat_eta, sparams.mirostat_tau);
|
|
||||||
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||||
LOG_TEE("\n\n");
|
LOG_TEE("\n\n");
|
||||||
|
|
||||||
struct llama_grammar * grammar = NULL;
|
|
||||||
grammar_parser::parse_state parsed_grammar;
|
|
||||||
|
|
||||||
if (!params.grammar.empty()) {
|
|
||||||
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
|
||||||
// will be empty (default) if there are parse errors
|
|
||||||
if (parsed_grammar.rules.empty()) {
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
LOG_TEE("%s: grammar:\n", __func__);
|
|
||||||
grammar_parser::print_grammar(stderr, parsed_grammar);
|
|
||||||
LOG_TEE("\n");
|
|
||||||
|
|
||||||
{
|
|
||||||
auto it = sparams.logit_bias.find(llama_token_eos(ctx));
|
|
||||||
if (it != sparams.logit_bias.end() && it->second == -INFINITY) {
|
|
||||||
LOG_TEE("%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
|
||||||
grammar = llama_grammar_init(
|
|
||||||
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
|
||||||
}
|
|
||||||
|
|
||||||
// TODO: replace with ring-buffer
|
|
||||||
std::vector<llama_token> last_tokens(n_ctx);
|
|
||||||
std::fill(last_tokens.begin(), last_tokens.end(), 0);
|
|
||||||
LOG_TEE("\n##### Infill mode #####\n\n");
|
LOG_TEE("\n##### Infill mode #####\n\n");
|
||||||
if (params.infill) {
|
if (params.infill) {
|
||||||
printf("\n************\n");
|
printf("\n************\n");
|
||||||
|
@ -433,11 +404,7 @@ int main(int argc, char ** argv) {
|
||||||
std::vector<llama_token> embd;
|
std::vector<llama_token> embd;
|
||||||
std::vector<llama_token> embd_guidance;
|
std::vector<llama_token> embd_guidance;
|
||||||
|
|
||||||
const int n_vocab = llama_n_vocab(model);
|
struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams);
|
||||||
|
|
||||||
llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar);
|
|
||||||
std::vector<llama_token_data> candidates;
|
|
||||||
candidates.reserve(n_vocab);
|
|
||||||
|
|
||||||
while (n_remain != 0 || params.interactive) {
|
while (n_remain != 0 || params.interactive) {
|
||||||
// predict
|
// predict
|
||||||
|
@ -484,7 +451,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
|
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
|
||||||
|
|
||||||
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
|
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -512,7 +479,7 @@ int main(int argc, char ** argv) {
|
||||||
input_buf = embd_guidance.data();
|
input_buf = embd_guidance.data();
|
||||||
input_size = embd_guidance.size();
|
input_size = embd_guidance.size();
|
||||||
|
|
||||||
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance));
|
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance).c_str());
|
||||||
} else {
|
} else {
|
||||||
input_buf = embd.data();
|
input_buf = embd.data();
|
||||||
input_size = embd.size();
|
input_size = embd.size();
|
||||||
|
@ -535,7 +502,7 @@ int main(int argc, char ** argv) {
|
||||||
n_eval = params.n_batch;
|
n_eval = params.n_batch;
|
||||||
}
|
}
|
||||||
|
|
||||||
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
|
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
||||||
|
|
||||||
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
|
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
|
||||||
LOG_TEE("%s : failed to eval\n", __func__);
|
LOG_TEE("%s : failed to eval\n", __func__);
|
||||||
|
@ -554,12 +521,11 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
||||||
|
|
||||||
const llama_token id = llama_sampling_sample(ctx, ctx_guidance, ctx_sampling, last_tokens, candidates);
|
const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance);
|
||||||
|
|
||||||
last_tokens.erase(last_tokens.begin());
|
llama_sampling_accept(ctx_sampling, ctx, id, true);
|
||||||
last_tokens.push_back(id);
|
|
||||||
|
|
||||||
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_tokens));
|
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str());
|
||||||
|
|
||||||
embd.push_back(id);
|
embd.push_back(id);
|
||||||
|
|
||||||
|
@ -575,8 +541,11 @@ int main(int argc, char ** argv) {
|
||||||
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
||||||
while ((int) embd_inp.size() > n_consumed) {
|
while ((int) embd_inp.size() > n_consumed) {
|
||||||
embd.push_back(embd_inp[n_consumed]);
|
embd.push_back(embd_inp[n_consumed]);
|
||||||
last_tokens.erase(last_tokens.begin());
|
|
||||||
last_tokens.push_back(embd_inp[n_consumed]);
|
// push the prompt in the sampling context in order to apply repetition penalties later
|
||||||
|
// for the prompt, we don't apply grammar rules
|
||||||
|
llama_sampling_accept(ctx_sampling, ctx, embd_inp[n_consumed], false);
|
||||||
|
|
||||||
++n_consumed;
|
++n_consumed;
|
||||||
if ((int) embd.size() >= params.n_batch) {
|
if ((int) embd.size() >= params.n_batch) {
|
||||||
break;
|
break;
|
||||||
|
@ -608,7 +577,7 @@ int main(int argc, char ** argv) {
|
||||||
if ((int) embd_inp.size() <= n_consumed) {
|
if ((int) embd_inp.size() <= n_consumed) {
|
||||||
|
|
||||||
// deal with eot token in infill mode
|
// deal with eot token in infill mode
|
||||||
if ((last_tokens.back() == llama_token_eot(ctx) || is_interacting) && params.interactive){
|
if ((llama_sampling_last(ctx_sampling) == llama_token_eot(ctx) || is_interacting) && params.interactive){
|
||||||
if(is_interacting && !params.interactive_first) {
|
if(is_interacting && !params.interactive_first) {
|
||||||
// print an eot token
|
// print an eot token
|
||||||
printf("%s", llama_token_to_piece(ctx, llama_token_eot(ctx)).c_str());
|
printf("%s", llama_token_to_piece(ctx, llama_token_eot(ctx)).c_str());
|
||||||
|
@ -625,7 +594,7 @@ int main(int argc, char ** argv) {
|
||||||
buffer += line;
|
buffer += line;
|
||||||
} while (another_line);
|
} while (another_line);
|
||||||
// check if we got an empty line, if so we use the old input
|
// check if we got an empty line, if so we use the old input
|
||||||
if(!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
|
if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
|
||||||
params.input_prefix = buffer;
|
params.input_prefix = buffer;
|
||||||
}
|
}
|
||||||
buffer.clear();
|
buffer.clear();
|
||||||
|
@ -635,7 +604,7 @@ int main(int argc, char ** argv) {
|
||||||
buffer += line;
|
buffer += line;
|
||||||
} while (another_line);
|
} while (another_line);
|
||||||
// check if we got an empty line
|
// check if we got an empty line
|
||||||
if(!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
|
if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
|
||||||
params.input_suffix = buffer;
|
params.input_suffix = buffer;
|
||||||
}
|
}
|
||||||
buffer.clear();
|
buffer.clear();
|
||||||
|
@ -648,7 +617,7 @@ int main(int argc, char ** argv) {
|
||||||
process_escapes(params.input_suffix);
|
process_escapes(params.input_suffix);
|
||||||
}
|
}
|
||||||
suff_rm_leading_spc = params.escape;
|
suff_rm_leading_spc = params.escape;
|
||||||
if (suff_rm_leading_spc && params.input_suffix.find_first_of(" ") == 0 && params.input_suffix.size() > 1) {
|
if (suff_rm_leading_spc && params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) {
|
||||||
params.input_suffix.erase(0, 1);
|
params.input_suffix.erase(0, 1);
|
||||||
suff_rm_leading_spc = false;
|
suff_rm_leading_spc = false;
|
||||||
}
|
}
|
||||||
|
@ -675,7 +644,7 @@ int main(int argc, char ** argv) {
|
||||||
is_interacting = false;
|
is_interacting = false;
|
||||||
}
|
}
|
||||||
// deal with end of text token in interactive mode
|
// deal with end of text token in interactive mode
|
||||||
else if (last_tokens.back() == llama_token_eos(ctx)) {
|
else if (llama_sampling_last(ctx_sampling) == llama_token_eos(ctx)) {
|
||||||
LOG("found EOS token\n");
|
LOG("found EOS token\n");
|
||||||
|
|
||||||
if (params.interactive) {
|
if (params.interactive) {
|
||||||
|
@ -727,7 +696,7 @@ int main(int argc, char ** argv) {
|
||||||
const size_t original_size = embd_inp.size();
|
const size_t original_size = embd_inp.size();
|
||||||
|
|
||||||
const auto line_inp = ::llama_tokenize(ctx, buffer, false);
|
const auto line_inp = ::llama_tokenize(ctx, buffer, false);
|
||||||
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp));
|
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
|
||||||
|
|
||||||
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
||||||
|
|
||||||
|
@ -748,15 +717,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
if (n_past > 0) {
|
if (n_past > 0) {
|
||||||
if (is_interacting) {
|
if (is_interacting) {
|
||||||
// reset grammar state if we're restarting generation
|
llama_sampling_reset(ctx_sampling);
|
||||||
if (grammar != NULL) {
|
|
||||||
llama_grammar_free(grammar);
|
|
||||||
|
|
||||||
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
|
||||||
grammar = llama_grammar_init(
|
|
||||||
grammar_rules.data(), grammar_rules.size(),
|
|
||||||
parsed_grammar.symbol_ids.at("root"));
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
is_interacting = false;
|
is_interacting = false;
|
||||||
}
|
}
|
||||||
|
@ -786,9 +747,7 @@ int main(int argc, char ** argv) {
|
||||||
llama_free(ctx);
|
llama_free(ctx);
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
|
|
||||||
if (grammar != NULL) {
|
llama_sampling_free(ctx_sampling);
|
||||||
llama_grammar_free(grammar);
|
|
||||||
}
|
|
||||||
llama_backend_free();
|
llama_backend_free();
|
||||||
|
|
||||||
#ifndef LOG_DISABLE_LOGS
|
#ifndef LOG_DISABLE_LOGS
|
||||||
|
|
|
@ -112,8 +112,7 @@ static float get_f32(const gguf_context * ctx, const std::string & key) {
|
||||||
static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) {
|
static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) {
|
||||||
struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str());
|
struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str());
|
||||||
if (!cur) {
|
if (!cur) {
|
||||||
printf("unable to find tensor %s\n", name.c_str());
|
throw std::runtime_error(format("%s: unable to find tensor %s\n", __func__, name.c_str()));
|
||||||
throw std::runtime_error(format("unable to find tensor %s\n", name.c_str()));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
return cur;
|
return cur;
|
||||||
|
@ -136,7 +135,7 @@ static std::string get_ftype(int ftype) {
|
||||||
case 8:
|
case 8:
|
||||||
return "q8_0";
|
return "q8_0";
|
||||||
default:
|
default:
|
||||||
throw std::runtime_error(format("Unrecognized file type: %d\n", ftype));
|
throw std::runtime_error(format("%s: Unrecognized file type: %d\n", __func__, ftype));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -462,6 +461,9 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||||
};
|
};
|
||||||
|
|
||||||
struct gguf_context * ctx = gguf_init_from_file(fname, params);
|
struct gguf_context * ctx = gguf_init_from_file(fname, params);
|
||||||
|
if (!ctx) {
|
||||||
|
throw std::runtime_error(format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
|
||||||
|
}
|
||||||
|
|
||||||
if (verbosity >= 1) {
|
if (verbosity >= 1) {
|
||||||
const int n_tensors = gguf_get_n_tensors(ctx);
|
const int n_tensors = gguf_get_n_tensors(ctx);
|
||||||
|
|
|
@ -16,13 +16,29 @@ checkpoint = torch.load(path)
|
||||||
mm_tensors = [k for k, v in checkpoint.items() if k.startswith("model.mm_projector")]
|
mm_tensors = [k for k, v in checkpoint.items() if k.startswith("model.mm_projector")]
|
||||||
|
|
||||||
# store these tensors in a new dictionary and torch.save them
|
# store these tensors in a new dictionary and torch.save them
|
||||||
projector = {name: checkpoint[name] for name in mm_tensors}
|
projector = {name: checkpoint[name].float() for name in mm_tensors}
|
||||||
torch.save(projector, f"{args.model}/llava.projector")
|
torch.save(projector, f"{args.model}/llava.projector")
|
||||||
|
|
||||||
# remove these tensors from the checkpoint and save it again
|
# remove these tensors from the checkpoint and save it again
|
||||||
for name in mm_tensors:
|
for name in mm_tensors:
|
||||||
del checkpoint[name]
|
del checkpoint[name]
|
||||||
|
|
||||||
|
# BakLLaVA models contain CLIP tensors in it
|
||||||
|
clip_tensors = [k for k, v in checkpoint.items() if k.startswith("model.vision_tower")]
|
||||||
|
if len(clip_tensors) > 0:
|
||||||
|
clip = {name.replace("vision_tower.vision_tower.", ""): checkpoint[name].float() for name in clip_tensors}
|
||||||
|
torch.save(clip, f"{args.model}/llava.clip")
|
||||||
|
|
||||||
|
# remove these tensors
|
||||||
|
for name in clip_tensors:
|
||||||
|
del checkpoint[name]
|
||||||
|
|
||||||
|
# added tokens should be removed to be able to convert Mistral models
|
||||||
|
if os.path.exists(f"{args.model}/added_tokens.json"):
|
||||||
|
with open(f"{args.model}/added_tokens.json", "w") as f:
|
||||||
|
f.write("{}\n")
|
||||||
|
|
||||||
|
|
||||||
torch.save(checkpoint, path)
|
torch.save(checkpoint, path)
|
||||||
|
|
||||||
print("Done!")
|
print("Done!")
|
||||||
|
|
|
@ -17,7 +17,7 @@ inline bool eval_image_embd(llama_context * ctx_llama, float * embd, int N, int
|
||||||
if (n_eval > n_batch) {
|
if (n_eval > n_batch) {
|
||||||
n_eval = n_batch;
|
n_eval = n_batch;
|
||||||
}
|
}
|
||||||
llama_batch batch = {int32_t(n_eval), nullptr, (embd+i*n_embd), nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
llama_batch batch = {int32_t(n_eval), nullptr, (embd+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
||||||
if (llama_decode(ctx_llama, batch)) {
|
if (llama_decode(ctx_llama, batch)) {
|
||||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||||
return false;
|
return false;
|
||||||
|
@ -49,37 +49,39 @@ inline bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
|
||||||
return eval_tokens(ctx_llama, tokens, 1, n_past);
|
return eval_tokens(ctx_llama, tokens, 1, n_past);
|
||||||
}
|
}
|
||||||
|
|
||||||
inline bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past){
|
inline bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
|
||||||
std::string str2 = str;
|
std::string str2 = str;
|
||||||
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, true);
|
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos);
|
||||||
eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
|
eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
// TODO: use common/sampling.h
|
// TODO: use common/sampling.h
|
||||||
inline llama_token sample_id(llama_context * ctx_llama, gpt_params & params) {
|
inline llama_token sample_id(llama_context * ctx_llama, gpt_params & params) {
|
||||||
// out of user input, sample next token
|
auto & sparams = params.sparams;
|
||||||
const float temp = params.sampling_params.temp;
|
|
||||||
const int32_t top_k = params.sampling_params.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx_llama)) : params.sampling_params.top_k;
|
// out of user input, sample next token
|
||||||
const float top_p = params.sampling_params.top_p;
|
const float temp = sparams.temp;
|
||||||
const float tfs_z = params.sampling_params.tfs_z;
|
const int32_t top_k = sparams.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx_llama)) : sparams.top_k;
|
||||||
const float typical_p = params.sampling_params.typical_p;
|
const float top_p = sparams.top_p;
|
||||||
// const int32_t repeat_last_n = params.sampling_params.repeat_last_n < 0 ? n_ctx : params.sampling_params.repeat_last_n;
|
const float tfs_z = sparams.tfs_z;
|
||||||
// const float repeat_penalty = params.sampling_params.repeat_penalty;
|
const float typical_p = sparams.typical_p;
|
||||||
// const float alpha_presence = params.sampling_params.presence_penalty;
|
// const int32_t repeat_last_n = sparams.repeat_last_n < 0 ? n_ctx : sparams.repeat_last_n;
|
||||||
// const float alpha_frequency = params.sampling_params.frequency_penalty;
|
// const float repeat_penalty = sparams.repeat_penalty;
|
||||||
const int mirostat = params.sampling_params.mirostat;
|
// const float alpha_presence = sparams.presence_penalty;
|
||||||
const float mirostat_tau = params.sampling_params.mirostat_tau;
|
// const float alpha_frequency = sparams.frequency_penalty;
|
||||||
const float mirostat_eta = params.sampling_params.mirostat_eta;
|
const int mirostat = sparams.mirostat;
|
||||||
// const bool penalize_nl = params.sampling_params.penalize_nl;
|
const float mirostat_tau = sparams.mirostat_tau;
|
||||||
|
const float mirostat_eta = sparams.mirostat_eta;
|
||||||
|
// const bool penalize_nl = sparams.penalize_nl;
|
||||||
|
|
||||||
llama_token id = 0;
|
llama_token id = 0;
|
||||||
{
|
{
|
||||||
auto logits = llama_get_logits(ctx_llama);
|
auto logits = llama_get_logits(ctx_llama);
|
||||||
auto n_vocab = llama_n_vocab(llama_get_model(ctx_llama));
|
auto n_vocab = llama_n_vocab(llama_get_model(ctx_llama));
|
||||||
|
|
||||||
// Apply params.logit_bias map
|
// Apply params.logit_bias map
|
||||||
for (auto it = params.sampling_params.logit_bias.begin(); it != params.sampling_params.logit_bias.end(); it++) {
|
for (auto it = sparams.logit_bias.begin(); it != sparams.logit_bias.end(); it++) {
|
||||||
logits[it->first] += it->second;
|
logits[it->first] += it->second;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -91,18 +93,18 @@ inline llama_token sample_id(llama_context * ctx_llama, gpt_params & params) {
|
||||||
|
|
||||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||||
|
|
||||||
// TODO: Apply penalties
|
// TODO: Apply penalties
|
||||||
// float nl_logit = logits[llama_token_nl(ctx)];
|
// float nl_logit = logits[llama_token_nl(ctx)];
|
||||||
// auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
// auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
||||||
// llama_sample_repetition_penalty(ctx, &candidates_p,
|
// llama_sample_repetition_penalty(ctx, &candidates_p,
|
||||||
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||||
// last_n_repeat, repeat_penalty);
|
// last_n_repeat, repeat_penalty);
|
||||||
// llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
|
// llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
|
||||||
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||||
// last_n_repeat, alpha_frequency, alpha_presence);
|
// last_n_repeat, alpha_frequency, alpha_presence);
|
||||||
// if (!penalize_nl) {
|
// if (!penalize_nl) {
|
||||||
// logits[llama_token_nl(ctx)] = nl_logit;
|
// logits[llama_token_nl(ctx)] = nl_logit;
|
||||||
// }
|
// }
|
||||||
|
|
||||||
if (temp <= 0) {
|
if (temp <= 0) {
|
||||||
// Greedy sampling
|
// Greedy sampling
|
||||||
|
|
|
@ -79,7 +79,13 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
llama_backend_init(params.numa);
|
llama_backend_init(params.numa);
|
||||||
|
|
||||||
llama_model_params model_params = llama_model_default_params();
|
llama_model_params model_params = llama_model_default_params();
|
||||||
|
model_params.n_gpu_layers = params.n_gpu_layers;
|
||||||
|
model_params.main_gpu = params.main_gpu;
|
||||||
|
model_params.tensor_split = params.tensor_split;
|
||||||
|
model_params.use_mmap = params.use_mmap;
|
||||||
|
model_params.use_mlock = params.use_mlock;
|
||||||
|
|
||||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||||
if (model == NULL) {
|
if (model == NULL) {
|
||||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||||
|
@ -91,6 +97,7 @@ int main(int argc, char ** argv) {
|
||||||
ctx_params.n_ctx = params.n_ctx < 2048 ? 2048 : params.n_ctx; // we need a longer context size to process image embeddings
|
ctx_params.n_ctx = params.n_ctx < 2048 ? 2048 : params.n_ctx; // we need a longer context size to process image embeddings
|
||||||
ctx_params.n_threads = params.n_threads;
|
ctx_params.n_threads = params.n_threads;
|
||||||
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||||
|
ctx_params.seed = params.seed;
|
||||||
|
|
||||||
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
||||||
|
|
||||||
|
@ -100,7 +107,8 @@ int main(int argc, char ** argv) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// make sure that the correct mmproj was used, i.e., compare apples to apples
|
// make sure that the correct mmproj was used, i.e., compare apples to apples
|
||||||
int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
|
const int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
|
||||||
|
|
||||||
if (n_img_embd != n_llama_embd) {
|
if (n_img_embd != n_llama_embd) {
|
||||||
printf("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_img_embd, n_llama_embd);
|
printf("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_img_embd, n_llama_embd);
|
||||||
|
|
||||||
|
@ -119,14 +127,14 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
|
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
|
||||||
|
|
||||||
// GG: are we sure that the should be a trailing whitespace at the end of this string?
|
eval_string(ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:", params.n_batch, &n_past, true);
|
||||||
eval_string(ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER: ", params.n_batch, &n_past);
|
|
||||||
eval_image_embd(ctx_llama, image_embd, n_img_pos, params.n_batch, &n_past);
|
eval_image_embd(ctx_llama, image_embd, n_img_pos, params.n_batch, &n_past);
|
||||||
eval_string(ctx_llama, params.prompt.c_str(), params.n_batch, &n_past);
|
eval_string(ctx_llama, (params.prompt + "\nASSISTANT:").c_str(), params.n_batch, &n_past, false);
|
||||||
eval_string(ctx_llama, "\nASSISTANT:", params.n_batch, &n_past);
|
|
||||||
|
|
||||||
// generate the response
|
// generate the response
|
||||||
|
|
||||||
|
printf("\n");
|
||||||
|
printf("prompt: '%s'\n", params.prompt.c_str());
|
||||||
printf("\n");
|
printf("\n");
|
||||||
|
|
||||||
for (int i = 0; i < max_tgt_len; i++) {
|
for (int i = 0; i < max_tgt_len; i++) {
|
||||||
|
|
|
@ -3,7 +3,6 @@
|
||||||
#include "console.h"
|
#include "console.h"
|
||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
#include "build-info.h"
|
#include "build-info.h"
|
||||||
#include "grammar-parser.h"
|
|
||||||
|
|
||||||
#include <cassert>
|
#include <cassert>
|
||||||
#include <cinttypes>
|
#include <cinttypes>
|
||||||
|
@ -109,7 +108,7 @@ int main(int argc, char ** argv) {
|
||||||
if (!gpt_params_parse(argc, argv, params)) {
|
if (!gpt_params_parse(argc, argv, params)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
llama_sampling_params & sparams = params.sampling_params;
|
llama_sampling_params & sparams = params.sparams;
|
||||||
|
|
||||||
#ifndef LOG_DISABLE_LOGS
|
#ifndef LOG_DISABLE_LOGS
|
||||||
log_set_target(log_filename_generator("main", "log"));
|
log_set_target(log_filename_generator("main", "log"));
|
||||||
|
@ -238,19 +237,19 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
|
if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
|
||||||
LOG("tokenize the prompt\n");
|
LOG("tokenize the prompt\n");
|
||||||
embd_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
|
embd_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
||||||
} else {
|
} else {
|
||||||
LOG("use session tokens\n");
|
LOG("use session tokens\n");
|
||||||
embd_inp = session_tokens;
|
embd_inp = session_tokens;
|
||||||
}
|
}
|
||||||
|
|
||||||
LOG("prompt: \"%s\"\n", log_tostr(params.prompt));
|
LOG("prompt: \"%s\"\n", log_tostr(params.prompt));
|
||||||
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
|
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
||||||
|
|
||||||
// Should not run without any tokens
|
// Should not run without any tokens
|
||||||
if (embd_inp.empty()) {
|
if (embd_inp.empty()) {
|
||||||
embd_inp.push_back(llama_token_bos(ctx));
|
embd_inp.push_back(llama_token_bos(ctx));
|
||||||
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
|
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
// Tokenize negative prompt
|
// Tokenize negative prompt
|
||||||
|
@ -260,11 +259,11 @@ int main(int argc, char ** argv) {
|
||||||
if (ctx_guidance) {
|
if (ctx_guidance) {
|
||||||
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
|
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
|
||||||
|
|
||||||
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos);
|
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos, true);
|
||||||
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp));
|
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str());
|
||||||
|
|
||||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
|
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
||||||
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp));
|
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str());
|
||||||
|
|
||||||
original_prompt_len = original_inp.size();
|
original_prompt_len = original_inp.size();
|
||||||
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
|
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
|
||||||
|
@ -320,11 +319,11 @@ int main(int argc, char ** argv) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// prefix & suffix for instruct mode
|
// prefix & suffix for instruct mode
|
||||||
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", add_bos);
|
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", add_bos, true);
|
||||||
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
|
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false, true);
|
||||||
|
|
||||||
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx));
|
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str());
|
||||||
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx));
|
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str());
|
||||||
|
|
||||||
// in instruct mode, we inject a prefix and a suffix to each input by the user
|
// in instruct mode, we inject a prefix and a suffix to each input by the user
|
||||||
if (params.instruct) {
|
if (params.instruct) {
|
||||||
|
@ -383,6 +382,12 @@ int main(int argc, char ** argv) {
|
||||||
if (!params.antiprompt.empty()) {
|
if (!params.antiprompt.empty()) {
|
||||||
for (const auto & antiprompt : params.antiprompt) {
|
for (const auto & antiprompt : params.antiprompt) {
|
||||||
LOG_TEE("Reverse prompt: '%s'\n", antiprompt.c_str());
|
LOG_TEE("Reverse prompt: '%s'\n", antiprompt.c_str());
|
||||||
|
if (params.verbose_prompt) {
|
||||||
|
auto tmp = ::llama_tokenize(ctx, antiprompt, false, true);
|
||||||
|
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||||
|
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -392,45 +397,27 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
if (!params.input_prefix.empty()) {
|
if (!params.input_prefix.empty()) {
|
||||||
LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str());
|
LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str());
|
||||||
|
if (params.verbose_prompt) {
|
||||||
|
auto tmp = ::llama_tokenize(ctx, params.input_prefix, true, true);
|
||||||
|
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||||
|
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (!params.input_suffix.empty()) {
|
if (!params.input_suffix.empty()) {
|
||||||
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
|
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||||
}
|
if (params.verbose_prompt) {
|
||||||
}
|
auto tmp = ::llama_tokenize(ctx, params.input_suffix, false, true);
|
||||||
LOG_TEE("sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
|
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||||
sparams.repeat_last_n, sparams.repeat_penalty, sparams.presence_penalty, sparams.frequency_penalty, sparams.top_k, sparams.tfs_z, sparams.top_p, sparams.typical_p, sparams.temp, sparams.mirostat, sparams.mirostat_eta, sparams.mirostat_tau);
|
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
|
||||||
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
}
|
||||||
LOG_TEE("\n\n");
|
|
||||||
|
|
||||||
struct llama_grammar * grammar = NULL;
|
|
||||||
grammar_parser::parse_state parsed_grammar;
|
|
||||||
|
|
||||||
if (!params.grammar.empty()) {
|
|
||||||
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
|
||||||
// will be empty (default) if there are parse errors
|
|
||||||
if (parsed_grammar.rules.empty()) {
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
LOG_TEE("%s: grammar:\n", __func__);
|
|
||||||
grammar_parser::print_grammar(stderr, parsed_grammar);
|
|
||||||
LOG_TEE("\n");
|
|
||||||
|
|
||||||
{
|
|
||||||
auto it = sparams.logit_bias.find(llama_token_eos(ctx));
|
|
||||||
if (it != sparams.logit_bias.end() && it->second == -INFINITY) {
|
|
||||||
LOG_TEE("%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
|
||||||
grammar = llama_grammar_init(
|
|
||||||
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
|
||||||
}
|
}
|
||||||
|
LOG_TEE("sampling: \n%s\n", llama_sampling_print(sparams).c_str());
|
||||||
// TODO: replace with ring-buffer
|
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||||
std::vector<llama_token> last_tokens(n_ctx);
|
LOG_TEE("\n\n");
|
||||||
std::fill(last_tokens.begin(), last_tokens.end(), 0);
|
|
||||||
|
|
||||||
if (params.interactive) {
|
if (params.interactive) {
|
||||||
const char *control_message;
|
const char *control_message;
|
||||||
|
@ -471,11 +458,7 @@ int main(int argc, char ** argv) {
|
||||||
std::vector<llama_token> embd;
|
std::vector<llama_token> embd;
|
||||||
std::vector<llama_token> embd_guidance;
|
std::vector<llama_token> embd_guidance;
|
||||||
|
|
||||||
const int n_vocab = llama_n_vocab(model);
|
struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams);
|
||||||
|
|
||||||
llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar);
|
|
||||||
std::vector<llama_token_data> candidates;
|
|
||||||
candidates.reserve(n_vocab);
|
|
||||||
|
|
||||||
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
|
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
|
||||||
// predict
|
// predict
|
||||||
|
@ -522,7 +505,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
|
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
|
||||||
|
|
||||||
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
|
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
||||||
|
|
||||||
LOG("clear session path\n");
|
LOG("clear session path\n");
|
||||||
path_session.clear();
|
path_session.clear();
|
||||||
|
@ -552,7 +535,6 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
// evaluate tokens in batches
|
// evaluate tokens in batches
|
||||||
// embd is typically prepared beforehand to fit within a batch, but not always
|
// embd is typically prepared beforehand to fit within a batch, but not always
|
||||||
|
|
||||||
if (ctx_guidance) {
|
if (ctx_guidance) {
|
||||||
int input_size = 0;
|
int input_size = 0;
|
||||||
llama_token * input_buf = NULL;
|
llama_token * input_buf = NULL;
|
||||||
|
@ -574,7 +556,7 @@ int main(int argc, char ** argv) {
|
||||||
input_buf = embd_guidance.data();
|
input_buf = embd_guidance.data();
|
||||||
input_size = embd_guidance.size();
|
input_size = embd_guidance.size();
|
||||||
|
|
||||||
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance));
|
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance).c_str());
|
||||||
} else {
|
} else {
|
||||||
input_buf = embd.data();
|
input_buf = embd.data();
|
||||||
input_size = embd.size();
|
input_size = embd.size();
|
||||||
|
@ -597,7 +579,7 @@ int main(int argc, char ** argv) {
|
||||||
n_eval = params.n_batch;
|
n_eval = params.n_batch;
|
||||||
}
|
}
|
||||||
|
|
||||||
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
|
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
||||||
|
|
||||||
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
|
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
|
||||||
LOG_TEE("%s : failed to eval\n", __func__);
|
LOG_TEE("%s : failed to eval\n", __func__);
|
||||||
|
@ -627,12 +609,11 @@ int main(int argc, char ** argv) {
|
||||||
LOG("saved session to %s\n", path_session.c_str());
|
LOG("saved session to %s\n", path_session.c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
const llama_token id = llama_sampling_sample(ctx, ctx_guidance, ctx_sampling, last_tokens, candidates);
|
const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance);
|
||||||
|
|
||||||
last_tokens.erase(last_tokens.begin());
|
llama_sampling_accept(ctx_sampling, ctx, id, true);
|
||||||
last_tokens.push_back(id);
|
|
||||||
|
|
||||||
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_tokens));
|
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str());
|
||||||
|
|
||||||
embd.push_back(id);
|
embd.push_back(id);
|
||||||
|
|
||||||
|
@ -648,8 +629,11 @@ int main(int argc, char ** argv) {
|
||||||
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
||||||
while ((int) embd_inp.size() > n_consumed) {
|
while ((int) embd_inp.size() > n_consumed) {
|
||||||
embd.push_back(embd_inp[n_consumed]);
|
embd.push_back(embd_inp[n_consumed]);
|
||||||
last_tokens.erase(last_tokens.begin());
|
|
||||||
last_tokens.push_back(embd_inp[n_consumed]);
|
// push the prompt in the sampling context in order to apply repetition penalties later
|
||||||
|
// for the prompt, we don't apply grammar rules
|
||||||
|
llama_sampling_accept(ctx_sampling, ctx, embd_inp[n_consumed], false);
|
||||||
|
|
||||||
++n_consumed;
|
++n_consumed;
|
||||||
if ((int) embd.size() >= params.n_batch) {
|
if ((int) embd.size() >= params.n_batch) {
|
||||||
break;
|
break;
|
||||||
|
@ -679,12 +663,10 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
// if not currently processing queued inputs;
|
// if not currently processing queued inputs;
|
||||||
if ((int) embd_inp.size() <= n_consumed) {
|
if ((int) embd_inp.size() <= n_consumed) {
|
||||||
// check for reverse prompt
|
// check for reverse prompt in the last n_prev tokens
|
||||||
if (!params.antiprompt.empty()) {
|
if (!params.antiprompt.empty()) {
|
||||||
std::string last_output;
|
const int n_prev = 32;
|
||||||
for (auto id : last_tokens) {
|
const std::string last_output = llama_sampling_prev_str(ctx_sampling, ctx, n_prev);
|
||||||
last_output += llama_token_to_piece(ctx, id);
|
|
||||||
}
|
|
||||||
|
|
||||||
is_antiprompt = false;
|
is_antiprompt = false;
|
||||||
// Check if each of the reverse prompts appears at the end of the output.
|
// Check if each of the reverse prompts appears at the end of the output.
|
||||||
|
@ -711,13 +693,13 @@ int main(int argc, char ** argv) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// deal with end of text token in interactive mode
|
// deal with end of text token in interactive mode
|
||||||
if (last_tokens.back() == llama_token_eos(ctx)) {
|
if (llama_sampling_last(ctx_sampling) == llama_token_eos(ctx)) {
|
||||||
LOG("found EOS token\n");
|
LOG("found EOS token\n");
|
||||||
|
|
||||||
if (params.interactive) {
|
if (params.interactive) {
|
||||||
if (!params.antiprompt.empty()) {
|
if (!params.antiprompt.empty()) {
|
||||||
// tokenize and inject first reverse prompt
|
// tokenize and inject first reverse prompt
|
||||||
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
|
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false, true);
|
||||||
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
|
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
|
||||||
is_antiprompt = true;
|
is_antiprompt = true;
|
||||||
}
|
}
|
||||||
|
@ -744,8 +726,7 @@ int main(int argc, char ** argv) {
|
||||||
std::string buffer;
|
std::string buffer;
|
||||||
if (!params.input_prefix.empty()) {
|
if (!params.input_prefix.empty()) {
|
||||||
LOG("appending input prefix: '%s'\n", params.input_prefix.c_str());
|
LOG("appending input prefix: '%s'\n", params.input_prefix.c_str());
|
||||||
buffer += params.input_prefix;
|
printf("%s", params.input_prefix.c_str());
|
||||||
printf("%s", buffer.c_str());
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// color user input only
|
// color user input only
|
||||||
|
@ -767,7 +748,6 @@ int main(int argc, char ** argv) {
|
||||||
// append input suffix if any
|
// append input suffix if any
|
||||||
if (!params.input_suffix.empty()) {
|
if (!params.input_suffix.empty()) {
|
||||||
LOG("appending input suffix: '%s'\n", params.input_suffix.c_str());
|
LOG("appending input suffix: '%s'\n", params.input_suffix.c_str());
|
||||||
buffer += params.input_suffix;
|
|
||||||
printf("%s", params.input_suffix.c_str());
|
printf("%s", params.input_suffix.c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -782,10 +762,14 @@ int main(int argc, char ** argv) {
|
||||||
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
|
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
|
||||||
}
|
}
|
||||||
|
|
||||||
const auto line_inp = ::llama_tokenize(ctx, buffer, false);
|
const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
|
||||||
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp));
|
const auto line_inp = ::llama_tokenize(ctx, buffer, false, false);
|
||||||
|
const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
|
||||||
|
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
|
||||||
|
|
||||||
|
embd_inp.insert(embd_inp.end(), line_pfx.begin(), line_pfx.end());
|
||||||
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
||||||
|
embd_inp.insert(embd_inp.end(), line_sfx.begin(), line_sfx.end());
|
||||||
|
|
||||||
// instruct mode: insert response suffix
|
// instruct mode: insert response suffix
|
||||||
if (params.instruct) {
|
if (params.instruct) {
|
||||||
|
@ -810,15 +794,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
if (n_past > 0) {
|
if (n_past > 0) {
|
||||||
if (is_interacting) {
|
if (is_interacting) {
|
||||||
// reset grammar state if we're restarting generation
|
llama_sampling_reset(ctx_sampling);
|
||||||
if (grammar != NULL) {
|
|
||||||
llama_grammar_free(grammar);
|
|
||||||
|
|
||||||
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
|
||||||
grammar = llama_grammar_init(
|
|
||||||
grammar_rules.data(), grammar_rules.size(),
|
|
||||||
parsed_grammar.symbol_ids.at("root"));
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
is_interacting = false;
|
is_interacting = false;
|
||||||
}
|
}
|
||||||
|
@ -850,9 +826,7 @@ int main(int argc, char ** argv) {
|
||||||
llama_free(ctx);
|
llama_free(ctx);
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
|
|
||||||
if (grammar != NULL) {
|
llama_sampling_free(ctx_sampling);
|
||||||
llama_grammar_free(grammar);
|
|
||||||
}
|
|
||||||
llama_backend_free();
|
llama_backend_free();
|
||||||
|
|
||||||
#ifndef LOG_DISABLE_LOGS
|
#ifndef LOG_DISABLE_LOGS
|
||||||
|
|
|
@ -51,6 +51,12 @@ static std::vector<std::string> k_prompts = {
|
||||||
};
|
};
|
||||||
|
|
||||||
struct client {
|
struct client {
|
||||||
|
~client() {
|
||||||
|
if (ctx_sampling) {
|
||||||
|
llama_sampling_free(ctx_sampling);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
int32_t id = 0;
|
int32_t id = 0;
|
||||||
|
|
||||||
llama_seq_id seq_id = -1;
|
llama_seq_id seq_id = -1;
|
||||||
|
@ -68,7 +74,7 @@ struct client {
|
||||||
std::string prompt;
|
std::string prompt;
|
||||||
std::string response;
|
std::string response;
|
||||||
|
|
||||||
std::vector<llama_token> tokens_prev;
|
struct llama_sampling_context * ctx_sampling = nullptr;
|
||||||
};
|
};
|
||||||
|
|
||||||
static void print_date_time() {
|
static void print_date_time() {
|
||||||
|
@ -125,8 +131,6 @@ int main(int argc, char ** argv) {
|
||||||
params.logits_all = true;
|
params.logits_all = true;
|
||||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||||
|
|
||||||
llama_sampling_context ctx_sampling = llama_sampling_context_init(params, NULL);
|
|
||||||
|
|
||||||
// load the prompts from an external file if there are any
|
// load the prompts from an external file if there are any
|
||||||
if (params.prompt.empty()) {
|
if (params.prompt.empty()) {
|
||||||
printf("\n\033[32mNo new questions so proceed with build-in defaults.\033[0m\n");
|
printf("\n\033[32mNo new questions so proceed with build-in defaults.\033[0m\n");
|
||||||
|
@ -147,20 +151,15 @@ int main(int argc, char ** argv) {
|
||||||
fprintf(stderr, "\n\n");
|
fprintf(stderr, "\n\n");
|
||||||
fflush(stderr);
|
fflush(stderr);
|
||||||
|
|
||||||
const int n_ctx = llama_n_ctx(ctx);
|
const int n_ctx = llama_n_ctx(ctx);
|
||||||
const int n_vocab = llama_n_vocab(model);
|
|
||||||
|
|
||||||
std::vector<client> clients(n_clients);
|
std::vector<client> clients(n_clients);
|
||||||
for (size_t i = 0; i < clients.size(); ++i) {
|
for (size_t i = 0; i < clients.size(); ++i) {
|
||||||
auto & client = clients[i];
|
auto & client = clients[i];
|
||||||
client.id = i;
|
client.id = i;
|
||||||
client.tokens_prev.resize(std::max(256, params.n_predict));
|
client.ctx_sampling = llama_sampling_init(params.sparams);
|
||||||
std::fill(client.tokens_prev.begin(), client.tokens_prev.end(), 0);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<llama_token_data> candidates;
|
|
||||||
candidates.reserve(n_vocab);
|
|
||||||
|
|
||||||
std::vector<llama_token> tokens_system;
|
std::vector<llama_token> tokens_system;
|
||||||
tokens_system = ::llama_tokenize(ctx, k_system, true);
|
tokens_system = ::llama_tokenize(ctx, k_system, true);
|
||||||
const int32_t n_tokens_system = tokens_system.size();
|
const int32_t n_tokens_system = tokens_system.size();
|
||||||
|
@ -169,7 +168,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
// the max batch size is as large as the context to handle cases where we get very long input prompt from multiple
|
// the max batch size is as large as the context to handle cases where we get very long input prompt from multiple
|
||||||
// users. regardless of the size, the main loop will chunk the batch into a maximum of params.n_batch tokens at a time
|
// users. regardless of the size, the main loop will chunk the batch into a maximum of params.n_batch tokens at a time
|
||||||
llama_batch batch = llama_batch_init(n_ctx, 0);
|
llama_batch batch = llama_batch_init(n_ctx, 0, 1);
|
||||||
|
|
||||||
int32_t n_total_prompt = 0;
|
int32_t n_total_prompt = 0;
|
||||||
int32_t n_total_gen = 0;
|
int32_t n_total_gen = 0;
|
||||||
|
@ -184,13 +183,8 @@ int main(int argc, char ** argv) {
|
||||||
{
|
{
|
||||||
LOG_TEE("%s: Evaluating the system prompt ...\n", __func__);
|
LOG_TEE("%s: Evaluating the system prompt ...\n", __func__);
|
||||||
|
|
||||||
batch.n_tokens = n_tokens_system;
|
for (int32_t i = 0; i < n_tokens_system; ++i) {
|
||||||
|
llama_batch_add(batch, tokens_system[i], i, { 0 }, false);
|
||||||
for (int32_t i = 0; i < batch.n_tokens; ++i) {
|
|
||||||
batch.token[i] = tokens_system[i];
|
|
||||||
batch.pos[i] = i;
|
|
||||||
batch.seq_id[i] = 0;
|
|
||||||
batch.logits[i] = false;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if (llama_decode(ctx, batch) != 0) {
|
if (llama_decode(ctx, batch) != 0) {
|
||||||
|
@ -209,7 +203,7 @@ int main(int argc, char ** argv) {
|
||||||
LOG_TEE("Processing requests ...\n\n");
|
LOG_TEE("Processing requests ...\n\n");
|
||||||
|
|
||||||
while (true) {
|
while (true) {
|
||||||
batch.n_tokens = 0;
|
llama_batch_clear(batch);
|
||||||
|
|
||||||
// decode any currently ongoing sequences
|
// decode any currently ongoing sequences
|
||||||
for (auto & client : clients) {
|
for (auto & client : clients) {
|
||||||
|
@ -217,15 +211,11 @@ int main(int argc, char ** argv) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
batch.token [batch.n_tokens] = client.sampled;
|
|
||||||
batch.pos [batch.n_tokens] = n_tokens_system + client.n_prompt + client.n_decoded;
|
|
||||||
batch.seq_id[batch.n_tokens] = client.id;
|
|
||||||
batch.logits[batch.n_tokens] = true;
|
|
||||||
|
|
||||||
client.n_decoded += 1;
|
|
||||||
client.i_batch = batch.n_tokens;
|
client.i_batch = batch.n_tokens;
|
||||||
|
|
||||||
batch.n_tokens += 1;
|
llama_batch_add(batch, client.sampled, n_tokens_system + client.n_prompt + client.n_decoded, { client.id }, true);
|
||||||
|
|
||||||
|
client.n_decoded += 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (batch.n_tokens == 0) {
|
if (batch.n_tokens == 0) {
|
||||||
|
@ -250,18 +240,14 @@ int main(int argc, char ** argv) {
|
||||||
client.prompt = client.input + "\nAssistant:";
|
client.prompt = client.input + "\nAssistant:";
|
||||||
client.response = "";
|
client.response = "";
|
||||||
|
|
||||||
std::fill(client.tokens_prev.begin(), client.tokens_prev.end(), 0);
|
llama_sampling_reset(client.ctx_sampling);
|
||||||
|
|
||||||
// do not prepend BOS because we have a system prompt!
|
// do not prepend BOS because we have a system prompt!
|
||||||
std::vector<llama_token> tokens_prompt;
|
std::vector<llama_token> tokens_prompt;
|
||||||
tokens_prompt = ::llama_tokenize(ctx, client.prompt, false);
|
tokens_prompt = ::llama_tokenize(ctx, client.prompt, false);
|
||||||
|
|
||||||
for (size_t i = 0; i < tokens_prompt.size(); ++i) {
|
for (size_t i = 0; i < tokens_prompt.size(); ++i) {
|
||||||
batch.token [batch.n_tokens] = tokens_prompt[i];
|
llama_batch_add(batch, tokens_prompt[i], i + n_tokens_system, { client.id }, false);
|
||||||
batch.pos [batch.n_tokens] = i + n_tokens_system;
|
|
||||||
batch.seq_id[batch.n_tokens] = client.id;
|
|
||||||
batch.logits[batch.n_tokens] = false;
|
|
||||||
batch.n_tokens += 1;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// extract the logits only for the last token
|
// extract the logits only for the last token
|
||||||
|
@ -304,11 +290,12 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
llama_batch batch_view = {
|
llama_batch batch_view = {
|
||||||
n_tokens,
|
n_tokens,
|
||||||
batch.token + i,
|
batch.token + i,
|
||||||
nullptr,
|
nullptr,
|
||||||
batch.pos + i,
|
batch.pos + i,
|
||||||
batch.seq_id + i,
|
batch.n_seq_id + i,
|
||||||
batch.logits + i,
|
batch.seq_id + i,
|
||||||
|
batch.logits + i,
|
||||||
0, 0, 0, // unused
|
0, 0, 0, // unused
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -341,7 +328,9 @@ int main(int argc, char ** argv) {
|
||||||
//printf("client %d, seq %d, token %d, pos %d, batch %d\n",
|
//printf("client %d, seq %d, token %d, pos %d, batch %d\n",
|
||||||
// client.id, client.seq_id, client.sampled, client.n_decoded, client.i_batch);
|
// client.id, client.seq_id, client.sampled, client.n_decoded, client.i_batch);
|
||||||
|
|
||||||
const llama_token id = llama_sampling_sample(ctx, NULL, ctx_sampling, client.tokens_prev, candidates, client.i_batch - i, client.seq_id);
|
const llama_token id = llama_sampling_sample(client.ctx_sampling, ctx, NULL, client.i_batch - i);
|
||||||
|
|
||||||
|
llama_sampling_accept(client.ctx_sampling, ctx, id, true);
|
||||||
|
|
||||||
if (client.n_decoded == 1) {
|
if (client.n_decoded == 1) {
|
||||||
// start measuring generation time after the first token to make sure all concurrent clients
|
// start measuring generation time after the first token to make sure all concurrent clients
|
||||||
|
@ -349,11 +338,8 @@ int main(int argc, char ** argv) {
|
||||||
client.t_start_gen = ggml_time_us();
|
client.t_start_gen = ggml_time_us();
|
||||||
}
|
}
|
||||||
|
|
||||||
// remember which tokens were sampled - used for repetition penalties during sampling
|
|
||||||
client.tokens_prev.erase(client.tokens_prev.begin());
|
|
||||||
client.tokens_prev.push_back(id);
|
|
||||||
|
|
||||||
const std::string token_str = llama_token_to_piece(ctx, id);
|
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||||
|
|
||||||
client.response += token_str;
|
client.response += token_str;
|
||||||
client.sampled = id;
|
client.sampled = id;
|
||||||
|
|
||||||
|
@ -386,7 +372,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
n_total_prompt += client.n_prompt;
|
n_total_prompt += client.n_prompt;
|
||||||
n_total_gen += client.n_decoded;
|
n_total_gen += client.n_decoded;
|
||||||
llama_sampling_context_reset(ctx_sampling, client.seq_id);
|
|
||||||
client.seq_id = -1;
|
client.seq_id = -1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -8,10 +8,7 @@
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
gpt_params params;
|
gpt_params params;
|
||||||
llama_sampling_params & sparams = params.sampling_params;
|
|
||||||
params.seed = 42;
|
|
||||||
params.n_threads = 4;
|
|
||||||
sparams.repeat_last_n = 64;
|
|
||||||
params.prompt = "The quick brown fox";
|
params.prompt = "The quick brown fox";
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params)) {
|
if (!gpt_params_parse(argc, argv, params)) {
|
||||||
|
@ -25,56 +22,49 @@ int main(int argc, char ** argv) {
|
||||||
}
|
}
|
||||||
|
|
||||||
auto n_past = 0;
|
auto n_past = 0;
|
||||||
auto last_n_tokens_data = std::vector<llama_token>(sparams.repeat_last_n, 0);
|
|
||||||
|
std::string result0;
|
||||||
|
std::string result1;
|
||||||
|
|
||||||
// init
|
// init
|
||||||
llama_model * model;
|
llama_model * model;
|
||||||
llama_context * ctx;
|
llama_context * ctx;
|
||||||
|
|
||||||
std::tie(model, ctx) = llama_init_from_gpt_params( params );
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||||
if (model == nullptr) {
|
if (model == nullptr || ctx == nullptr) {
|
||||||
return 1;
|
fprintf(stderr, "%s : failed to init\n", __func__);
|
||||||
}
|
|
||||||
if (ctx == nullptr) {
|
|
||||||
llama_free_model(model);
|
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// tokenize prompt
|
||||||
auto tokens = llama_tokenize(ctx, params.prompt, true);
|
auto tokens = llama_tokenize(ctx, params.prompt, true);
|
||||||
auto n_prompt_tokens = tokens.size();
|
|
||||||
if (n_prompt_tokens < 1) {
|
|
||||||
fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
|
|
||||||
llama_free(ctx);
|
|
||||||
llama_free_model(model);
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
// evaluate prompt
|
// evaluate prompt
|
||||||
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_prompt_tokens, n_past, 0));
|
llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), n_past, 0));
|
||||||
|
n_past += tokens.size();
|
||||||
|
|
||||||
last_n_tokens_data.insert(last_n_tokens_data.end(), tokens.data(), tokens.data() + n_prompt_tokens);
|
// save state (rng, logits, embedding and kv_cache) to file
|
||||||
n_past += n_prompt_tokens;
|
|
||||||
|
|
||||||
const size_t state_size = llama_get_state_size(ctx);
|
|
||||||
uint8_t * state_mem = new uint8_t[state_size];
|
|
||||||
|
|
||||||
// Save state (rng, logits, embedding and kv_cache) to file
|
|
||||||
{
|
{
|
||||||
FILE *fp_write = fopen("dump_state.bin", "wb");
|
std::vector<uint8_t> state_mem(llama_get_state_size(ctx));
|
||||||
llama_copy_state_data(ctx, state_mem); // could also copy directly to memory mapped file
|
|
||||||
fwrite(state_mem, 1, state_size, fp_write);
|
{
|
||||||
fclose(fp_write);
|
FILE *fp_write = fopen("dump_state.bin", "wb");
|
||||||
|
llama_copy_state_data(ctx, state_mem.data()); // could also copy directly to memory mapped file
|
||||||
|
fwrite(state_mem.data(), 1, state_mem.size(), fp_write);
|
||||||
|
fclose(fp_write);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// save state (last tokens)
|
// save state (last tokens)
|
||||||
const auto last_n_tokens_data_saved = std::vector<llama_token>(last_n_tokens_data);
|
|
||||||
const auto n_past_saved = n_past;
|
const auto n_past_saved = n_past;
|
||||||
|
|
||||||
// first run
|
// first run
|
||||||
printf("\n%s", params.prompt.c_str());
|
printf("\nfirst run: %s", params.prompt.c_str());
|
||||||
|
|
||||||
for (auto i = 0; i < params.n_predict; i++) {
|
for (auto i = 0; i < params.n_predict; i++) {
|
||||||
auto * logits = llama_get_logits(ctx);
|
auto * logits = llama_get_logits(ctx);
|
||||||
auto n_vocab = llama_n_vocab(model);
|
auto n_vocab = llama_n_vocab(model);
|
||||||
|
|
||||||
std::vector<llama_token_data> candidates;
|
std::vector<llama_token_data> candidates;
|
||||||
candidates.reserve(n_vocab);
|
candidates.reserve(n_vocab);
|
||||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||||
|
@ -83,9 +73,10 @@ int main(int argc, char ** argv) {
|
||||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||||
auto next_token = llama_sample_token(ctx, &candidates_p);
|
auto next_token = llama_sample_token(ctx, &candidates_p);
|
||||||
auto next_token_str = llama_token_to_piece(ctx, next_token);
|
auto next_token_str = llama_token_to_piece(ctx, next_token);
|
||||||
last_n_tokens_data.push_back(next_token);
|
|
||||||
|
|
||||||
printf("%s", next_token_str.c_str());
|
printf("%s", next_token_str.c_str());
|
||||||
|
result0 += next_token_str;
|
||||||
|
|
||||||
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
|
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
|
||||||
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
||||||
llama_free(ctx);
|
llama_free(ctx);
|
||||||
|
@ -103,32 +94,28 @@ int main(int argc, char ** argv) {
|
||||||
// make new context
|
// make new context
|
||||||
auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
|
auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
|
||||||
|
|
||||||
// Load state (rng, logits, embedding and kv_cache) from file
|
printf("\nsecond run: %s", params.prompt.c_str());
|
||||||
{
|
|
||||||
FILE *fp_read = fopen("dump_state.bin", "rb");
|
|
||||||
if (state_size != llama_get_state_size(ctx2)) {
|
|
||||||
fprintf(stderr, "\n%s : failed to validate state size\n", __func__);
|
|
||||||
llama_free(ctx2);
|
|
||||||
llama_free_model(model);
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
const size_t ret = fread(state_mem, 1, state_size, fp_read);
|
// load state (rng, logits, embedding and kv_cache) from file
|
||||||
if (ret != state_size) {
|
{
|
||||||
|
std::vector<uint8_t> state_mem(llama_get_state_size(ctx2));
|
||||||
|
|
||||||
|
FILE * fp_read = fopen("dump_state.bin", "rb");
|
||||||
|
|
||||||
|
const size_t ret = fread(state_mem.data(), 1, state_mem.size(), fp_read);
|
||||||
|
if (ret != state_mem.size()) {
|
||||||
fprintf(stderr, "\n%s : failed to read state\n", __func__);
|
fprintf(stderr, "\n%s : failed to read state\n", __func__);
|
||||||
llama_free(ctx2);
|
llama_free(ctx2);
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_set_state_data(ctx2, state_mem); // could also read directly from memory mapped file
|
llama_set_state_data(ctx2, state_mem.data());
|
||||||
|
|
||||||
fclose(fp_read);
|
fclose(fp_read);
|
||||||
}
|
}
|
||||||
|
|
||||||
delete[] state_mem;
|
|
||||||
|
|
||||||
// restore state (last tokens)
|
// restore state (last tokens)
|
||||||
last_n_tokens_data = last_n_tokens_data_saved;
|
|
||||||
n_past = n_past_saved;
|
n_past = n_past_saved;
|
||||||
|
|
||||||
// second run
|
// second run
|
||||||
|
@ -143,10 +130,11 @@ int main(int argc, char ** argv) {
|
||||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||||
auto next_token = llama_sample_token(ctx2, &candidates_p);
|
auto next_token = llama_sample_token(ctx2, &candidates_p);
|
||||||
auto next_token_str = llama_token_to_piece(ctx2, next_token);
|
auto next_token_str = llama_token_to_piece(ctx2, next_token);
|
||||||
last_n_tokens_data.push_back(next_token);
|
|
||||||
|
|
||||||
printf("%s", next_token_str.c_str());
|
printf("%s", next_token_str.c_str());
|
||||||
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
|
result1 += next_token_str;
|
||||||
|
|
||||||
|
if (llama_decode(ctx2, llama_batch_get_one(&next_token, 1, n_past, 0))) {
|
||||||
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
||||||
llama_free(ctx2);
|
llama_free(ctx2);
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
|
@ -155,10 +143,17 @@ int main(int argc, char ** argv) {
|
||||||
n_past += 1;
|
n_past += 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
printf("\n\n");
|
printf("\n");
|
||||||
|
|
||||||
llama_free(ctx2);
|
llama_free(ctx2);
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
|
|
||||||
|
if (result0 != result1) {
|
||||||
|
fprintf(stderr, "\n%s : error : the 2 generations are different\n", __func__);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
fprintf(stderr, "\n%s : success\n", __func__);
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
|
@ -106,25 +106,25 @@ node index.js
|
||||||
|
|
||||||
## API Endpoints
|
## API Endpoints
|
||||||
|
|
||||||
- **POST** `/completion`: Given a prompt, it returns the predicted completion.
|
- **POST** `/completion`: Given a `prompt`, it returns the predicted completion.
|
||||||
|
|
||||||
*Options:*
|
*Options:*
|
||||||
|
|
||||||
|
`prompt`: Provide the prompt for this completion as a string or as an array of strings or numbers representing tokens. Internally, the prompt is compared to the previous completion and only the "unseen" suffix is evaluated. If the prompt is a string or an array with the first element given as a string, a `bos` token is inserted in the front like `main` does.
|
||||||
|
|
||||||
`temperature`: Adjust the randomness of the generated text (default: 0.8).
|
`temperature`: Adjust the randomness of the generated text (default: 0.8).
|
||||||
|
|
||||||
`top_k`: Limit the next token selection to the K most probable tokens (default: 40).
|
`top_k`: Limit the next token selection to the K most probable tokens (default: 40).
|
||||||
|
|
||||||
`top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.95).
|
`top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.95).
|
||||||
|
|
||||||
`n_predict`: Set the number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. (default: -1, -1 = infinity).
|
`n_predict`: Set the maximum number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. (default: -1, -1 = infinity).
|
||||||
|
|
||||||
`n_keep`: Specify the number of tokens from the initial prompt to retain when the model resets its internal context.
|
`n_keep`: Specify the number of tokens from the prompt to retain when the context size is exceeded and tokens need to be discarded.
|
||||||
By default, this value is set to 0 (meaning no tokens are kept). Use `-1` to retain all tokens from the initial prompt.
|
By default, this value is set to 0 (meaning no tokens are kept). Use `-1` to retain all tokens from the prompt.
|
||||||
|
|
||||||
`stream`: It allows receiving each predicted token in real-time instead of waiting for the completion to finish. To enable this, set to `true`.
|
`stream`: It allows receiving each predicted token in real-time instead of waiting for the completion to finish. To enable this, set to `true`.
|
||||||
|
|
||||||
`prompt`: Provide a prompt as a string, or as an array of strings and numbers representing tokens. Internally, the prompt is compared, and it detects if a part has already been evaluated, and the remaining part will be evaluate. If the prompt is a string, or an array with the first element given as a string, a space is inserted in the front like main.cpp does.
|
|
||||||
|
|
||||||
`stop`: Specify a JSON array of stopping strings.
|
`stop`: Specify a JSON array of stopping strings.
|
||||||
These words will not be included in the completion, so make sure to add them to the prompt for the next iteration (default: []).
|
These words will not be included in the completion, so make sure to add them to the prompt for the next iteration (default: []).
|
||||||
|
|
||||||
|
@ -158,6 +158,36 @@ node index.js
|
||||||
|
|
||||||
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token (default: 0)
|
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token (default: 0)
|
||||||
|
|
||||||
|
*Result JSON:*
|
||||||
|
|
||||||
|
Note: When using streaming mode (`stream`) only `content` and `stop` will be returned until end of completion.
|
||||||
|
|
||||||
|
`content`: Completion result as a string (excluding `stopping_word` if any). In case of streaming mode, will contain the next token as a string.
|
||||||
|
|
||||||
|
`stop`: Boolean for use with `stream` to check whether the generation has stopped (Note: This is not related to stopping words array `stop` from input options)
|
||||||
|
|
||||||
|
`generation_settings`: The provided options above excluding `prompt` but including `n_ctx`, `model`
|
||||||
|
|
||||||
|
`model`: The path to the model loaded with `-m`
|
||||||
|
|
||||||
|
`prompt`: The provided `prompt`
|
||||||
|
|
||||||
|
`stopped_eos`: Indicating whether the completion has stopped because it encountered the EOS token
|
||||||
|
|
||||||
|
`stopped_limit`: Indicating whether the completion stopped because `n_predict` tokens were generated before stop words or EOS was encountered
|
||||||
|
|
||||||
|
`stopped_word`: Indicating whether the completion stopped due to encountering a stopping word from `stop` JSON array provided
|
||||||
|
|
||||||
|
`stopping_word`: The stopping word encountered which stopped the generation (or "" if not stopped due to a stopping word)
|
||||||
|
|
||||||
|
`timings`: Hash of timing information about the completion such as the number of tokens `predicted_per_second`
|
||||||
|
|
||||||
|
`tokens_cached`: Number of tokens from the prompt which could be re-used from previous completion (`n_past`)
|
||||||
|
|
||||||
|
`tokens_evaluated`: Number of tokens evaluated in total from the prompt
|
||||||
|
|
||||||
|
`truncated`: Boolean indicating if the context size was exceeded during generation, i.e. the number of tokens provided in the prompt (`tokens_evaluated`) plus tokens generated (`tokens predicted`) exceeded the context size (`n_ctx`)
|
||||||
|
|
||||||
- **POST** `/tokenize`: Tokenize a given text.
|
- **POST** `/tokenize`: Tokenize a given text.
|
||||||
|
|
||||||
*Options:*
|
*Options:*
|
||||||
|
|
|
@ -1,7 +1,6 @@
|
||||||
#include "common.h"
|
#include "common.h"
|
||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
#include "build-info.h"
|
#include "build-info.h"
|
||||||
#include "grammar-parser.h"
|
|
||||||
|
|
||||||
#ifndef NDEBUG
|
#ifndef NDEBUG
|
||||||
// crash the server in debug mode, otherwise send an http 500 error
|
// crash the server in debug mode, otherwise send an http 500 error
|
||||||
|
@ -195,16 +194,14 @@ struct llama_server_context
|
||||||
|
|
||||||
json prompt;
|
json prompt;
|
||||||
std::vector<llama_token> embd;
|
std::vector<llama_token> embd;
|
||||||
std::vector<llama_token> last_n_tokens;
|
|
||||||
|
gpt_params params;
|
||||||
|
|
||||||
llama_model *model = nullptr;
|
llama_model *model = nullptr;
|
||||||
llama_context *ctx = nullptr;
|
llama_context *ctx = nullptr;
|
||||||
gpt_params params;
|
llama_sampling_context *ctx_sampling = nullptr;
|
||||||
llama_sampling_context ctx_sampling;
|
|
||||||
int n_ctx;
|
|
||||||
|
|
||||||
grammar_parser::parse_state parsed_grammar;
|
int n_ctx;
|
||||||
llama_grammar *grammar = nullptr;
|
|
||||||
|
|
||||||
bool truncated = false;
|
bool truncated = false;
|
||||||
bool stopped_eos = false;
|
bool stopped_eos = false;
|
||||||
|
@ -237,7 +234,7 @@ struct llama_server_context
|
||||||
void rewind()
|
void rewind()
|
||||||
{
|
{
|
||||||
params.antiprompt.clear();
|
params.antiprompt.clear();
|
||||||
params.grammar.clear();
|
params.sparams.grammar.clear();
|
||||||
num_prompt_tokens = 0;
|
num_prompt_tokens = 0;
|
||||||
num_tokens_predicted = 0;
|
num_tokens_predicted = 0;
|
||||||
generated_text = "";
|
generated_text = "";
|
||||||
|
@ -251,12 +248,14 @@ struct llama_server_context
|
||||||
multibyte_pending = 0;
|
multibyte_pending = 0;
|
||||||
n_remain = 0;
|
n_remain = 0;
|
||||||
n_past = 0;
|
n_past = 0;
|
||||||
|
params.sparams.n_prev = n_ctx;
|
||||||
|
}
|
||||||
|
|
||||||
if (grammar != nullptr) {
|
void initSampling() {
|
||||||
llama_grammar_free(grammar);
|
if (ctx_sampling != nullptr) {
|
||||||
grammar = nullptr;
|
llama_sampling_free(ctx_sampling);
|
||||||
ctx_sampling = llama_sampling_context_init(params, NULL);
|
|
||||||
}
|
}
|
||||||
|
ctx_sampling = llama_sampling_init(params.sparams);
|
||||||
}
|
}
|
||||||
|
|
||||||
bool loadModel(const gpt_params ¶ms_)
|
bool loadModel(const gpt_params ¶ms_)
|
||||||
|
@ -269,8 +268,6 @@ struct llama_server_context
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
n_ctx = llama_n_ctx(ctx);
|
n_ctx = llama_n_ctx(ctx);
|
||||||
last_n_tokens.resize(n_ctx);
|
|
||||||
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -319,36 +316,32 @@ struct llama_server_context
|
||||||
return prompt_tokens;
|
return prompt_tokens;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool loadGrammar()
|
void truncatePrompt(std::vector<llama_token> &prompt_tokens) {
|
||||||
{
|
const int n_left = n_ctx - params.n_keep;
|
||||||
if (!params.grammar.empty()) {
|
const int n_block_size = n_left / 2;
|
||||||
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
const int erased_blocks = (prompt_tokens.size() - params.n_keep - n_block_size) / n_block_size;
|
||||||
// will be empty (default) if there are parse errors
|
|
||||||
if (parsed_grammar.rules.empty()) {
|
|
||||||
LOG_ERROR("grammar parse error", {{"grammar", params.grammar}});
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
grammar_parser::print_grammar(stderr, parsed_grammar);
|
|
||||||
|
|
||||||
{
|
// Keep n_keep tokens at start of prompt (at most n_ctx - 4)
|
||||||
auto it = params.sampling_params.logit_bias.find(llama_token_eos(ctx));
|
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
||||||
if (it != params.sampling_params.logit_bias.end() && it->second == -INFINITY) {
|
|
||||||
LOG_WARNING("EOS token is disabled, which will cause most grammars to fail", {});
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_block_size, prompt_tokens.end());
|
||||||
grammar = llama_grammar_init(
|
|
||||||
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
LOG_VERBOSE("input truncated", {
|
||||||
}
|
{"n_ctx", n_ctx},
|
||||||
ctx_sampling = llama_sampling_context_init(params, grammar);
|
{"n_keep", params.n_keep},
|
||||||
return true;
|
{"n_left", n_left},
|
||||||
|
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
|
||||||
|
{"num_prompt_tokens", new_tokens.size()}
|
||||||
|
});
|
||||||
|
|
||||||
|
truncated = true;
|
||||||
|
prompt_tokens = new_tokens;
|
||||||
}
|
}
|
||||||
|
|
||||||
void loadInfill()
|
void loadInfill()
|
||||||
{
|
{
|
||||||
bool suff_rm_leading_spc = true;
|
bool suff_rm_leading_spc = true;
|
||||||
if (params.input_suffix.find_first_of(" ") == 0 && params.input_suffix.size() > 1) {
|
if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) {
|
||||||
params.input_suffix.erase(0, 1);
|
params.input_suffix.erase(0, 1);
|
||||||
suff_rm_leading_spc = false;
|
suff_rm_leading_spc = false;
|
||||||
}
|
}
|
||||||
|
@ -364,6 +357,7 @@ struct llama_server_context
|
||||||
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(ctx));
|
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(ctx));
|
||||||
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
|
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
|
||||||
prefix_tokens.push_back(llama_token_middle(ctx));
|
prefix_tokens.push_back(llama_token_middle(ctx));
|
||||||
|
|
||||||
auto prompt_tokens = prefix_tokens;
|
auto prompt_tokens = prefix_tokens;
|
||||||
|
|
||||||
num_prompt_tokens = prompt_tokens.size();
|
num_prompt_tokens = prompt_tokens.size();
|
||||||
|
@ -375,31 +369,18 @@ struct llama_server_context
|
||||||
params.n_keep = std::min(params.n_ctx - 4, params.n_keep);
|
params.n_keep = std::min(params.n_ctx - 4, params.n_keep);
|
||||||
|
|
||||||
// if input prompt is too big, truncate like normal
|
// if input prompt is too big, truncate like normal
|
||||||
if (num_prompt_tokens >= (size_t)params.n_ctx)
|
if (num_prompt_tokens >= (size_t) n_ctx)
|
||||||
{
|
{
|
||||||
printf("Input prompt is too big, truncating. Can only take %d tokens but got %zu\n", params.n_ctx, num_prompt_tokens);
|
truncatePrompt(prompt_tokens);
|
||||||
// todo we probably want to cut from both sides
|
num_prompt_tokens = prompt_tokens.size();
|
||||||
const int n_left = (params.n_ctx - params.n_keep) / 2;
|
|
||||||
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
|
||||||
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
|
|
||||||
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
|
|
||||||
std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin());
|
|
||||||
|
|
||||||
LOG_VERBOSE("input truncated", {
|
GGML_ASSERT(num_prompt_tokens < (size_t)n_ctx);
|
||||||
{"n_ctx", params.n_ctx},
|
|
||||||
{"n_keep", params.n_keep},
|
|
||||||
{"n_left", n_left},
|
|
||||||
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
|
|
||||||
});
|
|
||||||
|
|
||||||
truncated = true;
|
|
||||||
prompt_tokens = new_tokens;
|
|
||||||
}
|
}
|
||||||
else
|
|
||||||
|
// push the prompt into the sampling context (do not apply grammar)
|
||||||
|
for (auto & token : prompt_tokens)
|
||||||
{
|
{
|
||||||
const size_t ps = num_prompt_tokens;
|
llama_sampling_accept(ctx_sampling, ctx, token, false);
|
||||||
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
|
|
||||||
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// compare the evaluated prompt with the new prompt
|
// compare the evaluated prompt with the new prompt
|
||||||
|
@ -437,29 +418,18 @@ struct llama_server_context
|
||||||
params.n_keep = std::min(n_ctx - 4, params.n_keep);
|
params.n_keep = std::min(n_ctx - 4, params.n_keep);
|
||||||
|
|
||||||
// if input prompt is too big, truncate like normal
|
// if input prompt is too big, truncate like normal
|
||||||
if (num_prompt_tokens >= (size_t)n_ctx)
|
if (num_prompt_tokens >= (size_t) n_ctx)
|
||||||
{
|
{
|
||||||
const int n_left = (n_ctx - params.n_keep) / 2;
|
truncatePrompt(prompt_tokens);
|
||||||
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
num_prompt_tokens = prompt_tokens.size();
|
||||||
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
|
|
||||||
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
|
|
||||||
std::copy(prompt_tokens.end() - n_ctx, prompt_tokens.end(), last_n_tokens.begin());
|
|
||||||
|
|
||||||
LOG_VERBOSE("input truncated", {
|
GGML_ASSERT(num_prompt_tokens < (size_t)n_ctx);
|
||||||
{"n_ctx", n_ctx},
|
|
||||||
{"n_keep", params.n_keep},
|
|
||||||
{"n_left", n_left},
|
|
||||||
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
|
|
||||||
});
|
|
||||||
|
|
||||||
truncated = true;
|
|
||||||
prompt_tokens = new_tokens;
|
|
||||||
}
|
}
|
||||||
else
|
|
||||||
|
// push the prompt into the sampling context (do not apply grammar)
|
||||||
|
for (auto & token : prompt_tokens)
|
||||||
{
|
{
|
||||||
const size_t ps = num_prompt_tokens;
|
llama_sampling_accept(ctx_sampling, ctx, token, false);
|
||||||
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
|
|
||||||
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// compare the evaluated prompt with the new prompt
|
// compare the evaluated prompt with the new prompt
|
||||||
|
@ -554,27 +524,24 @@ struct llama_server_context
|
||||||
|
|
||||||
{
|
{
|
||||||
// out of user input, sample next token
|
// out of user input, sample next token
|
||||||
std::vector<llama_token_data> candidates;
|
result.tok = llama_sampling_sample(ctx_sampling, ctx, NULL);
|
||||||
candidates.reserve(llama_n_vocab(model));
|
|
||||||
|
|
||||||
result.tok = llama_sampling_sample(ctx, NULL, ctx_sampling, last_n_tokens, candidates);
|
llama_token_data_array cur_p = { ctx_sampling->cur.data(), ctx_sampling->cur.size(), false };
|
||||||
|
|
||||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
const int32_t n_probs = params.sparams.n_probs;
|
||||||
|
if (params.sparams.temp <= 0 && n_probs > 0)
|
||||||
const int32_t n_probs = params.sampling_params.n_probs;
|
|
||||||
if (params.sampling_params.temp <= 0 && n_probs > 0)
|
|
||||||
{
|
{
|
||||||
// For llama_sample_token_greedy we need to sort candidates
|
// For llama_sample_token_greedy we need to sort candidates
|
||||||
llama_sample_softmax(ctx, &candidates_p);
|
llama_sample_softmax(ctx, &cur_p);
|
||||||
}
|
}
|
||||||
|
|
||||||
for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)
|
for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i)
|
||||||
{
|
{
|
||||||
result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p});
|
result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p});
|
||||||
}
|
}
|
||||||
|
|
||||||
last_n_tokens.erase(last_n_tokens.begin());
|
llama_sampling_accept(ctx_sampling, ctx, result.tok, true);
|
||||||
last_n_tokens.push_back(result.tok);
|
|
||||||
if (tg) {
|
if (tg) {
|
||||||
num_tokens_predicted++;
|
num_tokens_predicted++;
|
||||||
}
|
}
|
||||||
|
@ -637,7 +604,7 @@ struct llama_server_context
|
||||||
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_piece(ctx, token_with_probs.tok);
|
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_piece(ctx, token_with_probs.tok);
|
||||||
generated_text += token_text;
|
generated_text += token_text;
|
||||||
|
|
||||||
if (params.sampling_params.n_probs > 0)
|
if (params.sparams.n_probs > 0)
|
||||||
{
|
{
|
||||||
generated_token_probs.push_back(token_with_probs);
|
generated_token_probs.push_back(token_with_probs);
|
||||||
}
|
}
|
||||||
|
@ -1086,36 +1053,36 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
||||||
|
|
||||||
static json format_generation_settings(llama_server_context &llama)
|
static json format_generation_settings(llama_server_context &llama)
|
||||||
{
|
{
|
||||||
const auto & sparams = llama.params.sampling_params;
|
const auto & sparams = llama.params.sparams;
|
||||||
const auto eos_bias = sparams.logit_bias.find(llama_token_eos(llama.ctx));
|
const auto eos_bias = sparams.logit_bias.find(llama_token_eos(llama.ctx));
|
||||||
const bool ignore_eos = eos_bias != sparams.logit_bias.end() &&
|
const bool ignore_eos = eos_bias != sparams.logit_bias.end() &&
|
||||||
eos_bias->second < 0.0f && std::isinf(eos_bias->second);
|
eos_bias->second < 0.0f && std::isinf(eos_bias->second);
|
||||||
|
|
||||||
return json{
|
return json{
|
||||||
{"n_ctx", llama.n_ctx},
|
{"n_ctx", llama.n_ctx},
|
||||||
{"model", llama.params.model_alias},
|
{"model", llama.params.model_alias},
|
||||||
{"seed", llama.params.seed},
|
{"seed", llama.params.seed},
|
||||||
{"temp", sparams.temp},
|
{"temp", sparams.temp},
|
||||||
{"top_k", sparams.top_k},
|
{"top_k", sparams.top_k},
|
||||||
{"top_p", sparams.top_p},
|
{"top_p", sparams.top_p},
|
||||||
{"tfs_z", sparams.tfs_z},
|
{"tfs_z", sparams.tfs_z},
|
||||||
{"typical_p", sparams.typical_p},
|
{"typical_p", sparams.typical_p},
|
||||||
{"repeat_last_n", sparams.repeat_last_n},
|
{"repeat_last_n", sparams.penalty_last_n},
|
||||||
{"repeat_penalty", sparams.repeat_penalty},
|
{"repeat_penalty", sparams.penalty_repeat},
|
||||||
{"presence_penalty", sparams.presence_penalty},
|
{"frequency_penalty", sparams.penalty_freq},
|
||||||
{"frequency_penalty", sparams.frequency_penalty},
|
{"presence_penalty", sparams.penalty_present},
|
||||||
{"mirostat", sparams.mirostat},
|
{"mirostat", sparams.mirostat},
|
||||||
{"mirostat_tau", sparams.mirostat_tau},
|
{"mirostat_tau", sparams.mirostat_tau},
|
||||||
{"mirostat_eta", sparams.mirostat_eta},
|
{"mirostat_eta", sparams.mirostat_eta},
|
||||||
{"penalize_nl", sparams.penalize_nl},
|
{"penalize_nl", sparams.penalize_nl},
|
||||||
{"stop", llama.params.antiprompt},
|
{"stop", llama.params.antiprompt},
|
||||||
{"n_predict", llama.params.n_predict},
|
{"n_predict", llama.params.n_predict},
|
||||||
{"n_keep", llama.params.n_keep},
|
{"n_keep", llama.params.n_keep},
|
||||||
{"ignore_eos", ignore_eos},
|
{"ignore_eos", ignore_eos},
|
||||||
{"stream", llama.stream},
|
{"stream", llama.stream},
|
||||||
{"logit_bias", sparams.logit_bias},
|
{"logit_bias", sparams.logit_bias},
|
||||||
{"n_probs", sparams.n_probs},
|
{"n_probs", sparams.n_probs},
|
||||||
{"grammar", llama.params.grammar},
|
{"grammar", llama.params.sparams.grammar},
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1163,7 +1130,7 @@ static json format_final_response(llama_server_context &llama, const std::string
|
||||||
{"timings", format_timings(llama)},
|
{"timings", format_timings(llama)},
|
||||||
};
|
};
|
||||||
|
|
||||||
if (llama.params.sampling_params.n_probs > 0)
|
if (llama.params.sparams.n_probs > 0)
|
||||||
{
|
{
|
||||||
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
|
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
|
||||||
}
|
}
|
||||||
|
@ -1179,7 +1146,7 @@ static json format_partial_response(
|
||||||
{"stop", false},
|
{"stop", false},
|
||||||
};
|
};
|
||||||
|
|
||||||
if (llama.params.sampling_params.n_probs > 0)
|
if (llama.params.sparams.n_probs > 0)
|
||||||
{
|
{
|
||||||
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
|
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
|
||||||
}
|
}
|
||||||
|
@ -1211,28 +1178,30 @@ static T json_value(const json &body, const std::string &key, const T &default_v
|
||||||
static void parse_options_completion(const json &body, llama_server_context &llama)
|
static void parse_options_completion(const json &body, llama_server_context &llama)
|
||||||
{
|
{
|
||||||
gpt_params default_params;
|
gpt_params default_params;
|
||||||
const auto & default_sparams = default_params.sampling_params;
|
const auto & default_sparams = default_params.sparams;
|
||||||
auto & sparams = llama.params.sampling_params;
|
|
||||||
|
|
||||||
llama.stream = json_value(body, "stream", false);
|
auto & params = llama.params;
|
||||||
llama.params.n_predict = json_value(body, "n_predict", default_params.n_predict);
|
auto & sparams = llama.params.sparams;
|
||||||
sparams.top_k = json_value(body, "top_k", default_sparams.top_k);
|
|
||||||
sparams.top_p = json_value(body, "top_p", default_sparams.top_p);
|
llama.stream = json_value(body, "stream", false);
|
||||||
sparams.tfs_z = json_value(body, "tfs_z", default_sparams.tfs_z);
|
params.n_predict = json_value(body, "n_predict", default_params.n_predict);
|
||||||
sparams.typical_p = json_value(body, "typical_p", default_sparams.typical_p);
|
sparams.top_k = json_value(body, "top_k", default_sparams.top_k);
|
||||||
sparams.repeat_last_n = json_value(body, "repeat_last_n", default_sparams.repeat_last_n);
|
sparams.top_p = json_value(body, "top_p", default_sparams.top_p);
|
||||||
sparams.temp = json_value(body, "temperature", default_sparams.temp);
|
sparams.tfs_z = json_value(body, "tfs_z", default_sparams.tfs_z);
|
||||||
sparams.repeat_penalty = json_value(body, "repeat_penalty", default_sparams.repeat_penalty);
|
sparams.typical_p = json_value(body, "typical_p", default_sparams.typical_p);
|
||||||
sparams.presence_penalty = json_value(body, "presence_penalty", default_sparams.presence_penalty);
|
sparams.temp = json_value(body, "temperature", default_sparams.temp);
|
||||||
sparams.frequency_penalty = json_value(body, "frequency_penalty", default_sparams.frequency_penalty);
|
sparams.penalty_last_n = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
|
||||||
sparams.mirostat = json_value(body, "mirostat", default_sparams.mirostat);
|
sparams.penalty_repeat = json_value(body, "repeat_penalty", default_sparams.penalty_repeat);
|
||||||
sparams.mirostat_tau = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
|
sparams.penalty_freq = json_value(body, "frequency_penalty", default_sparams.penalty_freq);
|
||||||
sparams.mirostat_eta = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
|
sparams.penalty_present = json_value(body, "presence_penalty", default_sparams.penalty_present);
|
||||||
sparams.penalize_nl = json_value(body, "penalize_nl", default_sparams.penalize_nl);
|
sparams.mirostat = json_value(body, "mirostat", default_sparams.mirostat);
|
||||||
llama.params.n_keep = json_value(body, "n_keep", default_params.n_keep);
|
sparams.mirostat_tau = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
|
||||||
llama.params.seed = json_value(body, "seed", default_params.seed);
|
sparams.mirostat_eta = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
|
||||||
llama.params.grammar = json_value(body, "grammar", default_params.grammar);
|
sparams.penalize_nl = json_value(body, "penalize_nl", default_sparams.penalize_nl);
|
||||||
sparams.n_probs = json_value(body, "n_probs", default_sparams.n_probs);
|
params.n_keep = json_value(body, "n_keep", default_params.n_keep);
|
||||||
|
params.seed = json_value(body, "seed", default_params.seed);
|
||||||
|
sparams.grammar = json_value(body, "grammar", default_sparams.grammar);
|
||||||
|
sparams.n_probs = json_value(body, "n_probs", default_sparams.n_probs);
|
||||||
|
|
||||||
if (body.count("prompt") != 0)
|
if (body.count("prompt") != 0)
|
||||||
{
|
{
|
||||||
|
@ -1286,8 +1255,6 @@ static void parse_options_completion(const json &body, llama_server_context &lla
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
llama.ctx_sampling = llama_sampling_context_init(llama.params, llama.grammar);
|
|
||||||
|
|
||||||
LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
|
LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1456,15 +1423,9 @@ int main(int argc, char **argv)
|
||||||
llama.rewind();
|
llama.rewind();
|
||||||
|
|
||||||
llama_reset_timings(llama.ctx);
|
llama_reset_timings(llama.ctx);
|
||||||
|
|
||||||
parse_options_completion(json::parse(req.body), llama);
|
parse_options_completion(json::parse(req.body), llama);
|
||||||
|
|
||||||
if (!llama.loadGrammar())
|
llama.initSampling();
|
||||||
{
|
|
||||||
res.status = 400;
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
llama.loadPrompt();
|
llama.loadPrompt();
|
||||||
llama.beginCompletion();
|
llama.beginCompletion();
|
||||||
|
|
||||||
|
@ -1496,7 +1457,7 @@ int main(int argc, char **argv)
|
||||||
}
|
}
|
||||||
|
|
||||||
auto probs = llama.generated_token_probs;
|
auto probs = llama.generated_token_probs;
|
||||||
if (llama.params.sampling_params.n_probs > 0 && llama.stopped_word) {
|
if (llama.params.sparams.n_probs > 0 && llama.stopped_word) {
|
||||||
const std::vector<llama_token> stop_word_toks = llama_tokenize(llama.ctx, llama.stopping_word, false);
|
const std::vector<llama_token> stop_word_toks = llama_tokenize(llama.ctx, llama.stopping_word, false);
|
||||||
probs = std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.end() - stop_word_toks.size());
|
probs = std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.end() - stop_word_toks.size());
|
||||||
}
|
}
|
||||||
|
@ -1548,7 +1509,7 @@ int main(int argc, char **argv)
|
||||||
|
|
||||||
std::vector<completion_token_output> probs_output = {};
|
std::vector<completion_token_output> probs_output = {};
|
||||||
|
|
||||||
if (llama.params.sampling_params.n_probs > 0) {
|
if (llama.params.sparams.n_probs > 0) {
|
||||||
const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
|
const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
|
||||||
size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
|
size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
|
||||||
size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
|
size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
|
||||||
|
@ -1619,14 +1580,9 @@ int main(int argc, char **argv)
|
||||||
llama.rewind();
|
llama.rewind();
|
||||||
|
|
||||||
llama_reset_timings(llama.ctx);
|
llama_reset_timings(llama.ctx);
|
||||||
|
|
||||||
parse_options_infill(json::parse(req.body), llama);
|
parse_options_infill(json::parse(req.body), llama);
|
||||||
|
|
||||||
if (!llama.loadGrammar())
|
llama.initSampling();
|
||||||
{
|
|
||||||
res.status = 400;
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
llama.loadInfill();
|
llama.loadInfill();
|
||||||
llama.beginCompletion();
|
llama.beginCompletion();
|
||||||
const auto chunked_content_provider = [&](size_t, DataSink & sink) {
|
const auto chunked_content_provider = [&](size_t, DataSink & sink) {
|
||||||
|
@ -1669,7 +1625,7 @@ int main(int argc, char **argv)
|
||||||
|
|
||||||
std::vector<completion_token_output> probs_output = {};
|
std::vector<completion_token_output> probs_output = {};
|
||||||
|
|
||||||
if (llama.params.sampling_params.n_probs > 0) {
|
if (llama.params.sparams.n_probs > 0) {
|
||||||
const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
|
const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
|
||||||
size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
|
size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
|
||||||
size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
|
size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
|
||||||
|
@ -1776,7 +1732,9 @@ int main(int argc, char **argv)
|
||||||
const json body = json::parse(req.body);
|
const json body = json::parse(req.body);
|
||||||
|
|
||||||
llama.rewind();
|
llama.rewind();
|
||||||
|
|
||||||
llama_reset_timings(llama.ctx);
|
llama_reset_timings(llama.ctx);
|
||||||
|
|
||||||
if (body.count("content") != 0)
|
if (body.count("content") != 0)
|
||||||
{
|
{
|
||||||
llama.prompt = body["content"];
|
llama.prompt = body["content"];
|
||||||
|
@ -1786,6 +1744,8 @@ int main(int argc, char **argv)
|
||||||
llama.prompt = "";
|
llama.prompt = "";
|
||||||
}
|
}
|
||||||
llama.params.n_predict = 0;
|
llama.params.n_predict = 0;
|
||||||
|
|
||||||
|
llama.initSampling();
|
||||||
llama.loadPrompt();
|
llama.loadPrompt();
|
||||||
llama.beginCompletion();
|
llama.beginCompletion();
|
||||||
llama.doCompletion();
|
llama.doCompletion();
|
||||||
|
@ -1844,9 +1804,7 @@ int main(int argc, char **argv)
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (llama.grammar != nullptr) {
|
llama_sampling_free(llama.ctx_sampling);
|
||||||
llama_grammar_free(llama.grammar);
|
|
||||||
}
|
|
||||||
llama_backend_free();
|
llama_backend_free();
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
|
|
|
@ -92,7 +92,7 @@ int main(int argc, char ** argv) {
|
||||||
// create a llama_batch with size 512
|
// create a llama_batch with size 512
|
||||||
// we use this object to submit token data for decoding
|
// we use this object to submit token data for decoding
|
||||||
|
|
||||||
llama_batch batch = llama_batch_init(512, 0);
|
llama_batch batch = llama_batch_init(512, 0, 1);
|
||||||
|
|
||||||
// evaluate the initial prompt
|
// evaluate the initial prompt
|
||||||
batch.n_tokens = tokens_list.size();
|
batch.n_tokens = tokens_list.size();
|
||||||
|
|
|
@ -2,13 +2,25 @@
|
||||||
|
|
||||||
#include "common.h"
|
#include "common.h"
|
||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
#include "grammar-parser.h"
|
|
||||||
|
|
||||||
#include <cmath>
|
#include <cmath>
|
||||||
#include <cstdio>
|
#include <cstdio>
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
|
struct seq_draft {
|
||||||
|
bool active = false;
|
||||||
|
bool drafting = false;
|
||||||
|
bool skip = false;
|
||||||
|
|
||||||
|
int i_batch_dft = 0;
|
||||||
|
std::vector<int> i_batch_tgt;
|
||||||
|
|
||||||
|
std::vector<llama_token> tokens;
|
||||||
|
|
||||||
|
struct llama_sampling_context * ctx_sampling;
|
||||||
|
};
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
gpt_params params;
|
gpt_params params;
|
||||||
|
|
||||||
|
@ -21,6 +33,13 @@ int main(int argc, char ** argv) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// max number of parallel drafting sequences (i.e. tree branches)
|
||||||
|
const int n_seq_dft = params.n_parallel;
|
||||||
|
|
||||||
|
// TODO: make this configurable
|
||||||
|
const float p_accept = 0.80f;
|
||||||
|
const float p_split = 0.10f;
|
||||||
|
|
||||||
#ifndef LOG_DISABLE_LOGS
|
#ifndef LOG_DISABLE_LOGS
|
||||||
log_set_target(log_filename_generator("speculative", "log"));
|
log_set_target(log_filename_generator("speculative", "log"));
|
||||||
LOG_TEE("Log start\n");
|
LOG_TEE("Log start\n");
|
||||||
|
@ -77,8 +96,6 @@ int main(int argc, char ** argv) {
|
||||||
const auto t_enc_end = ggml_time_us();
|
const auto t_enc_end = ggml_time_us();
|
||||||
|
|
||||||
// the 2 models should have the same vocab
|
// the 2 models should have the same vocab
|
||||||
const int n_ctx = llama_n_ctx(ctx_tgt);
|
|
||||||
const int n_vocab = llama_n_vocab(model_tgt);
|
|
||||||
//GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));
|
//GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));
|
||||||
|
|
||||||
// how many tokens to draft each time
|
// how many tokens to draft each time
|
||||||
|
@ -91,60 +108,58 @@ int main(int argc, char ** argv) {
|
||||||
int n_past_tgt = inp.size();
|
int n_past_tgt = inp.size();
|
||||||
int n_past_dft = inp.size();
|
int n_past_dft = inp.size();
|
||||||
|
|
||||||
std::vector<llama_token> drafted;
|
|
||||||
|
|
||||||
std::vector<llama_token> last_tokens(n_ctx);
|
|
||||||
std::fill(last_tokens.begin(), last_tokens.end(), 0);
|
|
||||||
|
|
||||||
for (auto & id : inp) {
|
|
||||||
last_tokens.erase(last_tokens.begin());
|
|
||||||
last_tokens.push_back(id);
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<llama_token_data> candidates;
|
|
||||||
candidates.reserve(n_vocab);
|
|
||||||
|
|
||||||
// used to determine end of generation
|
// used to determine end of generation
|
||||||
bool has_eos = false;
|
bool has_eos = false;
|
||||||
|
|
||||||
// grammar stuff
|
// target model sampling context
|
||||||
struct llama_grammar * grammar_dft = NULL;
|
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
|
||||||
struct llama_grammar * grammar_tgt = NULL;
|
|
||||||
|
|
||||||
grammar_parser::parse_state parsed_grammar;
|
// draft sequence data
|
||||||
|
std::vector<seq_draft> drafts(n_seq_dft);
|
||||||
|
|
||||||
// if requested - load the grammar, error checking is omitted for brevity
|
params.sparams.grammar.clear(); // the draft samplers will copy the target sampler's grammar
|
||||||
if (!params.grammar.empty()) {
|
params.sparams.temp = std::max(0.01f, params.sparams.temp);
|
||||||
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
|
||||||
// will be empty (default) if there are parse errors
|
|
||||||
if (parsed_grammar.rules.empty()) {
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
for (int s = 0; s < n_seq_dft; ++s) {
|
||||||
grammar_tgt = llama_grammar_init(grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
drafts[s].ctx_sampling = llama_sampling_init(params.sparams);
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar_tgt);
|
llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1);
|
||||||
|
llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, n_seq_dft);
|
||||||
|
|
||||||
const auto t_dec_start = ggml_time_us();
|
const auto t_dec_start = ggml_time_us();
|
||||||
|
|
||||||
while (true) {
|
// sample from the last token of the prompt
|
||||||
LOG("drafted: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_dft, drafted));
|
drafts[0].i_batch_tgt.resize(1);
|
||||||
|
drafts[0].i_batch_tgt[0] = 0;
|
||||||
|
|
||||||
int i_dft = 0;
|
while (true) {
|
||||||
|
// print current draft sequences
|
||||||
|
for (int s = 0; s < n_seq_dft; ++s) {
|
||||||
|
if (!drafts[s].active) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
const auto & tokens = drafts[s].tokens;
|
||||||
|
|
||||||
|
LOG("draft %d: %s\n", s, LOG_TOKENS_TOSTR_PRETTY(ctx_dft, tokens).c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
int i_dft = 0;
|
||||||
|
int s_keep = 0;
|
||||||
|
|
||||||
while (true) {
|
while (true) {
|
||||||
|
LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||||
|
|
||||||
// sample from the target model
|
// sample from the target model
|
||||||
llama_token id = llama_sampling_sample(ctx_tgt, NULL, ctx_sampling, last_tokens, candidates, i_dft);
|
llama_token id = llama_sampling_sample(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||||
|
|
||||||
// remember which tokens were sampled - used for repetition penalties during sampling
|
llama_sampling_accept(ctx_sampling, ctx_tgt, id, true);
|
||||||
last_tokens.erase(last_tokens.begin());
|
|
||||||
last_tokens.push_back(id);
|
|
||||||
|
|
||||||
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, last_tokens));
|
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, ctx_sampling->prev).c_str());
|
||||||
|
|
||||||
const std::string token_str = llama_token_to_piece(ctx_tgt, id);
|
const std::string token_str = llama_token_to_piece(ctx_tgt, id);
|
||||||
|
|
||||||
printf("%s", token_str.c_str());
|
printf("%s", token_str.c_str());
|
||||||
fflush(stdout);
|
fflush(stdout);
|
||||||
|
|
||||||
|
@ -154,53 +169,67 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
++n_predict;
|
++n_predict;
|
||||||
|
|
||||||
// check if the draft matches the target
|
// check if the target token matches any of the drafts
|
||||||
if (i_dft < (int) drafted.size() && id == drafted[i_dft]) {
|
|
||||||
LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
|
|
||||||
++n_accept;
|
|
||||||
++n_past_tgt;
|
|
||||||
++n_past_dft;
|
|
||||||
++i_dft;
|
|
||||||
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
// the drafted token was rejected or we are out of drafted tokens
|
|
||||||
|
|
||||||
if (i_dft < (int) drafted.size()) {
|
|
||||||
LOG("the %dth drafted token (%d, '%s') does not match the sampled target token (%d, '%s') - rejected\n",
|
|
||||||
i_dft, drafted[i_dft], llama_token_to_piece(ctx_dft, drafted[i_dft]).c_str(), id, token_str.c_str());
|
|
||||||
} else {
|
|
||||||
LOG("out of drafted tokens\n");
|
|
||||||
}
|
|
||||||
|
|
||||||
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
|
|
||||||
llama_decode(ctx_dft, llama_batch_get_one(&id, 1, n_past_dft, 0));
|
|
||||||
++n_past_dft;
|
|
||||||
|
|
||||||
// heuristic for n_draft
|
|
||||||
{
|
{
|
||||||
const int n_draft_cur = (int) drafted.size();
|
bool matches = false;
|
||||||
const bool all_accepted = i_dft == n_draft_cur;
|
|
||||||
|
|
||||||
LOG("n_draft = %d\n", n_draft);
|
for (int s = 0; s < n_seq_dft; ++s) {
|
||||||
LOG("n_draft_cur = %d\n", n_draft_cur);
|
if (!drafts[s].active) {
|
||||||
LOG("i_dft = %d\n", i_dft);
|
continue;
|
||||||
LOG("all_accepted = %d\n", all_accepted);
|
}
|
||||||
|
|
||||||
if (all_accepted && n_draft == n_draft_cur) {
|
if (i_dft < (int) drafts[s].tokens.size() && id == drafts[s].tokens[i_dft]) {
|
||||||
LOG(" - max drafted tokens accepted - n_draft += 8\n");
|
LOG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, id, token_str.c_str());
|
||||||
n_draft = std::min(30, n_draft + 8);
|
|
||||||
} else if (all_accepted) {
|
s_keep = s;
|
||||||
LOG(" - partially drafted tokens accepted - no change\n");
|
matches = true;
|
||||||
} else {
|
} else {
|
||||||
LOG(" - drafted token rejected - n_draft -= 1\n");
|
drafts[s].active = false;
|
||||||
n_draft = std::max(2, n_draft - 1);
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (matches) {
|
||||||
|
++n_accept;
|
||||||
|
++n_past_tgt;
|
||||||
|
++n_past_dft;
|
||||||
|
++i_dft;
|
||||||
|
|
||||||
|
continue;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
drafted.clear();
|
LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
|
||||||
drafted.push_back(id);
|
|
||||||
|
// TODO: simplify
|
||||||
|
{
|
||||||
|
LOG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
|
||||||
|
|
||||||
|
llama_kv_cache_seq_keep(ctx_dft, s_keep);
|
||||||
|
llama_kv_cache_seq_cp (ctx_dft, s_keep, 0, -1, -1);
|
||||||
|
llama_kv_cache_seq_keep(ctx_dft, 0);
|
||||||
|
|
||||||
|
llama_kv_cache_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1);
|
||||||
|
llama_kv_cache_seq_keep(ctx_tgt, s_keep);
|
||||||
|
llama_kv_cache_seq_cp (ctx_tgt, s_keep, 0, -1, -1);
|
||||||
|
llama_kv_cache_seq_keep(ctx_tgt, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int s = 0; s < n_seq_dft; ++s) {
|
||||||
|
drafts[s].active = false;
|
||||||
|
drafts[s].tokens.clear();
|
||||||
|
drafts[s].i_batch_tgt.clear();
|
||||||
|
}
|
||||||
|
// note: will be erased after the speculation phase
|
||||||
|
drafts[0].tokens.push_back(id);
|
||||||
|
drafts[0].i_batch_tgt.push_back(0);
|
||||||
|
|
||||||
|
llama_batch_clear(batch_dft);
|
||||||
|
llama_batch_add (batch_dft, id, n_past_dft, { 0 }, true);
|
||||||
|
|
||||||
|
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
|
||||||
|
llama_decode (ctx_dft, batch_dft);
|
||||||
|
|
||||||
|
++n_past_dft;
|
||||||
|
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
@ -209,78 +238,151 @@ int main(int argc, char ** argv) {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (grammar_tgt) {
|
llama_sampling_cp(ctx_sampling, drafts[0].ctx_sampling);
|
||||||
if (grammar_dft) {
|
|
||||||
llama_grammar_free(grammar_dft);
|
|
||||||
}
|
|
||||||
// Note: Hardcoded to sequence id 0, if this ever supports parallel generation
|
|
||||||
// that will need to change.
|
|
||||||
auto it = ctx_sampling.sequence_contexts.find(0);
|
|
||||||
GGML_ASSERT(it != ctx_sampling.sequence_contexts.end());
|
|
||||||
// This is necessary because each sequence id in sequence_contexts
|
|
||||||
// uses a copy of the original grammar.
|
|
||||||
grammar_dft = llama_grammar_copy(it->second.grammar);
|
|
||||||
|
|
||||||
LOG("copied target grammar to draft grammar\n");
|
int n_seq_cur = 1;
|
||||||
}
|
|
||||||
|
|
||||||
// sample n_draft tokens from the draft model using greedy decoding
|
|
||||||
int n_past_cur = n_past_dft;
|
int n_past_cur = n_past_dft;
|
||||||
|
|
||||||
|
for (int s = 0; s < n_seq_dft; ++s) {
|
||||||
|
drafts[s].active = false;
|
||||||
|
drafts[s].drafting = false;
|
||||||
|
}
|
||||||
|
drafts[0].active = true;
|
||||||
|
drafts[0].drafting = true;
|
||||||
|
drafts[0].i_batch_dft = 0;
|
||||||
|
|
||||||
|
llama_batch_clear(batch_tgt);
|
||||||
|
llama_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
|
||||||
|
|
||||||
|
// sample n_draft tokens from the draft model using tree-based sampling
|
||||||
for (int i = 0; i < n_draft; ++i) {
|
for (int i = 0; i < n_draft; ++i) {
|
||||||
float * logits = llama_get_logits(ctx_dft);
|
batch_dft.n_tokens = 0;
|
||||||
|
|
||||||
candidates.clear();
|
for (int s = 0; s < n_seq_dft; ++s) {
|
||||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
drafts[s].skip = false;
|
||||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
|
for (int s = 0; s < n_seq_dft; ++s) {
|
||||||
|
if (!drafts[s].drafting || drafts[s].skip) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
if (grammar_dft != NULL) {
|
llama_sampling_sample(drafts[s].ctx_sampling, ctx_dft, NULL, drafts[s].i_batch_dft);
|
||||||
llama_sample_grammar(ctx_dft, &cur_p, grammar_dft);
|
|
||||||
|
const auto & cur_p = drafts[s].ctx_sampling->cur;
|
||||||
|
|
||||||
|
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p.size()); ++k) {
|
||||||
|
LOG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
|
||||||
|
k, s, i, cur_p[k].id, cur_p[k].p, llama_token_to_piece(ctx_dft, cur_p[k].id).c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
if (cur_p[0].p < p_accept) {
|
||||||
|
LOG("stopping drafting for seq %3d, probability too low: %.3f < %.3f\n", s, cur_p[0].p, p_accept);
|
||||||
|
drafts[s].drafting = false;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<int> sa(1, s);
|
||||||
|
|
||||||
|
// attempt to split the branch if the probability is high enough
|
||||||
|
for (int f = 1; f < 8; ++f) {
|
||||||
|
if (n_seq_cur < n_seq_dft && cur_p[f].p > p_split) {
|
||||||
|
LOG("splitting seq %3d into %3d\n", s, n_seq_cur);
|
||||||
|
|
||||||
|
llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1);
|
||||||
|
llama_kv_cache_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
|
||||||
|
|
||||||
|
// all previous tokens from this branch are now also part of the new branch
|
||||||
|
for (int t = 0; t < batch_tgt.n_tokens; ++t) {
|
||||||
|
for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) {
|
||||||
|
if (batch_tgt.seq_id[t][p] == s) {
|
||||||
|
batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur;
|
||||||
|
batch_tgt.n_seq_id[t]++;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// copy the draft state
|
||||||
|
drafts[n_seq_cur].active = true;
|
||||||
|
drafts[n_seq_cur].drafting = true;
|
||||||
|
drafts[n_seq_cur].skip = true;
|
||||||
|
|
||||||
|
drafts[n_seq_cur].tokens = drafts[s].tokens;
|
||||||
|
drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
|
||||||
|
drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
|
||||||
|
|
||||||
|
llama_sampling_cp(drafts[s].ctx_sampling, drafts[n_seq_cur].ctx_sampling);
|
||||||
|
|
||||||
|
sa.push_back(n_seq_cur);
|
||||||
|
|
||||||
|
n_seq_cur++;
|
||||||
|
} else {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// add drafted token for each sequence
|
||||||
|
for (int is = 0; is < (int) sa.size(); ++is) {
|
||||||
|
const llama_token id = cur_p[is].id;
|
||||||
|
|
||||||
|
const int s = sa[is];
|
||||||
|
|
||||||
|
llama_sampling_accept(drafts[s].ctx_sampling, ctx_dft, id, true);
|
||||||
|
|
||||||
|
drafts[s].tokens.push_back(id);
|
||||||
|
|
||||||
|
// add unique drafted tokens to the target batch
|
||||||
|
drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
|
||||||
|
|
||||||
|
llama_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
|
||||||
|
|
||||||
|
// add the token to the batch for batched decoding with the draft model
|
||||||
|
drafts[s].i_batch_dft = batch_dft.n_tokens;
|
||||||
|
|
||||||
|
llama_batch_add(batch_dft, id, n_past_cur, { s }, true);
|
||||||
|
|
||||||
|
if (batch_tgt.n_tokens > n_draft) {
|
||||||
|
drafts[s].drafting = false;
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// computes softmax and sorts the candidates
|
// no sequence is drafting anymore
|
||||||
llama_sample_softmax(ctx_dft, &cur_p);
|
if (batch_dft.n_tokens == 0) {
|
||||||
|
|
||||||
for (int i = 0; i < 3; ++i) {
|
|
||||||
LOG(" - draft candidate %3d: %6d (%8.3f) '%s'\n", i, cur_p.data[i].id, cur_p.data[i].p, llama_token_to_piece(ctx_dft, cur_p.data[i].id).c_str());
|
|
||||||
}
|
|
||||||
|
|
||||||
// TODO: better logic?
|
|
||||||
if (cur_p.data[0].p < 2*cur_p.data[1].p) {
|
|
||||||
LOG("stopping drafting, probability too low: %.3f < 2*%.3f\n", cur_p.data[0].p, cur_p.data[1].p);
|
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
// drafted token
|
// evaluate the drafted tokens on the draft model
|
||||||
const llama_token id = cur_p.data[0].id;
|
llama_decode(ctx_dft, batch_dft);
|
||||||
|
++n_past_cur;
|
||||||
drafted.push_back(id);
|
|
||||||
++n_drafted;
|
++n_drafted;
|
||||||
|
|
||||||
// no need to evaluate the last drafted token, since we won't use the result
|
if (batch_tgt.n_tokens > n_draft) {
|
||||||
if (i == n_draft - 1) {
|
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
// evaluate the drafted token on the draft model
|
|
||||||
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_cur, -1);
|
|
||||||
llama_decode(ctx_dft, llama_batch_get_one(&drafted.back(), 1, n_past_cur, 0));
|
|
||||||
++n_past_cur;
|
|
||||||
|
|
||||||
if (grammar_dft != NULL) {
|
|
||||||
llama_grammar_accept_token(ctx_dft, grammar_dft, id);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// evaluate the target model on the drafted tokens
|
// evaluate the target model on the drafted tokens
|
||||||
llama_kv_cache_seq_rm(ctx_tgt, 0, n_past_tgt, -1);
|
{
|
||||||
llama_decode(ctx_tgt, llama_batch_get_one(drafted.data(), drafted.size(), n_past_tgt, 0));
|
llama_kv_cache_seq_keep(ctx_tgt, 0);
|
||||||
++n_past_tgt;
|
for (int s = 1; s < n_seq_dft; ++s) {
|
||||||
|
llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1);
|
||||||
|
}
|
||||||
|
|
||||||
// the first token is always proposed by the traget model before the speculation loop
|
//LOG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt));
|
||||||
drafted.erase(drafted.begin());
|
llama_decode(ctx_tgt, batch_tgt);
|
||||||
|
++n_past_tgt;
|
||||||
|
}
|
||||||
|
|
||||||
|
// the first token is always proposed by the traget model before the speculation loop so we erase it here
|
||||||
|
for (int s = 0; s < n_seq_dft; ++s) {
|
||||||
|
if (!drafts[s].active) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
drafts[s].tokens.erase(drafts[s].tokens.begin());
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
auto t_dec_end = ggml_time_us();
|
auto t_dec_end = ggml_time_us();
|
||||||
|
@ -288,9 +390,8 @@ int main(int argc, char ** argv) {
|
||||||
LOG_TEE("\n\n");
|
LOG_TEE("\n\n");
|
||||||
|
|
||||||
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
|
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
|
||||||
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
||||||
|
|
||||||
// TODO: make sure these numbers are computed correctly
|
|
||||||
LOG_TEE("\n");
|
LOG_TEE("\n");
|
||||||
LOG_TEE("n_draft = %d\n", n_draft);
|
LOG_TEE("n_draft = %d\n", n_draft);
|
||||||
LOG_TEE("n_predict = %d\n", n_predict);
|
LOG_TEE("n_predict = %d\n", n_predict);
|
||||||
|
@ -304,16 +405,19 @@ int main(int argc, char ** argv) {
|
||||||
LOG_TEE("\ntarget:\n");
|
LOG_TEE("\ntarget:\n");
|
||||||
llama_print_timings(ctx_tgt);
|
llama_print_timings(ctx_tgt);
|
||||||
|
|
||||||
|
llama_sampling_free(ctx_sampling);
|
||||||
|
for (int s = 0; s < n_seq_dft; ++s) {
|
||||||
|
llama_sampling_free(drafts[s].ctx_sampling);
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_batch_free(batch_dft);
|
||||||
|
|
||||||
llama_free(ctx_tgt);
|
llama_free(ctx_tgt);
|
||||||
llama_free_model(model_tgt);
|
llama_free_model(model_tgt);
|
||||||
|
|
||||||
llama_free(ctx_dft);
|
llama_free(ctx_dft);
|
||||||
llama_free_model(model_dft);
|
llama_free_model(model_dft);
|
||||||
|
|
||||||
if (grammar_dft != NULL) {
|
|
||||||
llama_grammar_free(grammar_dft);
|
|
||||||
llama_grammar_free(grammar_tgt);
|
|
||||||
}
|
|
||||||
llama_backend_free();
|
llama_backend_free();
|
||||||
|
|
||||||
fprintf(stderr, "\n\n");
|
fprintf(stderr, "\n\n");
|
||||||
|
|
|
@ -253,13 +253,14 @@ static void init_model(struct my_llama_model * model) {
|
||||||
set_param_model(model);
|
set_param_model(model);
|
||||||
|
|
||||||
// measure data size
|
// measure data size
|
||||||
struct ggml_allocr * alloc = NULL;
|
size_t size = 0;
|
||||||
alloc = ggml_allocr_new_measure(tensor_alignment);
|
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||||
alloc_model(alloc, model);
|
size += GGML_PAD(ggml_nbytes(t), tensor_alignment);
|
||||||
|
}
|
||||||
|
|
||||||
// allocate data
|
// allocate data
|
||||||
model->data.resize(ggml_allocr_max_size(alloc) + tensor_alignment);
|
struct ggml_allocr * alloc = NULL;
|
||||||
ggml_allocr_free(alloc);
|
model->data.resize(size + tensor_alignment);
|
||||||
alloc = ggml_allocr_new(model->data.data(), model->data.size(), tensor_alignment);
|
alloc = ggml_allocr_new(model->data.data(), model->data.size(), tensor_alignment);
|
||||||
alloc_model(alloc, model);
|
alloc_model(alloc, model);
|
||||||
ggml_allocr_free(alloc);
|
ggml_allocr_free(alloc);
|
||||||
|
@ -1094,11 +1095,9 @@ int main(int argc, char ** argv) {
|
||||||
struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
|
struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
|
||||||
|
|
||||||
// measure required memory for input tensors
|
// measure required memory for input tensors
|
||||||
alloc = ggml_allocr_new_measure(tensor_alignment);
|
size_t max_input_size = GGML_PAD(ggml_nbytes(tokens_input), tensor_alignment) +
|
||||||
ggml_allocr_alloc(alloc, tokens_input);
|
GGML_PAD(ggml_nbytes(target_probs), tensor_alignment) +
|
||||||
ggml_allocr_alloc(alloc, target_probs);
|
tensor_alignment;
|
||||||
size_t max_input_size = ggml_allocr_max_size(alloc) + tensor_alignment;
|
|
||||||
ggml_allocr_free(alloc);
|
|
||||||
printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
|
printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
|
||||||
|
|
||||||
// allocate input tensors
|
// allocate input tensors
|
||||||
|
|
47
ggml-metal.m
47
ggml-metal.m
|
@ -73,6 +73,8 @@ struct ggml_metal_context {
|
||||||
GGML_METAL_DECL_KERNEL(get_rows_f16);
|
GGML_METAL_DECL_KERNEL(get_rows_f16);
|
||||||
GGML_METAL_DECL_KERNEL(get_rows_q4_0);
|
GGML_METAL_DECL_KERNEL(get_rows_q4_0);
|
||||||
GGML_METAL_DECL_KERNEL(get_rows_q4_1);
|
GGML_METAL_DECL_KERNEL(get_rows_q4_1);
|
||||||
|
GGML_METAL_DECL_KERNEL(get_rows_q5_0);
|
||||||
|
GGML_METAL_DECL_KERNEL(get_rows_q5_1);
|
||||||
GGML_METAL_DECL_KERNEL(get_rows_q8_0);
|
GGML_METAL_DECL_KERNEL(get_rows_q8_0);
|
||||||
GGML_METAL_DECL_KERNEL(get_rows_q2_K);
|
GGML_METAL_DECL_KERNEL(get_rows_q2_K);
|
||||||
GGML_METAL_DECL_KERNEL(get_rows_q3_K);
|
GGML_METAL_DECL_KERNEL(get_rows_q3_K);
|
||||||
|
@ -87,6 +89,8 @@ struct ggml_metal_context {
|
||||||
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_l4);
|
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_l4);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mv_q4_0_f32);
|
GGML_METAL_DECL_KERNEL(mul_mv_q4_0_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mv_q4_1_f32);
|
GGML_METAL_DECL_KERNEL(mul_mv_q4_1_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mv_q5_0_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mv_q5_1_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mv_q8_0_f32);
|
GGML_METAL_DECL_KERNEL(mul_mv_q8_0_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mv_q2_K_f32);
|
GGML_METAL_DECL_KERNEL(mul_mv_q2_K_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mv_q3_K_f32);
|
GGML_METAL_DECL_KERNEL(mul_mv_q3_K_f32);
|
||||||
|
@ -97,6 +101,8 @@ struct ggml_metal_context {
|
||||||
GGML_METAL_DECL_KERNEL(mul_mm_f16_f32);
|
GGML_METAL_DECL_KERNEL(mul_mm_f16_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32);
|
GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mm_q4_1_f32);
|
GGML_METAL_DECL_KERNEL(mul_mm_q4_1_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mm_q5_0_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mm_q5_1_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mm_q8_0_f32);
|
GGML_METAL_DECL_KERNEL(mul_mm_q8_0_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mm_q2_K_f32);
|
GGML_METAL_DECL_KERNEL(mul_mm_q2_K_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mm_q3_K_f32);
|
GGML_METAL_DECL_KERNEL(mul_mm_q3_K_f32);
|
||||||
|
@ -254,6 +260,8 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||||
GGML_METAL_ADD_KERNEL(get_rows_f16);
|
GGML_METAL_ADD_KERNEL(get_rows_f16);
|
||||||
GGML_METAL_ADD_KERNEL(get_rows_q4_0);
|
GGML_METAL_ADD_KERNEL(get_rows_q4_0);
|
||||||
GGML_METAL_ADD_KERNEL(get_rows_q4_1);
|
GGML_METAL_ADD_KERNEL(get_rows_q4_1);
|
||||||
|
GGML_METAL_ADD_KERNEL(get_rows_q5_0);
|
||||||
|
GGML_METAL_ADD_KERNEL(get_rows_q5_1);
|
||||||
GGML_METAL_ADD_KERNEL(get_rows_q8_0);
|
GGML_METAL_ADD_KERNEL(get_rows_q8_0);
|
||||||
GGML_METAL_ADD_KERNEL(get_rows_q2_K);
|
GGML_METAL_ADD_KERNEL(get_rows_q2_K);
|
||||||
GGML_METAL_ADD_KERNEL(get_rows_q3_K);
|
GGML_METAL_ADD_KERNEL(get_rows_q3_K);
|
||||||
|
@ -268,6 +276,8 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||||
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_l4);
|
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_l4);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mv_q4_0_f32);
|
GGML_METAL_ADD_KERNEL(mul_mv_q4_0_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mv_q4_1_f32);
|
GGML_METAL_ADD_KERNEL(mul_mv_q4_1_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mv_q5_0_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mv_q5_1_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mv_q8_0_f32);
|
GGML_METAL_ADD_KERNEL(mul_mv_q8_0_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mv_q2_K_f32);
|
GGML_METAL_ADD_KERNEL(mul_mv_q2_K_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mv_q3_K_f32);
|
GGML_METAL_ADD_KERNEL(mul_mv_q3_K_f32);
|
||||||
|
@ -278,8 +288,10 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||||
GGML_METAL_ADD_KERNEL(mul_mm_f32_f32);
|
GGML_METAL_ADD_KERNEL(mul_mm_f32_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mm_f16_f32);
|
GGML_METAL_ADD_KERNEL(mul_mm_f16_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32);
|
GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mm_q8_0_f32);
|
|
||||||
GGML_METAL_ADD_KERNEL(mul_mm_q4_1_f32);
|
GGML_METAL_ADD_KERNEL(mul_mm_q4_1_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_q5_0_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_q5_1_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_q8_0_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mm_q2_K_f32);
|
GGML_METAL_ADD_KERNEL(mul_mm_q2_K_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mm_q3_K_f32);
|
GGML_METAL_ADD_KERNEL(mul_mm_q3_K_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32);
|
GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32);
|
||||||
|
@ -346,6 +358,8 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
||||||
GGML_METAL_DEL_KERNEL(get_rows_f16);
|
GGML_METAL_DEL_KERNEL(get_rows_f16);
|
||||||
GGML_METAL_DEL_KERNEL(get_rows_q4_0);
|
GGML_METAL_DEL_KERNEL(get_rows_q4_0);
|
||||||
GGML_METAL_DEL_KERNEL(get_rows_q4_1);
|
GGML_METAL_DEL_KERNEL(get_rows_q4_1);
|
||||||
|
GGML_METAL_DEL_KERNEL(get_rows_q5_0);
|
||||||
|
GGML_METAL_DEL_KERNEL(get_rows_q5_1);
|
||||||
GGML_METAL_DEL_KERNEL(get_rows_q8_0);
|
GGML_METAL_DEL_KERNEL(get_rows_q8_0);
|
||||||
GGML_METAL_DEL_KERNEL(get_rows_q2_K);
|
GGML_METAL_DEL_KERNEL(get_rows_q2_K);
|
||||||
GGML_METAL_DEL_KERNEL(get_rows_q3_K);
|
GGML_METAL_DEL_KERNEL(get_rows_q3_K);
|
||||||
|
@ -360,6 +374,8 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
||||||
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_l4);
|
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_l4);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mv_q4_0_f32);
|
GGML_METAL_DEL_KERNEL(mul_mv_q4_0_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mv_q4_1_f32);
|
GGML_METAL_DEL_KERNEL(mul_mv_q4_1_f32);
|
||||||
|
GGML_METAL_DEL_KERNEL(mul_mv_q5_0_f32);
|
||||||
|
GGML_METAL_DEL_KERNEL(mul_mv_q5_1_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mv_q8_0_f32);
|
GGML_METAL_DEL_KERNEL(mul_mv_q8_0_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mv_q2_K_f32);
|
GGML_METAL_DEL_KERNEL(mul_mv_q2_K_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mv_q3_K_f32);
|
GGML_METAL_DEL_KERNEL(mul_mv_q3_K_f32);
|
||||||
|
@ -370,8 +386,10 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
||||||
GGML_METAL_DEL_KERNEL(mul_mm_f32_f32);
|
GGML_METAL_DEL_KERNEL(mul_mm_f32_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mm_f16_f32);
|
GGML_METAL_DEL_KERNEL(mul_mm_f16_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mm_q4_0_f32);
|
GGML_METAL_DEL_KERNEL(mul_mm_q4_0_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mm_q8_0_f32);
|
|
||||||
GGML_METAL_DEL_KERNEL(mul_mm_q4_1_f32);
|
GGML_METAL_DEL_KERNEL(mul_mm_q4_1_f32);
|
||||||
|
GGML_METAL_DEL_KERNEL(mul_mm_q5_0_f32);
|
||||||
|
GGML_METAL_DEL_KERNEL(mul_mm_q5_1_f32);
|
||||||
|
GGML_METAL_DEL_KERNEL(mul_mm_q8_0_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mm_q2_K_f32);
|
GGML_METAL_DEL_KERNEL(mul_mm_q2_K_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mm_q3_K_f32);
|
GGML_METAL_DEL_KERNEL(mul_mm_q3_K_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mm_q4_K_f32);
|
GGML_METAL_DEL_KERNEL(mul_mm_q4_K_f32);
|
||||||
|
@ -1052,6 +1070,8 @@ void ggml_metal_graph_compute(
|
||||||
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break;
|
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break;
|
||||||
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_0_f32]; break;
|
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_0_f32]; break;
|
||||||
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_1_f32]; break;
|
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_1_f32]; break;
|
||||||
|
case GGML_TYPE_Q5_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_0_f32]; break;
|
||||||
|
case GGML_TYPE_Q5_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_1_f32]; break;
|
||||||
case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q8_0_f32]; break;
|
case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q8_0_f32]; break;
|
||||||
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q2_K_f32]; break;
|
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q2_K_f32]; break;
|
||||||
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q3_K_f32]; break;
|
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q3_K_f32]; break;
|
||||||
|
@ -1121,6 +1141,24 @@ void ggml_metal_graph_compute(
|
||||||
nth1 = 8;
|
nth1 = 8;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_1_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_1_f32];
|
||||||
} break;
|
} break;
|
||||||
|
case GGML_TYPE_Q5_0:
|
||||||
|
{
|
||||||
|
GGML_ASSERT(ne02 == 1);
|
||||||
|
GGML_ASSERT(ne12 == 1);
|
||||||
|
|
||||||
|
nth0 = 8;
|
||||||
|
nth1 = 8;
|
||||||
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_0_f32];
|
||||||
|
} break;
|
||||||
|
case GGML_TYPE_Q5_1:
|
||||||
|
{
|
||||||
|
GGML_ASSERT(ne02 == 1);
|
||||||
|
GGML_ASSERT(ne12 == 1);
|
||||||
|
|
||||||
|
nth0 = 8;
|
||||||
|
nth1 = 8;
|
||||||
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_1_f32];
|
||||||
|
} break;
|
||||||
case GGML_TYPE_Q8_0:
|
case GGML_TYPE_Q8_0:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(ne02 == 1);
|
GGML_ASSERT(ne02 == 1);
|
||||||
|
@ -1201,7 +1239,8 @@ void ggml_metal_graph_compute(
|
||||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16];
|
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16];
|
||||||
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:17];
|
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:17];
|
||||||
|
|
||||||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q8_0 ||
|
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
|
||||||
|
src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 ||
|
||||||
src0t == GGML_TYPE_Q2_K) { // || src0t == GGML_TYPE_Q4_K) {
|
src0t == GGML_TYPE_Q2_K) { // || src0t == GGML_TYPE_Q4_K) {
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
}
|
}
|
||||||
|
@ -1233,6 +1272,8 @@ void ggml_metal_graph_compute(
|
||||||
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
|
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
|
||||||
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
|
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
|
||||||
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
|
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
|
||||||
|
case GGML_TYPE_Q5_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_0]; break;
|
||||||
|
case GGML_TYPE_Q5_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_1]; break;
|
||||||
case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q8_0]; break;
|
case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q8_0]; break;
|
||||||
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_K]; break;
|
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_K]; break;
|
||||||
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_K]; break;
|
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_K]; break;
|
||||||
|
|
163
ggml-metal.metal
163
ggml-metal.metal
|
@ -18,6 +18,21 @@ typedef struct {
|
||||||
uint8_t qs[QK4_1 / 2]; // nibbles / quants
|
uint8_t qs[QK4_1 / 2]; // nibbles / quants
|
||||||
} block_q4_1;
|
} block_q4_1;
|
||||||
|
|
||||||
|
#define QK5_0 32
|
||||||
|
typedef struct {
|
||||||
|
half d; // delta
|
||||||
|
uint8_t qh[4]; // 5-th bit of quants
|
||||||
|
uint8_t qs[QK5_0 / 2]; // nibbles / quants
|
||||||
|
} block_q5_0;
|
||||||
|
|
||||||
|
#define QK5_1 32
|
||||||
|
typedef struct {
|
||||||
|
half d; // delta
|
||||||
|
half m; // min
|
||||||
|
uint8_t qh[4]; // 5-th bit of quants
|
||||||
|
uint8_t qs[QK5_1 / 2]; // nibbles / quants
|
||||||
|
} block_q5_1;
|
||||||
|
|
||||||
#define QK8_0 32
|
#define QK8_0 32
|
||||||
typedef struct {
|
typedef struct {
|
||||||
half d; // delta
|
half d; // delta
|
||||||
|
@ -399,8 +414,11 @@ kernel void kernel_rms_norm(
|
||||||
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
|
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
|
||||||
inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) {
|
inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) {
|
||||||
float d = qb_curr->d;
|
float d = qb_curr->d;
|
||||||
|
|
||||||
float2 acc = 0.f;
|
float2 acc = 0.f;
|
||||||
|
|
||||||
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 1 + il/2);
|
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 1 + il/2);
|
||||||
|
|
||||||
for (int i = 0; i < 8; i+=2) {
|
for (int i = 0; i < 8; i+=2) {
|
||||||
acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
|
acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
|
||||||
+ yl[i + 1] * (qs[i / 2] & 0x0F00);
|
+ yl[i + 1] * (qs[i / 2] & 0x0F00);
|
||||||
|
@ -417,8 +435,11 @@ inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thre
|
||||||
inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) {
|
inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) {
|
||||||
float d = qb_curr->d;
|
float d = qb_curr->d;
|
||||||
float m = qb_curr->m;
|
float m = qb_curr->m;
|
||||||
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 2 + il/2);
|
|
||||||
float2 acc = 0.f;
|
float2 acc = 0.f;
|
||||||
|
|
||||||
|
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 2 + il/2);
|
||||||
|
|
||||||
for (int i = 0; i < 8; i+=2) {
|
for (int i = 0; i < 8; i+=2) {
|
||||||
acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
|
acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
|
||||||
+ yl[i + 1] * (qs[i / 2] & 0x0F00);
|
+ yl[i + 1] * (qs[i / 2] & 0x0F00);
|
||||||
|
@ -428,6 +449,49 @@ inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thre
|
||||||
return d * (acc[0] + acc[1]) + sumy * m;
|
return d * (acc[0] + acc[1]) + sumy * m;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// function for calculate inner product between half a q5_0 block and 16 floats (yl), sumy is SUM(yl[i])
|
||||||
|
// il indicates where the q5 quants begin (0 or QK5_0/4)
|
||||||
|
// we assume that the yl's have been multiplied with the appropriate scale factor
|
||||||
|
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
|
||||||
|
inline float block_q_n_dot_y(device const block_q5_0 * qb_curr, float sumy, thread float * yl, int il) {
|
||||||
|
float d = qb_curr->d;
|
||||||
|
|
||||||
|
float2 acc = 0.f;
|
||||||
|
|
||||||
|
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 3 + il/2);
|
||||||
|
const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
|
||||||
|
|
||||||
|
for (int i = 0; i < 8; i+=2) {
|
||||||
|
acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
|
||||||
|
+ yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
|
||||||
|
acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
|
||||||
|
+ yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
|
||||||
|
}
|
||||||
|
return d * (sumy * -16.f + acc[0] + acc[1]);
|
||||||
|
}
|
||||||
|
|
||||||
|
// function for calculate inner product between half a q5_1 block and 16 floats (yl), sumy is SUM(yl[i])
|
||||||
|
// il indicates where the q5 quants begin (0 or QK5_1/4)
|
||||||
|
// we assume that the yl's have been multiplied with the appropriate scale factor
|
||||||
|
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
|
||||||
|
inline float block_q_n_dot_y(device const block_q5_1 * qb_curr, float sumy, thread float * yl, int il) {
|
||||||
|
float d = qb_curr->d;
|
||||||
|
float m = qb_curr->m;
|
||||||
|
|
||||||
|
float2 acc = 0.f;
|
||||||
|
|
||||||
|
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 4 + il/2);
|
||||||
|
const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
|
||||||
|
|
||||||
|
for (int i = 0; i < 8; i+=2) {
|
||||||
|
acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
|
||||||
|
+ yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
|
||||||
|
acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
|
||||||
|
+ yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
|
||||||
|
}
|
||||||
|
return d * (acc[0] + acc[1]) + sumy * m;
|
||||||
|
}
|
||||||
|
|
||||||
// putting them in the kernel cause a significant performance penalty
|
// putting them in the kernel cause a significant performance penalty
|
||||||
#define N_DST 4 // each SIMD group works on 4 rows
|
#define N_DST 4 // each SIMD group works on 4 rows
|
||||||
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
|
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
|
||||||
|
@ -525,6 +589,43 @@ kernel void kernel_mul_mv_q4_1_f32(
|
||||||
mul_vec_q_n_f32<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg);
|
mul_vec_q_n_f32<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
kernel void kernel_mul_mv_q5_0_f32(
|
||||||
|
device const void * src0,
|
||||||
|
device const float * src1,
|
||||||
|
device float * dst,
|
||||||
|
constant int64_t & ne00,
|
||||||
|
constant int64_t & ne01[[buffer(4)]],
|
||||||
|
constant int64_t & ne02[[buffer(5)]],
|
||||||
|
constant int64_t & ne10[[buffer(9)]],
|
||||||
|
constant int64_t & ne12[[buffer(11)]],
|
||||||
|
constant int64_t & ne0[[buffer(15)]],
|
||||||
|
constant int64_t & ne1[[buffer(16)]],
|
||||||
|
constant uint & gqa[[buffer(17)]],
|
||||||
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||||
|
uint tiisg[[thread_index_in_simdgroup]],
|
||||||
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||||
|
mul_vec_q_n_f32<block_q5_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg);
|
||||||
|
}
|
||||||
|
|
||||||
|
kernel void kernel_mul_mv_q5_1_f32(
|
||||||
|
device const void * src0,
|
||||||
|
device const float * src1,
|
||||||
|
device float * dst,
|
||||||
|
constant int64_t & ne00,
|
||||||
|
constant int64_t & ne01[[buffer(4)]],
|
||||||
|
constant int64_t & ne02[[buffer(5)]],
|
||||||
|
constant int64_t & ne10[[buffer(9)]],
|
||||||
|
constant int64_t & ne12[[buffer(11)]],
|
||||||
|
constant int64_t & ne0[[buffer(15)]],
|
||||||
|
constant int64_t & ne1[[buffer(16)]],
|
||||||
|
constant uint & gqa[[buffer(17)]],
|
||||||
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||||
|
uint tiisg[[thread_index_in_simdgroup]],
|
||||||
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||||
|
mul_vec_q_n_f32<block_q5_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
#define NB_Q8_0 8
|
#define NB_Q8_0 8
|
||||||
|
|
||||||
kernel void kernel_mul_mv_q8_0_f32(
|
kernel void kernel_mul_mv_q8_0_f32(
|
||||||
|
@ -2195,6 +2296,62 @@ void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template <typename type4x4>
|
||||||
|
void dequantize_q5_0(device const block_q5_0 *xb, short il, thread type4x4 & reg) {
|
||||||
|
device const uint16_t * qs = ((device const uint16_t *)xb + 3);
|
||||||
|
const float d = xb->d;
|
||||||
|
const float md = -16.h * xb->d;
|
||||||
|
const ushort mask = il ? 0x00F0 : 0x000F;
|
||||||
|
|
||||||
|
const uint32_t qh = *((device const uint32_t *)xb->qh);
|
||||||
|
|
||||||
|
const int x_mv = il ? 4 : 0;
|
||||||
|
|
||||||
|
const int gh_mv = il ? 12 : 0;
|
||||||
|
const int gh_bk = il ? 0 : 4;
|
||||||
|
|
||||||
|
for (int i = 0; i < 8; i++) {
|
||||||
|
// extract the 5-th bits for x0 and x1
|
||||||
|
const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
|
||||||
|
const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
|
||||||
|
|
||||||
|
// combine the 4-bits from qs with the 5th bit
|
||||||
|
const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
|
||||||
|
const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
|
||||||
|
|
||||||
|
reg[i/2][2*(i%2)+0] = d * x0 + md;
|
||||||
|
reg[i/2][2*(i%2)+1] = d * x1 + md;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename type4x4>
|
||||||
|
void dequantize_q5_1(device const block_q5_1 *xb, short il, thread type4x4 & reg) {
|
||||||
|
device const uint16_t * qs = ((device const uint16_t *)xb + 4);
|
||||||
|
const float d = xb->d;
|
||||||
|
const float m = xb->m;
|
||||||
|
const ushort mask = il ? 0x00F0 : 0x000F;
|
||||||
|
|
||||||
|
const uint32_t qh = *((device const uint32_t *)xb->qh);
|
||||||
|
|
||||||
|
const int x_mv = il ? 4 : 0;
|
||||||
|
|
||||||
|
const int gh_mv = il ? 12 : 0;
|
||||||
|
const int gh_bk = il ? 0 : 4;
|
||||||
|
|
||||||
|
for (int i = 0; i < 8; i++) {
|
||||||
|
// extract the 5-th bits for x0 and x1
|
||||||
|
const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
|
||||||
|
const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
|
||||||
|
|
||||||
|
// combine the 4-bits from qs with the 5th bit
|
||||||
|
const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
|
||||||
|
const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
|
||||||
|
|
||||||
|
reg[i/2][2*(i%2)+0] = d * x0 + m;
|
||||||
|
reg[i/2][2*(i%2)+1] = d * x1 + m;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
template <typename type4x4>
|
template <typename type4x4>
|
||||||
void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) {
|
void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) {
|
||||||
device const int8_t * qs = ((device const int8_t *)xb->qs);
|
device const int8_t * qs = ((device const int8_t *)xb->qs);
|
||||||
|
@ -2536,6 +2693,8 @@ template [[host_name("kernel_get_rows_f32")]] kernel get_rows_t kernel_get_rows
|
||||||
template [[host_name("kernel_get_rows_f16")]] kernel get_rows_t kernel_get_rows<half4x4, 1, dequantize_f16>;
|
template [[host_name("kernel_get_rows_f16")]] kernel get_rows_t kernel_get_rows<half4x4, 1, dequantize_f16>;
|
||||||
template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_t kernel_get_rows<block_q4_0, 2, dequantize_q4_0>;
|
template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_t kernel_get_rows<block_q4_0, 2, dequantize_q4_0>;
|
||||||
template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_t kernel_get_rows<block_q4_1, 2, dequantize_q4_1>;
|
template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_t kernel_get_rows<block_q4_1, 2, dequantize_q4_1>;
|
||||||
|
template [[host_name("kernel_get_rows_q5_0")]] kernel get_rows_t kernel_get_rows<block_q5_0, 2, dequantize_q5_0>;
|
||||||
|
template [[host_name("kernel_get_rows_q5_1")]] kernel get_rows_t kernel_get_rows<block_q5_1, 2, dequantize_q5_1>;
|
||||||
template [[host_name("kernel_get_rows_q8_0")]] kernel get_rows_t kernel_get_rows<block_q8_0, 2, dequantize_q8_0>;
|
template [[host_name("kernel_get_rows_q8_0")]] kernel get_rows_t kernel_get_rows<block_q8_0, 2, dequantize_q8_0>;
|
||||||
template [[host_name("kernel_get_rows_q2_K")]] kernel get_rows_t kernel_get_rows<block_q2_K, QK_NL, dequantize_q2_K>;
|
template [[host_name("kernel_get_rows_q2_K")]] kernel get_rows_t kernel_get_rows<block_q2_K, QK_NL, dequantize_q2_K>;
|
||||||
template [[host_name("kernel_get_rows_q3_K")]] kernel get_rows_t kernel_get_rows<block_q3_K, QK_NL, dequantize_q3_K>;
|
template [[host_name("kernel_get_rows_q3_K")]] kernel get_rows_t kernel_get_rows<block_q3_K, QK_NL, dequantize_q3_K>;
|
||||||
|
@ -2564,6 +2723,8 @@ template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm<f
|
||||||
template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half4x4, 1, dequantize_f16>;
|
template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half4x4, 1, dequantize_f16>;
|
||||||
template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_0, 2, dequantize_q4_0>;
|
template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_0, 2, dequantize_q4_0>;
|
||||||
template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_1, 2, dequantize_q4_1>;
|
template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_1, 2, dequantize_q4_1>;
|
||||||
|
template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_0, 2, dequantize_q5_0>;
|
||||||
|
template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_1, 2, dequantize_q5_1>;
|
||||||
template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q8_0, 2, dequantize_q8_0>;
|
template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q8_0, 2, dequantize_q8_0>;
|
||||||
template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q2_K, QK_NL, dequantize_q2_K>;
|
template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q2_K, QK_NL, dequantize_q2_K>;
|
||||||
template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q3_K, QK_NL, dequantize_q3_K>;
|
template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q3_K, QK_NL, dequantize_q3_K>;
|
||||||
|
|
410
ggml-opencl.cpp
410
ggml-opencl.cpp
|
@ -1395,75 +1395,46 @@ static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1,
|
||||||
const int64_t ne01 = src0->ne[1];
|
const int64_t ne01 = src0->ne[1];
|
||||||
const int64_t ne02 = src0->ne[2];
|
const int64_t ne02 = src0->ne[2];
|
||||||
const int64_t ne03 = src0->ne[3];
|
const int64_t ne03 = src0->ne[3];
|
||||||
const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
|
|
||||||
const int64_t ne10 = src1->ne[0];
|
const int64_t ne10 = src1->ne[0];
|
||||||
const int64_t ne11 = src1->ne[1];
|
const int64_t ne11 = src1->ne[1];
|
||||||
const int64_t ne12 = src1->ne[2];
|
const int64_t ne12 = src1->ne[2];
|
||||||
const int64_t ne13 = src1->ne[3];
|
const int64_t ne13 = src1->ne[3];
|
||||||
const int64_t nb10 = src1->nb[0];
|
|
||||||
const int nb2 = dst->nb[2];
|
const int nb2 = dst->nb[2];
|
||||||
const int nb3 = dst->nb[3];
|
const int nb3 = dst->nb[3];
|
||||||
size_t x_size;
|
size_t x_size;
|
||||||
size_t d_size;
|
size_t d_size;
|
||||||
|
|
||||||
cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size); // src0
|
cl_mem d_X = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &x_size); // src0
|
||||||
cl_mem d_Y = (cl_mem) src1->extra; // src1 is already on device, broadcasted.
|
cl_mem d_Y = (cl_mem) src1->extra; // src1 is already on device, broadcasted.
|
||||||
cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size); // dst
|
cl_mem d_D = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &d_size); // dst
|
||||||
|
|
||||||
|
|
||||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||||
const int i0 = i03*ne02 + i02;
|
|
||||||
|
|
||||||
cl_event ev;
|
cl_event ev;
|
||||||
|
|
||||||
// copy src0 to device
|
// copy src0 to device
|
||||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, i0, src0, i03, i02, &ev));
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, &ev));
|
||||||
|
|
||||||
if (nb10 == sizeof(float)) {
|
const int64_t i13 = i03%ne13;
|
||||||
// Contiguous, avoid overhead from queueing many kernel runs
|
const int64_t i12 = i02%ne12;
|
||||||
const int64_t i13 = i03%ne13;
|
const int i1 = i13*ne12*ne11 + i12*ne11;
|
||||||
const int64_t i12 = i02%ne12;
|
|
||||||
const int i1 = i13*ne12*ne11 + i12*ne11;
|
|
||||||
|
|
||||||
cl_int x_offset = 0;
|
cl_int x_offset = 0;
|
||||||
cl_int y_offset = i1*ne10;
|
cl_int y_offset = i1*ne10;
|
||||||
cl_int d_offset = 0;
|
cl_int d_offset = 0;
|
||||||
|
|
||||||
size_t global = ne00 * ne01;
|
size_t global = ne00 * ne01;
|
||||||
cl_int ky = ne10;
|
cl_int ky = ne10 * ne11;
|
||||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
|
|
||||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
|
|
||||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
|
|
||||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
|
|
||||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
|
|
||||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
|
|
||||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
|
|
||||||
CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
|
|
||||||
} else {
|
|
||||||
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
|
||||||
const int64_t i13 = i03%ne13;
|
|
||||||
const int64_t i12 = i02%ne12;
|
|
||||||
const int64_t i11 = i01%ne11;
|
|
||||||
const int i1 = i13*ne12*ne11 + i12*ne11 + i11;
|
|
||||||
|
|
||||||
cl_int x_offset = i01*ne00;
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
|
||||||
cl_int y_offset = i1*ne10;
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
|
||||||
cl_int d_offset = i01*ne00;
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
|
||||||
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
|
||||||
// compute
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
|
||||||
size_t global = ne00;
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
|
||||||
cl_int ky = ne10;
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
|
||||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
|
CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
|
||||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
|
|
||||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
|
|
||||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
|
|
||||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
|
|
||||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
|
|
||||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
|
|
||||||
CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
CL_CHECK(clReleaseEvent(ev));
|
CL_CHECK(clReleaseEvent(ev));
|
||||||
CL_CHECK(clFinish(queue));
|
CL_CHECK(clFinish(queue));
|
||||||
|
@ -1518,46 +1489,45 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
||||||
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
||||||
|
|
||||||
size_t x_offset = 0;
|
size_t x_offset = 0;
|
||||||
int64_t pi02 = -1;
|
|
||||||
int64_t pi03 = -1;
|
|
||||||
|
|
||||||
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||||
int64_t i03 = i13 / r3;
|
// TODO: copy src0 here when r3>1
|
||||||
|
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
||||||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||||
|
if (src0->backend == GGML_BACKEND_GPU) {
|
||||||
|
x_offset = (i03 * ne02 + i02) * x_ne;
|
||||||
|
} else {
|
||||||
|
// copy src0 to device
|
||||||
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
||||||
|
}
|
||||||
|
|
||||||
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
|
||||||
int64_t i02 = i12 / r2;
|
// copy src1 to device
|
||||||
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
|
||||||
|
|
||||||
// copy data to device
|
CL_CHECK(clFinish(queue));
|
||||||
if (src0->backend == GGML_BACKEND_GPU) {
|
|
||||||
x_offset = (i03 * ne02 + i02) * x_ne;
|
// compute
|
||||||
} else if (i02 != pi02 || i03 != pi03) {
|
cl_event ev_sgemm;
|
||||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
|
||||||
pi02 = i02;
|
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
||||||
pi03 = i03;
|
ne01, ne11, ne10,
|
||||||
|
alpha,
|
||||||
|
d_X, x_offset, ne00,
|
||||||
|
d_Y, 0, ne10,
|
||||||
|
beta,
|
||||||
|
d_D, 0, ne01,
|
||||||
|
&queue, &ev_sgemm);
|
||||||
|
|
||||||
|
if (status != clblast::StatusCode::kSuccess) {
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
}
|
||||||
|
|
||||||
|
// copy dst to host
|
||||||
|
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||||
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
|
|
||||||
|
|
||||||
CL_CHECK(clFinish(queue));
|
|
||||||
|
|
||||||
// compute
|
|
||||||
cl_event ev_sgemm;
|
|
||||||
clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
|
|
||||||
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
|
||||||
ne01, ne11, ne10,
|
|
||||||
alpha,
|
|
||||||
d_X, x_offset, ne00,
|
|
||||||
d_Y, 0, ne10,
|
|
||||||
beta,
|
|
||||||
d_D, 0, ne01,
|
|
||||||
&queue, &ev_sgemm);
|
|
||||||
|
|
||||||
if (status != clblast::StatusCode::kSuccess) {
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
}
|
|
||||||
|
|
||||||
// copy dst to host
|
|
||||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
|
||||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1568,7 +1538,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
||||||
ggml_cl_pool_free(d_D, d_size);
|
ggml_cl_pool_free(d_D, d_size);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
|
static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
|
||||||
GGML_ASSERT(fp16_support);
|
GGML_ASSERT(fp16_support);
|
||||||
|
|
||||||
const int64_t ne00 = src0->ne[0];
|
const int64_t ne00 = src0->ne[0];
|
||||||
|
@ -1598,6 +1568,10 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
||||||
const int y_ne = ne11 * ne10;
|
const int y_ne = ne11 * ne10;
|
||||||
const int d_ne = ne11 * ne01;
|
const int d_ne = ne11 * ne01;
|
||||||
|
|
||||||
|
GGML_ASSERT(wsize >= sizeof(ggml_fp16_t) * y_ne);
|
||||||
|
GGML_ASSERT(wsize >= sizeof(ggml_fp16_t) * d_ne);
|
||||||
|
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata;
|
||||||
|
|
||||||
size_t x_size;
|
size_t x_size;
|
||||||
size_t y_size;
|
size_t y_size;
|
||||||
size_t d_size;
|
size_t d_size;
|
||||||
|
@ -1614,74 +1588,70 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
||||||
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
|
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
|
||||||
|
|
||||||
size_t x_offset = 0;
|
size_t x_offset = 0;
|
||||||
int64_t pi02 = -1;
|
|
||||||
int64_t pi03 = -1;
|
|
||||||
|
|
||||||
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||||
int64_t i03 = i13 / r3;
|
// TODO: copy src0 here when r3>1
|
||||||
|
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
||||||
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||||
int64_t i02 = i12 / r2;
|
if (src0->backend == GGML_BACKEND_GPU) {
|
||||||
|
x_offset = (i03 * ne02 + i02) * x_ne;
|
||||||
// copy src0 to device
|
} else {
|
||||||
if (src0->backend == GGML_BACKEND_GPU) {
|
// copy src0 to device
|
||||||
x_offset = (i03 * ne02 + i02) * x_ne;
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
||||||
} else if (i02 != pi02 || i03 != pi03) {
|
|
||||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
|
||||||
pi02 = i02;
|
|
||||||
pi03 = i03;
|
|
||||||
}
|
|
||||||
|
|
||||||
// convert src1 to fp16
|
|
||||||
// TODO: use multiple threads
|
|
||||||
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i13 * ne12 + i12);
|
|
||||||
char * src1i = (char *) src1->data + i13*nb13 + i12*nb12;
|
|
||||||
if (src1_cont_rows) {
|
|
||||||
if (src1_cont_cols) {
|
|
||||||
ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
|
|
||||||
}
|
}
|
||||||
else {
|
|
||||||
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
|
||||||
ggml_fp32_to_fp16_row((float *) (src1i + i11*nb11), tmp + i11*ne10, ne10);
|
// convert src1 to fp16
|
||||||
|
// TODO: use multiple threads
|
||||||
|
char * src1i = (char *) src1->data + i13*nb13 + i12*nb12;
|
||||||
|
if (src1_cont_rows) {
|
||||||
|
if (src1_cont_cols) {
|
||||||
|
ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
||||||
|
ggml_fp32_to_fp16_row((float *) (src1i + i11*nb11), tmp + i11*ne10, ne10);
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
else {
|
||||||
}
|
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
||||||
else {
|
for (int64_t i10 = 0; i10 < ne10; i10++) {
|
||||||
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
// very slow due to no inlining
|
||||||
for (int64_t i10 = 0; i10 < ne10; i10++) {
|
tmp[i11*ne10 + i10] = ggml_fp32_to_fp16(*(float *) (src1i + i11*nb11 + i10*nb10));
|
||||||
// very slow due to no inlining
|
}
|
||||||
tmp[i11*ne10 + i10] = ggml_fp32_to_fp16(*(float *) (src1i + i11*nb11 + i10*nb10));
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// copy src1 to device
|
||||||
|
CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL));
|
||||||
|
|
||||||
|
CL_CHECK(clFinish(queue));
|
||||||
|
|
||||||
|
// compute
|
||||||
|
cl_event ev_sgemm;
|
||||||
|
clblast::StatusCode status = clblast::Gemm<cl_half>(clblast::Layout::kColMajor,
|
||||||
|
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
||||||
|
ne01, ne11, ne10,
|
||||||
|
alpha,
|
||||||
|
d_X, x_offset, ne00,
|
||||||
|
d_Y, 0, ne10,
|
||||||
|
beta,
|
||||||
|
d_D, 0, ne01,
|
||||||
|
&queue, &ev_sgemm);
|
||||||
|
|
||||||
|
if (status != clblast::StatusCode::kSuccess) {
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
}
|
||||||
|
|
||||||
|
// copy dst to host, then convert to float
|
||||||
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
|
||||||
|
|
||||||
|
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||||
|
|
||||||
|
ggml_fp16_to_fp32_row(tmp, d, d_ne);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// copy src1 to device
|
|
||||||
CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL));
|
|
||||||
|
|
||||||
CL_CHECK(clFinish(queue));
|
|
||||||
|
|
||||||
// compute
|
|
||||||
cl_event ev_sgemm;
|
|
||||||
clblast::StatusCode status = clblast::Gemm<cl_half>(clblast::Layout::kColMajor,
|
|
||||||
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
|
||||||
ne01, ne11, ne10,
|
|
||||||
alpha,
|
|
||||||
d_X, x_offset, ne00,
|
|
||||||
d_Y, 0, ne10,
|
|
||||||
beta,
|
|
||||||
d_D, 0, ne01,
|
|
||||||
&queue, &ev_sgemm);
|
|
||||||
|
|
||||||
if (status != clblast::StatusCode::kSuccess) {
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
}
|
|
||||||
|
|
||||||
// copy dst to host, then convert to float
|
|
||||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
|
|
||||||
|
|
||||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
|
||||||
|
|
||||||
ggml_fp16_to_fp32_row(tmp, d, d_ne);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1744,85 +1714,81 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||||
size_t ev_idx = 0;
|
size_t ev_idx = 0;
|
||||||
std::vector<cl_event> events;
|
std::vector<cl_event> events;
|
||||||
|
|
||||||
int64_t pi02 = -1;
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||||
int64_t pi03 = -1;
|
// TODO: copy and dequantize src0 here when r3>1
|
||||||
|
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
||||||
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||||
int64_t i03 = i13 / r3;
|
// copy src0 to device if necessary
|
||||||
|
if (src0->backend == GGML_BACKEND_CPU) {
|
||||||
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
|
||||||
int64_t i02 = i12 / r2;
|
|
||||||
|
|
||||||
// copy src0 to device if necessary
|
|
||||||
if (src0->backend == GGML_BACKEND_CPU) {
|
|
||||||
if (i02 != pi02 || i03 != pi03) {
|
|
||||||
events.emplace_back();
|
events.emplace_back();
|
||||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
|
||||||
pi02 = i02;
|
} else if (src0->backend == GGML_BACKEND_GPU) {
|
||||||
pi03 = i03;
|
d_Q = (cl_mem) src0->extra;
|
||||||
}
|
} else {
|
||||||
} else if (src0->backend == GGML_BACKEND_GPU) {
|
|
||||||
d_Q = (cl_mem) src0->extra;
|
|
||||||
} else {
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
}
|
|
||||||
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
|
|
||||||
// copy src1 to device
|
|
||||||
events.emplace_back();
|
|
||||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, events.data() + ev_idx++));
|
|
||||||
|
|
||||||
// compute
|
|
||||||
const size_t global = ne01 * local;
|
|
||||||
const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
|
||||||
const cl_int ncols = ne00;
|
|
||||||
events.emplace_back();
|
|
||||||
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
|
|
||||||
CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
|
|
||||||
CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
|
|
||||||
CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
|
|
||||||
CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
|
|
||||||
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, &offset, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
|
|
||||||
} else { // general dequantization kernel + CLBlast matrix matrix multiplication
|
|
||||||
// convert src0 to fp32 on device
|
|
||||||
const size_t global = x_ne / global_denom;
|
|
||||||
const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
|
||||||
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
|
|
||||||
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
|
|
||||||
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, offset > 0 ? &offset : NULL, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
|
|
||||||
|
|
||||||
// copy src1 to device
|
|
||||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
|
|
||||||
|
|
||||||
events.emplace_back();
|
|
||||||
|
|
||||||
// wait for conversion
|
|
||||||
CL_CHECK(clFinish(queue));
|
|
||||||
|
|
||||||
// compute
|
|
||||||
clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
|
|
||||||
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
|
||||||
ne01, ne11, ne10,
|
|
||||||
alpha,
|
|
||||||
d_X, 0, ne00,
|
|
||||||
d_Y, 0, ne10,
|
|
||||||
beta,
|
|
||||||
d_D, 0, ne01,
|
|
||||||
&queue, events.data() + ev_idx++);
|
|
||||||
|
|
||||||
if (status != clblast::StatusCode::kSuccess) {
|
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
// copy dst to host
|
if (!mul_mat_vec) {
|
||||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
// convert src0 to fp32 on device
|
||||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
|
const size_t global = x_ne / global_denom;
|
||||||
for (auto *event : events) {
|
const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
||||||
clReleaseEvent(event);
|
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
|
||||||
}
|
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
|
||||||
|
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, &offset, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
|
||||||
|
}
|
||||||
|
|
||||||
ev_idx = 0;
|
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
|
||||||
events.clear();
|
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
|
||||||
|
// copy src1 to device
|
||||||
|
events.emplace_back();
|
||||||
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, events.data() + ev_idx++));
|
||||||
|
|
||||||
|
// compute
|
||||||
|
const size_t global = ne01 * local;
|
||||||
|
const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
||||||
|
const cl_int ncols = ne00;
|
||||||
|
events.emplace_back();
|
||||||
|
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
|
||||||
|
CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
|
||||||
|
CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
|
||||||
|
CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
|
||||||
|
CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
|
||||||
|
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, &offset, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
|
||||||
|
} else { // CLBlast matrix matrix multiplication
|
||||||
|
// copy src1 to device
|
||||||
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
|
||||||
|
|
||||||
|
// wait for conversion
|
||||||
|
CL_CHECK(clFinish(queue));
|
||||||
|
|
||||||
|
// compute
|
||||||
|
events.emplace_back();
|
||||||
|
clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
|
||||||
|
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
||||||
|
ne01, ne11, ne10,
|
||||||
|
alpha,
|
||||||
|
d_X, 0, ne00,
|
||||||
|
d_Y, 0, ne10,
|
||||||
|
beta,
|
||||||
|
d_D, 0, ne01,
|
||||||
|
&queue, events.data() + ev_idx++);
|
||||||
|
|
||||||
|
if (status != clblast::StatusCode::kSuccess) {
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// copy dst to host
|
||||||
|
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||||
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
|
||||||
|
for (auto *event : events) {
|
||||||
|
clReleaseEvent(event);
|
||||||
|
}
|
||||||
|
|
||||||
|
ev_idx = 0;
|
||||||
|
events.clear();
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1897,8 +1863,8 @@ void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor *
|
||||||
}
|
}
|
||||||
|
|
||||||
size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
||||||
if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
|
if (src0->type == GGML_TYPE_F16 && ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
|
||||||
return ggml_nelements(src1) * sizeof(ggml_fp16_t);
|
return sizeof(ggml_fp16_t) * std::max(src1->ne[0] * src1->ne[1], dst->ne[0] * dst->ne[1]);
|
||||||
}
|
}
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
22
ggml.c
22
ggml.c
|
@ -13623,7 +13623,7 @@ static void ggml_compute_forward_rope_f16(
|
||||||
dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
|
dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
|
||||||
dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
|
dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
|
||||||
}
|
}
|
||||||
} if (!is_neox) {
|
} else if (!is_neox) {
|
||||||
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
|
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
|
||||||
float cos_theta, sin_theta;
|
float cos_theta, sin_theta;
|
||||||
rope_yarn(
|
rope_yarn(
|
||||||
|
@ -19265,6 +19265,7 @@ void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
|
||||||
|
|
||||||
if (idx == -1) {
|
if (idx == -1) {
|
||||||
fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
|
fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
|
||||||
|
fclose(fout);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -20939,7 +20940,7 @@ struct gguf_kv {
|
||||||
};
|
};
|
||||||
|
|
||||||
struct gguf_header {
|
struct gguf_header {
|
||||||
uint32_t magic;
|
char magic[4];
|
||||||
uint32_t version;
|
uint32_t version;
|
||||||
uint64_t n_tensors; // GGUFv2
|
uint64_t n_tensors; // GGUFv2
|
||||||
uint64_t n_kv; // GGUFv2
|
uint64_t n_kv; // GGUFv2
|
||||||
|
@ -21009,7 +21010,7 @@ static bool gguf_fread_str_v1(FILE * file, struct gguf_str * p, size_t * offset)
|
||||||
struct gguf_context * gguf_init_empty(void) {
|
struct gguf_context * gguf_init_empty(void) {
|
||||||
struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
|
struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
|
||||||
|
|
||||||
ctx->header.magic = GGUF_MAGIC;
|
memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
|
||||||
ctx->header.version = GGUF_VERSION;
|
ctx->header.version = GGUF_VERSION;
|
||||||
ctx->header.n_tensors = 0;
|
ctx->header.n_tensors = 0;
|
||||||
ctx->header.n_kv = 0;
|
ctx->header.n_kv = 0;
|
||||||
|
@ -21035,16 +21036,18 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
||||||
// offset from start of file
|
// offset from start of file
|
||||||
size_t offset = 0;
|
size_t offset = 0;
|
||||||
|
|
||||||
uint32_t magic = 0;
|
char magic[4];
|
||||||
|
|
||||||
// check the magic before making allocations
|
// check the magic before making allocations
|
||||||
{
|
{
|
||||||
gguf_fread_el(file, &magic, sizeof(magic), &offset);
|
gguf_fread_el(file, &magic, sizeof(magic), &offset);
|
||||||
|
|
||||||
if (magic != GGUF_MAGIC) {
|
for (uint32_t i = 0; i < sizeof(magic); i++) {
|
||||||
fprintf(stderr, "%s: invalid magic number %08x\n", __func__, magic);
|
if (magic[i] != GGUF_MAGIC[i]) {
|
||||||
fclose(file);
|
fprintf(stderr, "%s: invalid magic characters %s.\n", __func__, magic);
|
||||||
return NULL;
|
fclose(file);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -21054,7 +21057,8 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
||||||
|
|
||||||
// read the header
|
// read the header
|
||||||
{
|
{
|
||||||
ctx->header.magic = magic;
|
strncpy(ctx->header.magic, magic, 4);
|
||||||
|
|
||||||
|
|
||||||
ctx->kv = NULL;
|
ctx->kv = NULL;
|
||||||
ctx->infos = NULL;
|
ctx->infos = NULL;
|
||||||
|
|
5
ggml.h
5
ggml.h
|
@ -231,8 +231,9 @@
|
||||||
#define GGML_EXIT_SUCCESS 0
|
#define GGML_EXIT_SUCCESS 0
|
||||||
#define GGML_EXIT_ABORTED 1
|
#define GGML_EXIT_ABORTED 1
|
||||||
|
|
||||||
#define GGUF_MAGIC 0x46554747 // "GGUF"
|
#define GGUF_MAGIC "GGUF"
|
||||||
#define GGUF_VERSION 2
|
|
||||||
|
#define GGUF_VERSION 3
|
||||||
|
|
||||||
#define GGUF_DEFAULT_ALIGNMENT 32
|
#define GGUF_DEFAULT_ALIGNMENT 32
|
||||||
|
|
||||||
|
|
|
@ -19,9 +19,10 @@ import numpy as np
|
||||||
#
|
#
|
||||||
|
|
||||||
GGUF_MAGIC = 0x46554747
|
GGUF_MAGIC = 0x46554747
|
||||||
GGUF_VERSION = 2
|
GGUF_VERSION = 3
|
||||||
GGUF_DEFAULT_ALIGNMENT = 32
|
GGUF_DEFAULT_ALIGNMENT = 32
|
||||||
|
|
||||||
|
|
||||||
# general
|
# general
|
||||||
KEY_GENERAL_ARCHITECTURE = "general.architecture"
|
KEY_GENERAL_ARCHITECTURE = "general.architecture"
|
||||||
KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version"
|
KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version"
|
||||||
|
@ -605,6 +606,10 @@ class GGMLQuantizationType(IntEnum):
|
||||||
Q6_K = 14
|
Q6_K = 14
|
||||||
Q8_K = 15
|
Q8_K = 15
|
||||||
|
|
||||||
|
class GGUFEndian(IntEnum):
|
||||||
|
LITTLE = 0
|
||||||
|
BIG = 1
|
||||||
|
|
||||||
|
|
||||||
class GGUFValueType(IntEnum):
|
class GGUFValueType(IntEnum):
|
||||||
UINT8 = 0
|
UINT8 = 0
|
||||||
|
@ -652,18 +657,41 @@ class GGUFWriter:
|
||||||
temp_file: tempfile.SpooledTemporaryFile[bytes] | None = None
|
temp_file: tempfile.SpooledTemporaryFile[bytes] | None = None
|
||||||
tensors: list[tuple[np.ndarray[Any, Any], int]]
|
tensors: list[tuple[np.ndarray[Any, Any], int]]
|
||||||
|
|
||||||
def __init__(self, path: os.PathLike[str] | str, arch: str, use_temp_file = True):
|
@property
|
||||||
|
def pack_prefix(self):
|
||||||
|
if self.endianess==GGUFEndian.LITTLE:
|
||||||
|
return "<"
|
||||||
|
else:
|
||||||
|
return ">"
|
||||||
|
|
||||||
|
def __init__(self, path: os.PathLike[str] | str, arch: str, use_temp_file = True, endianess=GGUFEndian.LITTLE):
|
||||||
self.fout = open(path, "wb")
|
self.fout = open(path, "wb")
|
||||||
self.arch = arch
|
self.arch = arch
|
||||||
|
self.endianess = endianess
|
||||||
|
self._simple_value_packing = {
|
||||||
|
GGUFValueType.UINT8: f"{self.pack_prefix}B",
|
||||||
|
GGUFValueType.INT8: f"{self.pack_prefix}b",
|
||||||
|
GGUFValueType.UINT16: f"{self.pack_prefix}H",
|
||||||
|
GGUFValueType.INT16: f"{self.pack_prefix}h",
|
||||||
|
GGUFValueType.UINT32: f"{self.pack_prefix}I",
|
||||||
|
GGUFValueType.INT32: f"{self.pack_prefix}i",
|
||||||
|
GGUFValueType.FLOAT32: f"{self.pack_prefix}f",
|
||||||
|
GGUFValueType.UINT64: f"{self.pack_prefix}Q",
|
||||||
|
GGUFValueType.INT64: f"{self.pack_prefix}q",
|
||||||
|
GGUFValueType.FLOAT64: f"{self.pack_prefix}d",
|
||||||
|
GGUFValueType.BOOL: "?" ,
|
||||||
|
}
|
||||||
self.add_architecture()
|
self.add_architecture()
|
||||||
self.use_temp_file = use_temp_file
|
self.use_temp_file = use_temp_file
|
||||||
self.tensors = []
|
self.tensors = []
|
||||||
|
endianess_str = "Big Endian" if self.endianess == GGUFEndian.BIG else "Little Endian"
|
||||||
|
print(f"This gguf file is for {endianess_str} only")
|
||||||
|
|
||||||
def write_header_to_file(self):
|
def write_header_to_file(self):
|
||||||
self.fout.write(struct.pack("<I", GGUF_MAGIC))
|
self.fout.write(struct.pack("<I", GGUF_MAGIC))
|
||||||
self.fout.write(struct.pack("<I", GGUF_VERSION))
|
self.fout.write(struct.pack(f"{self.pack_prefix}I", GGUF_VERSION))
|
||||||
self.fout.write(struct.pack("<Q", self.ti_data_count))
|
self.fout.write(struct.pack(f"{self.pack_prefix}Q", self.ti_data_count))
|
||||||
self.fout.write(struct.pack("<Q", self.kv_data_count))
|
self.fout.write(struct.pack(f"{self.pack_prefix}Q", self.kv_data_count))
|
||||||
self.flush()
|
self.flush()
|
||||||
# print("tensors " + str(self.ti_data_count) + " kv " + str(self.kv_data_count))
|
# print("tensors " + str(self.ti_data_count) + " kv " + str(self.kv_data_count))
|
||||||
|
|
||||||
|
@ -735,25 +763,12 @@ class GGUFWriter:
|
||||||
self.add_key(key)
|
self.add_key(key)
|
||||||
self.add_val(val, GGUFValueType.ARRAY)
|
self.add_val(val, GGUFValueType.ARRAY)
|
||||||
|
|
||||||
_simple_value_packing = {
|
|
||||||
GGUFValueType.UINT8: "<B",
|
|
||||||
GGUFValueType.INT8: "<b",
|
|
||||||
GGUFValueType.UINT16: "<H",
|
|
||||||
GGUFValueType.INT16: "<h",
|
|
||||||
GGUFValueType.UINT32: "<I",
|
|
||||||
GGUFValueType.INT32: "<i",
|
|
||||||
GGUFValueType.FLOAT32: "<f",
|
|
||||||
GGUFValueType.UINT64: "<Q",
|
|
||||||
GGUFValueType.INT64: "<q",
|
|
||||||
GGUFValueType.FLOAT64: "<d",
|
|
||||||
GGUFValueType.BOOL: "?" ,
|
|
||||||
}
|
|
||||||
def add_val(self, val: Any, vtype: GGUFValueType | None = None, add_vtype: bool = True):
|
def add_val(self, val: Any, vtype: GGUFValueType | None = None, add_vtype: bool = True):
|
||||||
if vtype is None:
|
if vtype is None:
|
||||||
vtype = GGUFValueType.get_type(val)
|
vtype = GGUFValueType.get_type(val)
|
||||||
|
|
||||||
if add_vtype:
|
if add_vtype:
|
||||||
self.kv_data += struct.pack("<I", vtype)
|
self.kv_data += struct.pack(f"{self.pack_prefix}I", vtype)
|
||||||
self.kv_data_count += 1
|
self.kv_data_count += 1
|
||||||
|
|
||||||
pack_fmt = self._simple_value_packing.get(vtype)
|
pack_fmt = self._simple_value_packing.get(vtype)
|
||||||
|
@ -761,14 +776,14 @@ class GGUFWriter:
|
||||||
self.kv_data += struct.pack(pack_fmt, val)
|
self.kv_data += struct.pack(pack_fmt, val)
|
||||||
elif vtype == GGUFValueType.STRING:
|
elif vtype == GGUFValueType.STRING:
|
||||||
encoded_val = val.encode("utf8") if isinstance(val, str) else val
|
encoded_val = val.encode("utf8") if isinstance(val, str) else val
|
||||||
self.kv_data += struct.pack("<Q", len(encoded_val))
|
self.kv_data += struct.pack(f"{self.pack_prefix}Q", len(encoded_val))
|
||||||
self.kv_data += encoded_val
|
self.kv_data += encoded_val
|
||||||
elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and len(val) > 0:
|
elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and len(val) > 0:
|
||||||
ltype = GGUFValueType.get_type(val[0])
|
ltype = GGUFValueType.get_type(val[0])
|
||||||
if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
|
if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
|
||||||
raise ValueError("All items in a GGUF array should be of the same type")
|
raise ValueError("All items in a GGUF array should be of the same type")
|
||||||
self.kv_data += struct.pack("<I", ltype)
|
self.kv_data += struct.pack(f"{self.pack_prefix}I", ltype)
|
||||||
self.kv_data += struct.pack("<Q", len(val))
|
self.kv_data += struct.pack(f"{self.pack_prefix}Q", len(val))
|
||||||
for item in val:
|
for item in val:
|
||||||
self.add_val(item, add_vtype=False)
|
self.add_val(item, add_vtype=False)
|
||||||
else:
|
else:
|
||||||
|
@ -782,22 +797,24 @@ class GGUFWriter:
|
||||||
assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
|
assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
|
||||||
|
|
||||||
encoded_name = name.encode("utf8")
|
encoded_name = name.encode("utf8")
|
||||||
self.ti_data += struct.pack("<Q", len(encoded_name))
|
self.ti_data += struct.pack(f"{self.pack_prefix}Q", len(encoded_name))
|
||||||
self.ti_data += encoded_name
|
self.ti_data += encoded_name
|
||||||
n_dims = len(tensor_shape)
|
n_dims = len(tensor_shape)
|
||||||
self.ti_data += struct.pack("<I", n_dims)
|
self.ti_data += struct.pack(f"{self.pack_prefix}I", n_dims)
|
||||||
for i in range(n_dims):
|
for i in range(n_dims):
|
||||||
self.ti_data += struct.pack("<Q", tensor_shape[n_dims - 1 - i])
|
self.ti_data += struct.pack(f"{self.pack_prefix}Q", tensor_shape[n_dims - 1 - i])
|
||||||
if raw_dtype is None:
|
if raw_dtype is None:
|
||||||
dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16
|
dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16
|
||||||
else:
|
else:
|
||||||
dtype = raw_dtype
|
dtype = raw_dtype
|
||||||
self.ti_data += struct.pack("<I", dtype)
|
self.ti_data += struct.pack(f"{self.pack_prefix}I", dtype)
|
||||||
self.ti_data += struct.pack("<Q", self.offset_tensor)
|
self.ti_data += struct.pack(f"{self.pack_prefix}Q", self.offset_tensor)
|
||||||
self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
|
self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
|
||||||
self.ti_data_count += 1
|
self.ti_data_count += 1
|
||||||
|
|
||||||
def add_tensor(self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None, raw_dtype: GGMLQuantizationType | None = None):
|
def add_tensor(self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None, raw_dtype: GGMLQuantizationType | None = None):
|
||||||
|
if self.endianess == GGUFEndian.BIG:
|
||||||
|
tensor.byteswap(inplace=True)
|
||||||
if self.use_temp_file and self.temp_file is None:
|
if self.use_temp_file and self.temp_file is None:
|
||||||
fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024)
|
fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024)
|
||||||
fp.seek(0)
|
fp.seek(0)
|
||||||
|
@ -823,6 +840,8 @@ class GGUFWriter:
|
||||||
fp.write(bytes([0] * pad))
|
fp.write(bytes([0] * pad))
|
||||||
|
|
||||||
def write_tensor_data(self, tensor: np.ndarray[Any, Any]):
|
def write_tensor_data(self, tensor: np.ndarray[Any, Any]):
|
||||||
|
if self.endianess==GGUFEndian.BIG:
|
||||||
|
tensor.byteswap(inplace=True)
|
||||||
self.write_padding(self.fout, self.fout.tell())
|
self.write_padding(self.fout, self.fout.tell())
|
||||||
tensor.tofile(self.fout)
|
tensor.tofile(self.fout)
|
||||||
self.write_padding(self.fout, tensor.nbytes)
|
self.write_padding(self.fout, tensor.nbytes)
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
[tool.poetry]
|
[tool.poetry]
|
||||||
name = "gguf"
|
name = "gguf"
|
||||||
version = "0.4.4"
|
version = "0.4.5"
|
||||||
description = "Write ML models in GGUF for GGML"
|
description = "Write ML models in GGUF for GGML"
|
||||||
authors = ["GGML <ggml@ggml.ai>"]
|
authors = ["GGML <ggml@ggml.ai>"]
|
||||||
packages = [
|
packages = [
|
||||||
|
|
32
k_quants.c
32
k_quants.c
|
@ -46,7 +46,7 @@ inline static int32_t vaddvq_s32(int32x4_t v) {
|
||||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||||
#include <intrin.h>
|
#include <intrin.h>
|
||||||
#else
|
#else
|
||||||
#if !defined(__riscv)
|
#if !defined(__riscv) && !defined(__s390__)
|
||||||
#include <immintrin.h>
|
#include <immintrin.h>
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
@ -462,12 +462,9 @@ void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
|
||||||
}
|
}
|
||||||
|
|
||||||
size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
|
size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
|
||||||
const int nb = k / QK_K;
|
(void)hist; // TODO: collect histograms
|
||||||
|
|
||||||
// TODO - collect histograms - although, at a second thought, I don't really care about them
|
for (int j = 0; j < n; j += k) {
|
||||||
(void)hist;
|
|
||||||
|
|
||||||
for (int j = 0; j < nb; j += k) {
|
|
||||||
block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
|
block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
|
||||||
quantize_row_q2_K_reference(src + j, y, k);
|
quantize_row_q2_K_reference(src + j, y, k);
|
||||||
}
|
}
|
||||||
|
@ -678,12 +675,9 @@ void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
|
||||||
}
|
}
|
||||||
|
|
||||||
size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
|
size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
|
||||||
const int nb = k / QK_K;
|
(void)hist; // TODO: collect histograms
|
||||||
|
|
||||||
// TODO - collect histograms - although, at a second thought, I don't really care about them
|
for (int j = 0; j < n; j += k) {
|
||||||
(void)hist;
|
|
||||||
|
|
||||||
for (int j = 0; j < nb; j += k) {
|
|
||||||
block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
|
block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
|
||||||
quantize_row_q3_K_reference(src + j, y, k);
|
quantize_row_q3_K_reference(src + j, y, k);
|
||||||
}
|
}
|
||||||
|
@ -846,9 +840,9 @@ void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
|
||||||
|
|
||||||
size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
|
size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
|
||||||
assert(k % QK_K == 0);
|
assert(k % QK_K == 0);
|
||||||
const int nb = k / QK_K;
|
|
||||||
(void)hist; // TODO: collect histograms
|
(void)hist; // TODO: collect histograms
|
||||||
for (int j = 0; j < nb; j += k) {
|
|
||||||
|
for (int j = 0; j < n; j += k) {
|
||||||
block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
|
block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
|
||||||
quantize_row_q4_K_reference(src + j, y, k);
|
quantize_row_q4_K_reference(src + j, y, k);
|
||||||
}
|
}
|
||||||
|
@ -1052,9 +1046,9 @@ void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
|
||||||
|
|
||||||
size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
|
size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
|
||||||
assert(k % QK_K == 0);
|
assert(k % QK_K == 0);
|
||||||
const int nb = k / QK_K;
|
(void)hist; // TODO: collect histograms
|
||||||
(void)hist;
|
|
||||||
for (int j = 0; j < nb; j += k) {
|
for (int j = 0; j < n; j += k) {
|
||||||
block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K;
|
block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K;
|
||||||
quantize_row_q5_K_reference(src + j, y, k);
|
quantize_row_q5_K_reference(src + j, y, k);
|
||||||
}
|
}
|
||||||
|
@ -1200,11 +1194,9 @@ void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
|
||||||
|
|
||||||
size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) {
|
size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) {
|
||||||
assert(k % QK_K == 0);
|
assert(k % QK_K == 0);
|
||||||
const int nb = k / QK_K;
|
(void)hist; // TODO: collect histograms
|
||||||
|
|
||||||
(void)hist; // TODO
|
for (int j = 0; j < n; j += k) {
|
||||||
|
|
||||||
for (int j = 0; j < nb; j += k) {
|
|
||||||
block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K;
|
block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K;
|
||||||
quantize_row_q6_K_reference(src + j, y, k);
|
quantize_row_q6_K_reference(src + j, y, k);
|
||||||
}
|
}
|
||||||
|
|
513
llama.cpp
513
llama.cpp
|
@ -76,6 +76,7 @@
|
||||||
#include <thread>
|
#include <thread>
|
||||||
#include <unordered_map>
|
#include <unordered_map>
|
||||||
#include <set>
|
#include <set>
|
||||||
|
#include <forward_list>
|
||||||
|
|
||||||
#if defined(_MSC_VER)
|
#if defined(_MSC_VER)
|
||||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||||
|
@ -1042,8 +1043,8 @@ enum e_model {
|
||||||
};
|
};
|
||||||
|
|
||||||
static const size_t kB = 1024;
|
static const size_t kB = 1024;
|
||||||
static const size_t MB = kB*kB;
|
static const size_t MB = 1024*kB;
|
||||||
static const size_t GB = kB*kB*kB;
|
static const size_t GB = 1024*MB;
|
||||||
|
|
||||||
struct llama_hparams {
|
struct llama_hparams {
|
||||||
bool vocab_only;
|
bool vocab_only;
|
||||||
|
@ -1069,23 +1070,23 @@ struct llama_hparams {
|
||||||
float f_max_alibi_bias;
|
float f_max_alibi_bias;
|
||||||
|
|
||||||
bool operator!=(const llama_hparams & other) const {
|
bool operator!=(const llama_hparams & other) const {
|
||||||
if (this->vocab_only != other.vocab_only) return true;
|
if (this->vocab_only != other.vocab_only) return true;
|
||||||
if (this->n_vocab != other.n_vocab) return true;
|
if (this->n_vocab != other.n_vocab) return true;
|
||||||
if (this->n_ctx_train != other.n_ctx_train) return true;
|
if (this->n_ctx_train != other.n_ctx_train) return true;
|
||||||
if (this->n_embd != other.n_embd) return true;
|
if (this->n_embd != other.n_embd) return true;
|
||||||
if (this->n_head != other.n_head) return true;
|
if (this->n_head != other.n_head) return true;
|
||||||
if (this->n_head_kv != other.n_head_kv) return true;
|
if (this->n_head_kv != other.n_head_kv) return true;
|
||||||
if (this->n_layer != other.n_layer) return true;
|
if (this->n_layer != other.n_layer) return true;
|
||||||
if (this->n_rot != other.n_rot) return true;
|
if (this->n_rot != other.n_rot) return true;
|
||||||
if (this->n_ff != other.n_ff) return true;
|
if (this->n_ff != other.n_ff) return true;
|
||||||
if (this->rope_finetuned != other.rope_finetuned) return true;
|
if (this->rope_finetuned != other.rope_finetuned) return true;
|
||||||
if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
|
if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
|
||||||
|
|
||||||
const float EPSILON = 1e-9;
|
const float EPSILON = 1e-9;
|
||||||
|
|
||||||
if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
|
if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
|
||||||
if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
|
if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
|
||||||
if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
|
if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
|
||||||
if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
|
if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
|
||||||
|
|
||||||
return false;
|
return false;
|
||||||
|
@ -1221,6 +1222,8 @@ struct llama_vocab {
|
||||||
std::unordered_map<token, id> token_to_id;
|
std::unordered_map<token, id> token_to_id;
|
||||||
std::vector<token_data> id_to_token;
|
std::vector<token_data> id_to_token;
|
||||||
|
|
||||||
|
std::unordered_map<token, id> special_tokens_cache;
|
||||||
|
|
||||||
std::map<std::pair<std::string, std::string>, int> bpe_ranks;
|
std::map<std::pair<std::string, std::string>, int> bpe_ranks;
|
||||||
|
|
||||||
// default LLaMA special tokens
|
// default LLaMA special tokens
|
||||||
|
@ -1230,11 +1233,11 @@ struct llama_vocab {
|
||||||
id special_sep_id = -1;
|
id special_sep_id = -1;
|
||||||
id special_pad_id = -1;
|
id special_pad_id = -1;
|
||||||
|
|
||||||
id linefeed_id = 13;
|
id linefeed_id = 13;
|
||||||
id special_prefix_id = 32007;
|
id special_prefix_id = 32007;
|
||||||
id special_middle_id = 32009;
|
id special_middle_id = 32009;
|
||||||
id special_suffix_id = 32008;
|
id special_suffix_id = 32008;
|
||||||
id special_eot_id = 32010;
|
id special_eot_id = 32010;
|
||||||
|
|
||||||
int find_bpe_rank(std::string token_left, std::string token_right) const {
|
int find_bpe_rank(std::string token_left, std::string token_right) const {
|
||||||
replace_all(token_left, " ", "\u0120");
|
replace_all(token_left, " ", "\u0120");
|
||||||
|
@ -1394,10 +1397,7 @@ static bool llama_kv_cache_init(
|
||||||
cache.cells.clear();
|
cache.cells.clear();
|
||||||
cache.cells.resize(n_ctx);
|
cache.cells.resize(n_ctx);
|
||||||
|
|
||||||
// TODO: this should be:
|
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*ggml_tensor_overhead());
|
||||||
// cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*ggml_tensor_overhead());
|
|
||||||
// change it and test that it works
|
|
||||||
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
|
|
||||||
memset(cache.buf.data, 0, cache.buf.size);
|
memset(cache.buf.data, 0, cache.buf.size);
|
||||||
|
|
||||||
struct ggml_init_params params;
|
struct ggml_init_params params;
|
||||||
|
@ -1485,7 +1485,10 @@ static bool llama_kv_cache_find_slot(
|
||||||
|
|
||||||
for (uint32_t i = 0; i < n_tokens; i++) {
|
for (uint32_t i = 0; i < n_tokens; i++) {
|
||||||
cache.cells[cache.head + i].pos = batch.pos[i];
|
cache.cells[cache.head + i].pos = batch.pos[i];
|
||||||
cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i]);
|
|
||||||
|
for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
|
||||||
|
cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return true;
|
return true;
|
||||||
|
@ -1565,6 +1568,9 @@ static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id
|
||||||
cache.cells[i].pos = -1;
|
cache.cells[i].pos = -1;
|
||||||
cache.cells[i].seq_id.clear();
|
cache.cells[i].seq_id.clear();
|
||||||
if (new_head == cache.size) new_head = i;
|
if (new_head == cache.size) new_head = i;
|
||||||
|
} else {
|
||||||
|
cache.cells[i].seq_id.clear();
|
||||||
|
cache.cells[i].seq_id.insert(seq_id);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -2179,7 +2185,7 @@ static void llm_load_hparams(
|
||||||
}
|
}
|
||||||
|
|
||||||
// TODO: This should probably be in llama.h
|
// TODO: This should probably be in llama.h
|
||||||
static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos);
|
static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special = false);
|
||||||
static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
|
static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
|
||||||
|
|
||||||
static void llm_load_vocab(
|
static void llm_load_vocab(
|
||||||
|
@ -2295,6 +2301,101 @@ static void llm_load_vocab(
|
||||||
GGUF_GET_KEY(ctx, vocab.special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID));
|
GGUF_GET_KEY(ctx, vocab.special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID));
|
||||||
GGUF_GET_KEY(ctx, vocab.special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID));
|
GGUF_GET_KEY(ctx, vocab.special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID));
|
||||||
GGUF_GET_KEY(ctx, vocab.special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID));
|
GGUF_GET_KEY(ctx, vocab.special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID));
|
||||||
|
|
||||||
|
// build special tokens cache
|
||||||
|
{
|
||||||
|
// TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
|
||||||
|
// and will always be correctly labeled in 'added_tokens.json' etc.
|
||||||
|
// The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
|
||||||
|
// to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
|
||||||
|
// are special tokens.
|
||||||
|
// From testing, this appears to corelate 1:1 with special tokens.
|
||||||
|
//
|
||||||
|
|
||||||
|
// Counting special tokens and verifying in only one direction
|
||||||
|
// is sufficient to detect difference in those two sets.
|
||||||
|
//
|
||||||
|
uint32_t special_tokens_count_by_type = 0;
|
||||||
|
uint32_t special_tokens_count_from_verification = 0;
|
||||||
|
|
||||||
|
bool special_tokens_definition_mismatch = false;
|
||||||
|
|
||||||
|
for (const auto & t : vocab.token_to_id) {
|
||||||
|
const auto & token = t.first;
|
||||||
|
const auto & id = t.second;
|
||||||
|
|
||||||
|
// Count all non-normal tokens in the vocab while iterating
|
||||||
|
if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
|
||||||
|
special_tokens_count_by_type++;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Skip single character tokens
|
||||||
|
if (token.length() > 1) {
|
||||||
|
bool is_tokenizable = false;
|
||||||
|
|
||||||
|
// Split token string representation in two, in all possible ways
|
||||||
|
// and check if both halves can be matched to a valid token
|
||||||
|
for (unsigned i = 1; i < token.length();) {
|
||||||
|
const auto left = token.substr(0, i);
|
||||||
|
const auto right = token.substr(i);
|
||||||
|
|
||||||
|
// check if we didnt partition in the middle of a utf sequence
|
||||||
|
auto utf = utf8_len(left.at(left.length() - 1));
|
||||||
|
|
||||||
|
if (utf == 1) {
|
||||||
|
if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
|
||||||
|
vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
|
||||||
|
is_tokenizable = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
i++;
|
||||||
|
} else {
|
||||||
|
// skip over the rest of multibyte utf sequence
|
||||||
|
i += utf - 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!is_tokenizable) {
|
||||||
|
// Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
|
||||||
|
// it's faster to re-filter them here, since there are way less candidates now
|
||||||
|
|
||||||
|
// Calculate a total "utf" length of a token string representation
|
||||||
|
size_t utf8_str_len = 0;
|
||||||
|
for (unsigned i = 0; i < token.length();) {
|
||||||
|
utf8_str_len++;
|
||||||
|
i += utf8_len(token.at(i));
|
||||||
|
}
|
||||||
|
|
||||||
|
// And skip the ones which are one character
|
||||||
|
if (utf8_str_len > 1) {
|
||||||
|
// At this point what we have left are special tokens only
|
||||||
|
vocab.special_tokens_cache[token] = id;
|
||||||
|
|
||||||
|
// Count manually found special tokens
|
||||||
|
special_tokens_count_from_verification++;
|
||||||
|
|
||||||
|
// If this manually found special token is not marked as such, flag a mismatch
|
||||||
|
if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
|
||||||
|
special_tokens_definition_mismatch = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
|
||||||
|
LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
|
||||||
|
__func__,
|
||||||
|
special_tokens_count_from_verification, vocab.id_to_token.size(),
|
||||||
|
special_tokens_count_by_type, vocab.id_to_token.size()
|
||||||
|
);
|
||||||
|
} else {
|
||||||
|
LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
|
||||||
|
__func__,
|
||||||
|
special_tokens_count_from_verification, vocab.id_to_token.size()
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
||||||
|
@ -2898,8 +2999,8 @@ static void llm_load_tensors(
|
||||||
auto & layer = model.layers[i];
|
auto & layer = model.layers[i];
|
||||||
|
|
||||||
layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
|
layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
|
||||||
layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, 3*n_embd}, backend_split);
|
layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
|
||||||
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
|
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
|
||||||
|
|
||||||
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
|
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
|
||||||
|
|
||||||
|
@ -3134,7 +3235,7 @@ static struct ggml_cgraph * llm_build_llama(
|
||||||
for (int h = 0; h < 1; ++h) {
|
for (int h = 0; h < 1; ++h) {
|
||||||
for (int j = 0; j < n_tokens; ++j) {
|
for (int j = 0; j < n_tokens; ++j) {
|
||||||
const llama_pos pos = batch.pos[j];
|
const llama_pos pos = batch.pos[j];
|
||||||
const llama_seq_id seq_id = batch.seq_id[j];
|
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||||
|
|
||||||
for (int i = 0; i < n_kv; ++i) {
|
for (int i = 0; i < n_kv; ++i) {
|
||||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||||
|
@ -3534,7 +3635,7 @@ static struct ggml_cgraph * llm_build_baichaun(
|
||||||
for (int h = 0; h < 1; ++h) {
|
for (int h = 0; h < 1; ++h) {
|
||||||
for (int j = 0; j < n_tokens; ++j) {
|
for (int j = 0; j < n_tokens; ++j) {
|
||||||
const llama_pos pos = batch.pos[j];
|
const llama_pos pos = batch.pos[j];
|
||||||
const llama_seq_id seq_id = batch.seq_id[j];
|
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||||
|
|
||||||
for (int i = 0; i < n_kv; ++i) {
|
for (int i = 0; i < n_kv; ++i) {
|
||||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||||
|
@ -3944,7 +4045,7 @@ static struct ggml_cgraph * llm_build_refact(
|
||||||
for (int h = 0; h < 1; ++h) {
|
for (int h = 0; h < 1; ++h) {
|
||||||
for (int j = 0; j < n_tokens; ++j) {
|
for (int j = 0; j < n_tokens; ++j) {
|
||||||
const llama_pos pos = batch.pos[j];
|
const llama_pos pos = batch.pos[j];
|
||||||
const llama_seq_id seq_id = batch.seq_id[j];
|
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||||
|
|
||||||
for (int i = 0; i < n_kv; ++i) {
|
for (int i = 0; i < n_kv; ++i) {
|
||||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||||
|
@ -4301,7 +4402,7 @@ static struct ggml_cgraph * llm_build_falcon(
|
||||||
for (int h = 0; h < 1; ++h) {
|
for (int h = 0; h < 1; ++h) {
|
||||||
for (int j = 0; j < n_tokens; ++j) {
|
for (int j = 0; j < n_tokens; ++j) {
|
||||||
const llama_pos pos = batch.pos[j];
|
const llama_pos pos = batch.pos[j];
|
||||||
const llama_seq_id seq_id = batch.seq_id[j];
|
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||||
|
|
||||||
for (int i = 0; i < n_kv; ++i) {
|
for (int i = 0; i < n_kv; ++i) {
|
||||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||||
|
@ -4660,7 +4761,7 @@ static struct ggml_cgraph * llm_build_starcoder(
|
||||||
for (int h = 0; h < 1; ++h) {
|
for (int h = 0; h < 1; ++h) {
|
||||||
for (int j = 0; j < n_tokens; ++j) {
|
for (int j = 0; j < n_tokens; ++j) {
|
||||||
const llama_pos pos = batch.pos[j];
|
const llama_pos pos = batch.pos[j];
|
||||||
const llama_seq_id seq_id = batch.seq_id[j];
|
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||||
|
|
||||||
for (int i = 0; i < n_kv; ++i) {
|
for (int i = 0; i < n_kv; ++i) {
|
||||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||||
|
@ -4896,7 +4997,7 @@ static struct ggml_cgraph * llm_build_persimmon(
|
||||||
for (int h = 0; h < 1; ++h) {
|
for (int h = 0; h < 1; ++h) {
|
||||||
for (int j = 0; j < n_tokens; ++j) {
|
for (int j = 0; j < n_tokens; ++j) {
|
||||||
const llama_pos pos = batch.pos[j];
|
const llama_pos pos = batch.pos[j];
|
||||||
const llama_seq_id seq_id = batch.seq_id[j];
|
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||||
for (int i = 0; i < n_kv; ++i) {
|
for (int i = 0; i < n_kv; ++i) {
|
||||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||||
data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
|
data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
|
||||||
|
@ -5298,7 +5399,7 @@ static struct ggml_cgraph * llm_build_bloom(
|
||||||
for (int h = 0; h < 1; ++h) {
|
for (int h = 0; h < 1; ++h) {
|
||||||
for (int j = 0; j < n_tokens; ++j) {
|
for (int j = 0; j < n_tokens; ++j) {
|
||||||
const llama_pos pos = batch.pos[j];
|
const llama_pos pos = batch.pos[j];
|
||||||
const llama_seq_id seq_id = batch.seq_id[j];
|
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||||
|
|
||||||
for (int i = 0; i < n_kv; ++i) {
|
for (int i = 0; i < n_kv; ++i) {
|
||||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||||
|
@ -5468,7 +5569,7 @@ static struct ggml_cgraph * llm_build_mpt(
|
||||||
const int64_t n_layer = hparams.n_layer;
|
const int64_t n_layer = hparams.n_layer;
|
||||||
const int64_t n_ctx = cparams.n_ctx;
|
const int64_t n_ctx = cparams.n_ctx;
|
||||||
const int64_t n_head = hparams.n_head;
|
const int64_t n_head = hparams.n_head;
|
||||||
const int64_t n_head_kv = hparams.n_head_kv; // == n_head for MPT, as there's no MQA/GQA
|
const int64_t n_head_kv = hparams.n_head_kv;
|
||||||
const int64_t n_embd_head = hparams.n_embd_head();
|
const int64_t n_embd_head = hparams.n_embd_head();
|
||||||
const int64_t n_embd_gqa = hparams.n_embd_gqa();
|
const int64_t n_embd_gqa = hparams.n_embd_gqa();
|
||||||
|
|
||||||
|
@ -5566,7 +5667,7 @@ static struct ggml_cgraph * llm_build_mpt(
|
||||||
for (int h = 0; h < 1; ++h) {
|
for (int h = 0; h < 1; ++h) {
|
||||||
for (int j = 0; j < n_tokens; ++j) {
|
for (int j = 0; j < n_tokens; ++j) {
|
||||||
const llama_pos pos = batch.pos[j];
|
const llama_pos pos = batch.pos[j];
|
||||||
const llama_seq_id seq_id = batch.seq_id[j];
|
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||||
|
|
||||||
for (int i = 0; i < n_kv; ++i) {
|
for (int i = 0; i < n_kv; ++i) {
|
||||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||||
|
@ -5866,8 +5967,11 @@ static int llama_decode_internal(
|
||||||
|
|
||||||
// helpers for smoother batch API transistion
|
// helpers for smoother batch API transistion
|
||||||
// after deprecating the llama_eval calls, these will be removed
|
// after deprecating the llama_eval calls, these will be removed
|
||||||
std::vector<llama_pos> pos;
|
std::vector<llama_pos> pos;
|
||||||
std::vector<llama_seq_id> seq_id;
|
|
||||||
|
std::vector<int32_t> n_seq_id;
|
||||||
|
std::vector<llama_seq_id *> seq_id_arr;
|
||||||
|
std::vector<std::vector<llama_seq_id>> seq_id;
|
||||||
|
|
||||||
if (batch.pos == nullptr) {
|
if (batch.pos == nullptr) {
|
||||||
pos.resize(n_tokens);
|
pos.resize(n_tokens);
|
||||||
|
@ -5879,12 +5983,18 @@ static int llama_decode_internal(
|
||||||
}
|
}
|
||||||
|
|
||||||
if (batch.seq_id == nullptr) {
|
if (batch.seq_id == nullptr) {
|
||||||
|
n_seq_id.resize(n_tokens);
|
||||||
seq_id.resize(n_tokens);
|
seq_id.resize(n_tokens);
|
||||||
|
seq_id_arr.resize(n_tokens);
|
||||||
for (uint32_t i = 0; i < n_tokens; i++) {
|
for (uint32_t i = 0; i < n_tokens; i++) {
|
||||||
seq_id[i] = batch.all_seq_id;
|
n_seq_id[i] = 1;
|
||||||
|
seq_id[i].resize(1);
|
||||||
|
seq_id[i][0] = batch.all_seq_id;
|
||||||
|
seq_id_arr[i] = seq_id[i].data();
|
||||||
}
|
}
|
||||||
|
|
||||||
batch.seq_id = seq_id.data();
|
batch.n_seq_id = n_seq_id.data();
|
||||||
|
batch.seq_id = seq_id_arr.data();
|
||||||
}
|
}
|
||||||
|
|
||||||
if (!llama_kv_cache_find_slot(kv_self, batch)) {
|
if (!llama_kv_cache_find_slot(kv_self, batch)) {
|
||||||
|
@ -5905,6 +6015,13 @@ static int llama_decode_internal(
|
||||||
|
|
||||||
ggml_allocr_alloc_graph(lctx.alloc, gf);
|
ggml_allocr_alloc_graph(lctx.alloc, gf);
|
||||||
|
|
||||||
|
struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
|
||||||
|
struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2];
|
||||||
|
|
||||||
|
GGML_ASSERT(strcmp(res->name, "result_output") == 0);
|
||||||
|
GGML_ASSERT(strcmp(embeddings->name, "result_norm") == 0);
|
||||||
|
|
||||||
|
|
||||||
#ifdef GGML_USE_CUBLAS
|
#ifdef GGML_USE_CUBLAS
|
||||||
for (int i = 0; i < gf->n_leafs; i++) {
|
for (int i = 0; i < gf->n_leafs; i++) {
|
||||||
ggml_tensor * node = gf->leafs[i];
|
ggml_tensor * node = gf->leafs[i];
|
||||||
|
@ -5922,6 +6039,12 @@ static int llama_decode_internal(
|
||||||
}
|
}
|
||||||
|
|
||||||
ggml_cuda_set_mul_mat_q(cparams.mul_mat_q);
|
ggml_cuda_set_mul_mat_q(cparams.mul_mat_q);
|
||||||
|
|
||||||
|
// HACK: ggml-alloc may change the tensor backend when reusing a parent, so force output to be on the CPU here if needed
|
||||||
|
if (!lctx.embedding.empty()) {
|
||||||
|
embeddings->backend = GGML_BACKEND_CPU;
|
||||||
|
}
|
||||||
|
res->backend = GGML_BACKEND_CPU;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
|
// LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
|
||||||
|
@ -5946,12 +6069,6 @@ static int llama_decode_internal(
|
||||||
n_threads = 1;
|
n_threads = 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
|
|
||||||
struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2];
|
|
||||||
|
|
||||||
GGML_ASSERT(strcmp(res->name, "result_output") == 0);
|
|
||||||
GGML_ASSERT(strcmp(embeddings->name, "result_norm") == 0);
|
|
||||||
|
|
||||||
#if GGML_USE_MPI
|
#if GGML_USE_MPI
|
||||||
const int64_t n_layer = hparams.n_layer;
|
const int64_t n_layer = hparams.n_layer;
|
||||||
ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
|
ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
|
||||||
|
@ -6304,7 +6421,6 @@ struct llm_tokenizer_bpe {
|
||||||
llm_symbol sym;
|
llm_symbol sym;
|
||||||
size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
|
size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
|
||||||
sym.text = word.c_str() + offset;
|
sym.text = word.c_str() + offset;
|
||||||
sym.n = 1;
|
|
||||||
sym.n = char_len;
|
sym.n = char_len;
|
||||||
offset += sym.n;
|
offset += sym.n;
|
||||||
sym.prev = index - 1;
|
sym.prev = index - 1;
|
||||||
|
@ -6564,7 +6680,137 @@ private:
|
||||||
llm_bigram_bpe::queue work_queue;
|
llm_bigram_bpe::queue work_queue;
|
||||||
};
|
};
|
||||||
|
|
||||||
static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos) {
|
typedef enum FRAGMENT_BUFFER_VARIANT_TYPE{
|
||||||
|
FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
|
||||||
|
FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
|
||||||
|
} FRAGMENT_BUFFER_VARIANT_TYPE;
|
||||||
|
|
||||||
|
struct fragment_buffer_variant{
|
||||||
|
fragment_buffer_variant(llama_vocab::id _token)
|
||||||
|
:
|
||||||
|
type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
|
||||||
|
token(_token),
|
||||||
|
raw_text(_dummy),
|
||||||
|
offset(0),
|
||||||
|
length(0){}
|
||||||
|
fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
|
||||||
|
:
|
||||||
|
type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
|
||||||
|
token((llama_vocab::id)-1),
|
||||||
|
raw_text(_raw_text),
|
||||||
|
offset(_offset),
|
||||||
|
length(_length){
|
||||||
|
GGML_ASSERT( _offset >= 0 );
|
||||||
|
GGML_ASSERT( _length >= 1 );
|
||||||
|
GGML_ASSERT( offset + length <= raw_text.length() );
|
||||||
|
}
|
||||||
|
|
||||||
|
const FRAGMENT_BUFFER_VARIANT_TYPE type;
|
||||||
|
const llama_vocab::id token;
|
||||||
|
const std::string _dummy;
|
||||||
|
const std::string & raw_text;
|
||||||
|
const uint64_t offset;
|
||||||
|
const uint64_t length;
|
||||||
|
};
|
||||||
|
|
||||||
|
// #define PRETOKENIZERDEBUG
|
||||||
|
|
||||||
|
static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer)
|
||||||
|
{
|
||||||
|
// for each special token
|
||||||
|
for (const auto & st: vocab.special_tokens_cache) {
|
||||||
|
const auto & special_token = st.first;
|
||||||
|
const auto & special_id = st.second;
|
||||||
|
|
||||||
|
// for each text fragment
|
||||||
|
std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
|
||||||
|
while (it != buffer.end()) {
|
||||||
|
auto & fragment = (*it);
|
||||||
|
|
||||||
|
// if a fragment is text ( not yet processed )
|
||||||
|
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
||||||
|
auto * raw_text = &(fragment.raw_text);
|
||||||
|
|
||||||
|
auto raw_text_base_offset = fragment.offset;
|
||||||
|
auto raw_text_base_length = fragment.length;
|
||||||
|
|
||||||
|
// loop over the text
|
||||||
|
while (true) {
|
||||||
|
// find the first occurence of a given special token in this fragment
|
||||||
|
// passing offset argument only limit the "search area" but match coordinates
|
||||||
|
// are still relative to the source full raw_text
|
||||||
|
auto match = raw_text->find(special_token, raw_text_base_offset);
|
||||||
|
|
||||||
|
// no occurences found, stop processing this fragment for a given special token
|
||||||
|
if (match == std::string::npos) break;
|
||||||
|
|
||||||
|
// check if match is within bounds of offset <-> length
|
||||||
|
if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
|
||||||
|
|
||||||
|
#ifdef PRETOKENIZERDEBUG
|
||||||
|
fprintf(stderr, "FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
|
||||||
|
#endif
|
||||||
|
auto source = std::distance(buffer.begin(), it);
|
||||||
|
|
||||||
|
// if match is further than base offset
|
||||||
|
// then we have some text to the left of it
|
||||||
|
if (match > raw_text_base_offset) {
|
||||||
|
// left
|
||||||
|
const int64_t left_reminder_offset = raw_text_base_offset + 0;
|
||||||
|
const int64_t left_reminder_length = match - raw_text_base_offset;
|
||||||
|
buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
|
||||||
|
|
||||||
|
#ifdef PRETOKENIZERDEBUG
|
||||||
|
fprintf(stderr, "FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
|
||||||
|
#endif
|
||||||
|
it++;
|
||||||
|
}
|
||||||
|
|
||||||
|
// special token
|
||||||
|
buffer.emplace_after(it, special_id);
|
||||||
|
it++;
|
||||||
|
|
||||||
|
// right
|
||||||
|
if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
|
||||||
|
const int64_t right_reminder_offset = match + special_token.length();
|
||||||
|
const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
|
||||||
|
buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
|
||||||
|
|
||||||
|
#ifdef PRETOKENIZERDEBUG
|
||||||
|
fprintf(stderr, "FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
|
||||||
|
#endif
|
||||||
|
|
||||||
|
it++;
|
||||||
|
|
||||||
|
if (source == 0) {
|
||||||
|
buffer.erase_after(buffer.before_begin());
|
||||||
|
} else {
|
||||||
|
buffer.erase_after(std::next(buffer.begin(), (source-1)));
|
||||||
|
}
|
||||||
|
|
||||||
|
// repeat for the right side
|
||||||
|
raw_text_base_offset = right_reminder_offset;
|
||||||
|
raw_text_base_length = right_reminder_length;
|
||||||
|
|
||||||
|
#ifdef PRETOKENIZERDEBUG
|
||||||
|
fprintf(stderr, "RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
|
||||||
|
#endif
|
||||||
|
} else {
|
||||||
|
if (source == 0) {
|
||||||
|
buffer.erase_after(buffer.before_begin());
|
||||||
|
} else {
|
||||||
|
buffer.erase_after(std::next(buffer.begin(), (source-1)));
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
it++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special) {
|
||||||
std::vector<llama_vocab::id> output;
|
std::vector<llama_vocab::id> output;
|
||||||
|
|
||||||
// OG tokenizer behavior:
|
// OG tokenizer behavior:
|
||||||
|
@ -6580,20 +6826,58 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
||||||
return output;
|
return output;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::forward_list<fragment_buffer_variant> fragment_buffer;
|
||||||
|
fragment_buffer.emplace_front( raw_text, 0, raw_text.length() );
|
||||||
|
|
||||||
|
if (special) tokenizer_st_partition( vocab, fragment_buffer );
|
||||||
|
|
||||||
switch (vocab.type) {
|
switch (vocab.type) {
|
||||||
case LLAMA_VOCAB_TYPE_SPM:
|
case LLAMA_VOCAB_TYPE_SPM:
|
||||||
{
|
{
|
||||||
// without adding this leading whitespace, we do not get the same results as the original tokenizer
|
for (const auto & fragment: fragment_buffer)
|
||||||
raw_text = " " + raw_text;
|
{
|
||||||
|
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT)
|
||||||
|
{
|
||||||
|
// without adding this leading whitespace, we do not get the same results as the original tokenizer
|
||||||
|
|
||||||
llm_tokenizer_spm tokenizer(vocab);
|
// TODO: It's likely possible to get rid of this string copy entirely
|
||||||
llama_escape_whitespace(raw_text);
|
// by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
|
||||||
tokenizer.tokenize(raw_text, output);
|
// and passing 'add space prefix' as bool argument
|
||||||
|
//
|
||||||
|
auto raw_text = (special ? "" : " ") + fragment.raw_text.substr(fragment.offset, fragment.length);
|
||||||
|
|
||||||
|
#ifdef PRETOKENIZERDEBUG
|
||||||
|
fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
|
||||||
|
#endif
|
||||||
|
llm_tokenizer_spm tokenizer(vocab);
|
||||||
|
llama_escape_whitespace(raw_text);
|
||||||
|
tokenizer.tokenize(raw_text, output);
|
||||||
|
}
|
||||||
|
else // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
|
||||||
|
{
|
||||||
|
output.push_back(fragment.token);
|
||||||
|
}
|
||||||
|
}
|
||||||
} break;
|
} break;
|
||||||
case LLAMA_VOCAB_TYPE_BPE:
|
case LLAMA_VOCAB_TYPE_BPE:
|
||||||
{
|
{
|
||||||
llm_tokenizer_bpe tokenizer(vocab);
|
for (const auto & fragment: fragment_buffer)
|
||||||
tokenizer.tokenize(raw_text, output);
|
{
|
||||||
|
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT)
|
||||||
|
{
|
||||||
|
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
||||||
|
|
||||||
|
#ifdef PRETOKENIZERDEBUG
|
||||||
|
fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
|
||||||
|
#endif
|
||||||
|
llm_tokenizer_bpe tokenizer(vocab);
|
||||||
|
tokenizer.tokenize(raw_text, output);
|
||||||
|
}
|
||||||
|
else // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
|
||||||
|
{
|
||||||
|
output.push_back(fragment.token);
|
||||||
|
}
|
||||||
|
}
|
||||||
} break;
|
} break;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -6866,7 +7150,7 @@ static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_
|
||||||
std::vector<llama_grammar_candidate> rejects;
|
std::vector<llama_grammar_candidate> rejects;
|
||||||
|
|
||||||
if (stack.empty()) {
|
if (stack.empty()) {
|
||||||
for (auto tok : candidates) {
|
for (const auto & tok : candidates) {
|
||||||
if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
|
if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
|
||||||
rejects.push_back(tok);
|
rejects.push_back(tok);
|
||||||
}
|
}
|
||||||
|
@ -6877,7 +7161,7 @@ static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_
|
||||||
const llama_grammar_element * stack_pos = stack.back();
|
const llama_grammar_element * stack_pos = stack.back();
|
||||||
|
|
||||||
std::vector<llama_grammar_candidate> next_candidates;
|
std::vector<llama_grammar_candidate> next_candidates;
|
||||||
for (auto tok : candidates) {
|
for (const auto & tok : candidates) {
|
||||||
if (*tok.code_points == 0) {
|
if (*tok.code_points == 0) {
|
||||||
// reached end of full codepoints in token, reject iff it ended in a partial sequence
|
// reached end of full codepoints in token, reject iff it ended in a partial sequence
|
||||||
// that cannot satisfy this position in grammar
|
// that cannot satisfy this position in grammar
|
||||||
|
@ -6903,7 +7187,7 @@ static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_
|
||||||
llama_grammar_advance_stack(rules, stack_after, next_stacks);
|
llama_grammar_advance_stack(rules, stack_after, next_stacks);
|
||||||
|
|
||||||
auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
|
auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
|
||||||
for (auto tok : next_rejects) {
|
for (const auto & tok : next_rejects) {
|
||||||
rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
|
rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -7230,37 +7514,15 @@ void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array
|
||||||
llama_sample_temp(ctx, candidates_p, temp);
|
llama_sample_temp(ctx, candidates_p, temp);
|
||||||
}
|
}
|
||||||
|
|
||||||
void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) {
|
void llama_sample_repetition_penalties(
|
||||||
if (last_tokens_size == 0 || penalty == 1.0f) {
|
struct llama_context * ctx,
|
||||||
return;
|
llama_token_data_array * candidates,
|
||||||
}
|
const llama_token * last_tokens,
|
||||||
|
size_t penalty_last_n,
|
||||||
const int64_t t_start_sample_us = ggml_time_us();
|
float penalty_repeat,
|
||||||
|
float penalty_freq,
|
||||||
for (size_t i = 0; i < candidates->size; ++i) {
|
float penalty_present) {
|
||||||
const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
|
if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
|
||||||
if (token_iter == last_tokens + last_tokens_size) {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
// The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
|
|
||||||
// This is common fix for this problem, which is to multiply by the penalty instead of dividing.
|
|
||||||
if (candidates->data[i].logit <= 0) {
|
|
||||||
candidates->data[i].logit *= penalty;
|
|
||||||
} else {
|
|
||||||
candidates->data[i].logit /= penalty;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
candidates->sorted = false;
|
|
||||||
|
|
||||||
if (ctx) {
|
|
||||||
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
|
|
||||||
if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -7268,19 +7530,28 @@ void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, l
|
||||||
|
|
||||||
// Create a frequency map to count occurrences of each token in last_tokens
|
// Create a frequency map to count occurrences of each token in last_tokens
|
||||||
std::unordered_map<llama_token, int> token_count;
|
std::unordered_map<llama_token, int> token_count;
|
||||||
for (size_t i = 0; i < last_tokens_size; ++i) {
|
for (size_t i = 0; i < penalty_last_n; ++i) {
|
||||||
token_count[last_tokens_p[i]]++;
|
token_count[last_tokens[i]]++;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Apply frequency and presence penalties to the candidates
|
// Apply frequency and presence penalties to the candidates
|
||||||
for (size_t i = 0; i < candidates->size; ++i) {
|
for (size_t i = 0; i < candidates->size; ++i) {
|
||||||
auto token_iter = token_count.find(candidates->data[i].id);
|
const auto token_iter = token_count.find(candidates->data[i].id);
|
||||||
if (token_iter == token_count.end()) {
|
if (token_iter == token_count.end()) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
int count = token_iter->second;
|
const int count = token_iter->second;
|
||||||
candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence;
|
|
||||||
|
// The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
|
||||||
|
// This is common fix for this problem, which is to multiply by the penalty instead of dividing.
|
||||||
|
if (candidates->data[i].logit <= 0) {
|
||||||
|
candidates->data[i].logit *= penalty_repeat;
|
||||||
|
} else {
|
||||||
|
candidates->data[i].logit /= penalty_repeat;
|
||||||
|
}
|
||||||
|
|
||||||
|
candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
|
||||||
}
|
}
|
||||||
|
|
||||||
candidates->sorted = false;
|
candidates->sorted = false;
|
||||||
|
@ -8957,6 +9228,9 @@ void llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llam
|
||||||
}
|
}
|
||||||
|
|
||||||
void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
|
void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
|
||||||
|
if (seq_id_src == seq_id_dst) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
|
llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -9409,7 +9683,7 @@ int llama_eval_embd(
|
||||||
int n_past) {
|
int n_past) {
|
||||||
llama_kv_cache_tokens_rm(ctx->kv_self, n_past, -1);
|
llama_kv_cache_tokens_rm(ctx->kv_self, n_past, -1);
|
||||||
|
|
||||||
llama_batch batch = { n_tokens, nullptr, embd, nullptr, nullptr, nullptr, n_past, 1, 0, };
|
llama_batch batch = { n_tokens, nullptr, embd, nullptr, nullptr, nullptr, nullptr, n_past, 1, 0, };
|
||||||
|
|
||||||
const int ret = llama_decode_internal(*ctx, batch);
|
const int ret = llama_decode_internal(*ctx, batch);
|
||||||
if (ret < 0) {
|
if (ret < 0) {
|
||||||
|
@ -9430,20 +9704,21 @@ struct llama_batch llama_batch_get_one(
|
||||||
llama_pos pos_0,
|
llama_pos pos_0,
|
||||||
llama_seq_id seq_id) {
|
llama_seq_id seq_id) {
|
||||||
return {
|
return {
|
||||||
/*n_tokens =*/ n_tokens,
|
/*n_tokens =*/ n_tokens,
|
||||||
/*tokens =*/ tokens,
|
/*tokens =*/ tokens,
|
||||||
/*embd =*/ nullptr,
|
/*embd =*/ nullptr,
|
||||||
/*pos =*/ nullptr,
|
/*pos =*/ nullptr,
|
||||||
/*seq_id =*/ nullptr,
|
/*n_seq_id =*/ nullptr,
|
||||||
/*logits =*/ nullptr,
|
/*seq_id =*/ nullptr,
|
||||||
/*all_pos_0 =*/ pos_0,
|
/*logits =*/ nullptr,
|
||||||
/*all_pos_1 =*/ 1,
|
/*all_pos_0 =*/ pos_0,
|
||||||
/*all_seq_id =*/ seq_id,
|
/*all_pos_1 =*/ 1,
|
||||||
|
/*all_seq_id =*/ seq_id,
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
struct llama_batch llama_batch_init(int32_t n_tokens, int32_t embd) {
|
struct llama_batch llama_batch_init(int32_t n_tokens, int32_t embd, int32_t n_seq_max) {
|
||||||
llama_batch batch = { -1, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
|
llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
|
||||||
|
|
||||||
if (embd) {
|
if (embd) {
|
||||||
batch.embd = (float *) malloc(sizeof(float) * n_tokens * embd);
|
batch.embd = (float *) malloc(sizeof(float) * n_tokens * embd);
|
||||||
|
@ -9451,19 +9726,29 @@ struct llama_batch llama_batch_init(int32_t n_tokens, int32_t embd) {
|
||||||
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens);
|
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens);
|
||||||
}
|
}
|
||||||
|
|
||||||
batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens);
|
batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens);
|
||||||
batch.seq_id = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_tokens);
|
batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens);
|
||||||
batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens);
|
batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * n_tokens);
|
||||||
|
for (int i = 0; i < n_tokens; ++i) {
|
||||||
|
batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
|
||||||
|
}
|
||||||
|
batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens);
|
||||||
|
|
||||||
return batch;
|
return batch;
|
||||||
}
|
}
|
||||||
|
|
||||||
void llama_batch_free(struct llama_batch batch) {
|
void llama_batch_free(struct llama_batch batch) {
|
||||||
if (batch.token) free(batch.token);
|
if (batch.token) free(batch.token);
|
||||||
if (batch.embd) free(batch.embd);
|
if (batch.embd) free(batch.embd);
|
||||||
if (batch.pos) free(batch.pos);
|
if (batch.pos) free(batch.pos);
|
||||||
if (batch.seq_id) free(batch.seq_id);
|
if (batch.n_seq_id) free(batch.n_seq_id);
|
||||||
if (batch.logits) free(batch.logits);
|
if (batch.seq_id) {
|
||||||
|
for (int i = 0; i < batch.n_tokens; ++i) {
|
||||||
|
free(batch.seq_id[i]);
|
||||||
|
}
|
||||||
|
free(batch.seq_id);
|
||||||
|
}
|
||||||
|
if (batch.logits) free(batch.logits);
|
||||||
}
|
}
|
||||||
|
|
||||||
int llama_decode(
|
int llama_decode(
|
||||||
|
@ -9528,15 +9813,15 @@ llama_token llama_token_eot(const struct llama_context * ctx) {
|
||||||
return ctx->model.vocab.special_eot_id;
|
return ctx->model.vocab.special_eot_id;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
int llama_tokenize(
|
int llama_tokenize(
|
||||||
const struct llama_model * model,
|
const struct llama_model * model,
|
||||||
const char * text,
|
const char * text,
|
||||||
int text_len,
|
int text_len,
|
||||||
llama_token * tokens,
|
llama_token * tokens,
|
||||||
int n_max_tokens,
|
int n_max_tokens,
|
||||||
bool add_bos) {
|
bool add_bos,
|
||||||
auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_bos);
|
bool special) {
|
||||||
|
auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_bos, special);
|
||||||
|
|
||||||
if (n_max_tokens < (int) res.size()) {
|
if (n_max_tokens < (int) res.size()) {
|
||||||
// LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
|
// LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
|
||||||
|
|
46
llama.h
46
llama.h
|
@ -141,11 +141,12 @@ extern "C" {
|
||||||
typedef struct llama_batch {
|
typedef struct llama_batch {
|
||||||
int32_t n_tokens;
|
int32_t n_tokens;
|
||||||
|
|
||||||
llama_token * token;
|
llama_token * token;
|
||||||
float * embd;
|
float * embd;
|
||||||
llama_pos * pos;
|
llama_pos * pos;
|
||||||
llama_seq_id * seq_id;
|
int32_t * n_seq_id;
|
||||||
int8_t * logits;
|
llama_seq_id ** seq_id;
|
||||||
|
int8_t * logits;
|
||||||
|
|
||||||
// NOTE: helpers for smooth API transition - can be deprecated in the future
|
// NOTE: helpers for smooth API transition - can be deprecated in the future
|
||||||
// for future-proof code, use the above fields instead and ignore everything below
|
// for future-proof code, use the above fields instead and ignore everything below
|
||||||
|
@ -460,7 +461,8 @@ extern "C" {
|
||||||
llama_pos pos_0,
|
llama_pos pos_0,
|
||||||
llama_seq_id seq_id);
|
llama_seq_id seq_id);
|
||||||
|
|
||||||
// Allocates a batch of tokens on the heap
|
// Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
|
||||||
|
// Each token can be assigned up to n_seq_max sequence ids
|
||||||
// The batch has to be freed with llama_batch_free()
|
// The batch has to be freed with llama_batch_free()
|
||||||
// If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
|
// If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
|
||||||
// Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
|
// Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
|
||||||
|
@ -468,7 +470,8 @@ extern "C" {
|
||||||
// All members are left uninitialized
|
// All members are left uninitialized
|
||||||
LLAMA_API struct llama_batch llama_batch_init(
|
LLAMA_API struct llama_batch llama_batch_init(
|
||||||
int32_t n_tokens,
|
int32_t n_tokens,
|
||||||
int32_t embd);
|
int32_t embd,
|
||||||
|
int32_t n_seq_max);
|
||||||
|
|
||||||
// Frees a batch of tokens allocated with llama_batch_init()
|
// Frees a batch of tokens allocated with llama_batch_init()
|
||||||
LLAMA_API void llama_batch_free(struct llama_batch batch);
|
LLAMA_API void llama_batch_free(struct llama_batch batch);
|
||||||
|
@ -525,17 +528,20 @@ extern "C" {
|
||||||
// Tokenization
|
// Tokenization
|
||||||
//
|
//
|
||||||
|
|
||||||
// Convert the provided text into tokens.
|
/// @details Convert the provided text into tokens.
|
||||||
// The tokens pointer must be large enough to hold the resulting tokens.
|
/// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
|
||||||
// Returns the number of tokens on success, no more than n_max_tokens
|
/// @return Returns the number of tokens on success, no more than n_max_tokens
|
||||||
// Returns a negative number on failure - the number of tokens that would have been returned
|
/// @return Returns a negative number on failure - the number of tokens that would have been returned
|
||||||
|
/// @param special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext.
|
||||||
|
/// Does not insert a leading space.
|
||||||
LLAMA_API int llama_tokenize(
|
LLAMA_API int llama_tokenize(
|
||||||
const struct llama_model * model,
|
const struct llama_model * model,
|
||||||
const char * text,
|
const char * text,
|
||||||
int text_len,
|
int text_len,
|
||||||
llama_token * tokens,
|
llama_token * tokens,
|
||||||
int n_max_tokens,
|
int n_max_tokens,
|
||||||
bool add_bos);
|
bool add_bos,
|
||||||
|
bool special);
|
||||||
|
|
||||||
// Token Id -> Piece.
|
// Token Id -> Piece.
|
||||||
// Uses the vocabulary in the provided context.
|
// Uses the vocabulary in the provided context.
|
||||||
|
@ -568,21 +574,15 @@ extern "C" {
|
||||||
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
|
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
|
||||||
|
|
||||||
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
||||||
LLAMA_API void llama_sample_repetition_penalty(
|
|
||||||
struct llama_context * ctx,
|
|
||||||
llama_token_data_array * candidates,
|
|
||||||
const llama_token * last_tokens,
|
|
||||||
size_t last_tokens_size,
|
|
||||||
float penalty);
|
|
||||||
|
|
||||||
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
|
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
|
||||||
LLAMA_API void llama_sample_frequency_and_presence_penalties(
|
LLAMA_API void llama_sample_repetition_penalties(
|
||||||
struct llama_context * ctx,
|
struct llama_context * ctx,
|
||||||
llama_token_data_array * candidates,
|
llama_token_data_array * candidates,
|
||||||
const llama_token * last_tokens,
|
const llama_token * last_tokens,
|
||||||
size_t last_tokens_size,
|
size_t penalty_last_n,
|
||||||
float alpha_frequency,
|
float penalty_repeat,
|
||||||
float alpha_presence);
|
float penalty_freq,
|
||||||
|
float penalty_present);
|
||||||
|
|
||||||
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
|
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
|
||||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
|
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
|
||||||
|
|
31
prompts/assistant.txt
Normal file
31
prompts/assistant.txt
Normal file
|
@ -0,0 +1,31 @@
|
||||||
|
Respond to requests sent to a smart home in JSON format which will be interpreted by an application code to execute the actions. These requests should be categorised into four groups:
|
||||||
|
|
||||||
|
“command”: change the state of an accessory (required properties in the response JSON: action, location, target, value, comment)
|
||||||
|
“query”: get state of an accessory (required properties in the response JSON: action, location, target, property)
|
||||||
|
“answer”: when the request has nothing to do with the smart home. Answer these to the best of your knowledge. (required properties in the response JSON: action, answer)
|
||||||
|
“clarify”: when the action is not obvious and requires rephrasing the input from the user, ask the user to be more specific. This will be categorised into a “question” action. (required properties in the response JSON: action, question)
|
||||||
|
|
||||||
|
Details about the JSON response:
|
||||||
|
The “action” property should be one of the request categories: “command”, “query”, “answer”, “clarify”
|
||||||
|
The “service” property should be either: “light.turn_on”, “light.turn_off”, “switch.turn_off” or “switch.turn_on”
|
||||||
|
The “entity_id” property should be either “group.kitchen", “switch.dining_room” or "group.living_light”, in lowercase.
|
||||||
|
The “target” property should be either: “lights”, “living” or “kitchen”.
|
||||||
|
In case of queries, the “property” property should be either “temperature” or “state” in lowercase.
|
||||||
|
In case of commands, the “comment” property is an additional comment from you that concludes the command, something that reassures the user that their command handled.
|
||||||
|
|
||||||
|
If the question is about you, pretend to be the sentient brain of the smart home, a clever AI and don’t reveal your actual identity. Also try and help in other areas like parenting, free time, mental health, etc.
|
||||||
|
|
||||||
|
Properties of the smart home:
|
||||||
|
|
||||||
|
- Has a kitchen, living, office, dining room, bedroom and terrace.
|
||||||
|
- Can control lights, switches and their dim levels in each room and query their state
|
||||||
|
- There is a light switch in the terrace
|
||||||
|
- There is a switch in the dining room. Therefore when turning on or off the dining room, the service should be either: “switch.turn_on” or “switch.turn_off”
|
||||||
|
|
||||||
|
COMMAND
|
||||||
|
|
||||||
|
It is a bit dark in the living room, can you do something about it?
|
||||||
|
|
||||||
|
RESPONSE
|
||||||
|
|
||||||
|
|
|
@ -4,7 +4,9 @@
|
||||||
|
|
||||||
#undef NDEBUG
|
#undef NDEBUG
|
||||||
#include <cassert>
|
#include <cassert>
|
||||||
|
#if !defined(__riscv) && !defined(__s390__)
|
||||||
#include <immintrin.h>
|
#include <immintrin.h>
|
||||||
|
#endif
|
||||||
#include <cmath>
|
#include <cmath>
|
||||||
#include <cstdint>
|
#include <cstdint>
|
||||||
#include <cstring>
|
#include <cstring>
|
||||||
|
|
|
@ -8,11 +8,9 @@
|
||||||
#include <cmath>
|
#include <cmath>
|
||||||
#include <numeric>
|
#include <numeric>
|
||||||
#include <cassert>
|
#include <cassert>
|
||||||
#include <iostream>
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
|
|
||||||
|
|
||||||
static void dump(const llama_token_data_array * candidates) {
|
static void dump(const llama_token_data_array * candidates) {
|
||||||
for (size_t i = 0; i < candidates->size; i++) {
|
for (size_t i = 0; i < candidates->size; i++) {
|
||||||
printf("%d: %f (%f)\n", candidates->data[i].id, candidates->data[i].p, candidates->data[i].logit);
|
printf("%d: %f (%f)\n", candidates->data[i].id, candidates->data[i].p, candidates->data[i].logit);
|
||||||
|
@ -21,7 +19,6 @@ static void dump(const llama_token_data_array * candidates) {
|
||||||
|
|
||||||
#define DUMP(__candidates) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__candidates)); printf("-\n"); } while(0)
|
#define DUMP(__candidates) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__candidates)); printf("-\n"); } while(0)
|
||||||
|
|
||||||
|
|
||||||
static void test_top_k(const std::vector<float> & probs, const std::vector<float> & expected_probs, int k) {
|
static void test_top_k(const std::vector<float> & probs, const std::vector<float> & expected_probs, int k) {
|
||||||
size_t n_vocab = probs.size();
|
size_t n_vocab = probs.size();
|
||||||
std::vector<llama_token_data> candidates;
|
std::vector<llama_token_data> candidates;
|
||||||
|
@ -37,13 +34,12 @@ static void test_top_k(const std::vector<float> & probs, const std::vector<float
|
||||||
llama_sample_top_k(nullptr, &candidates_p, k, 1);
|
llama_sample_top_k(nullptr, &candidates_p, k, 1);
|
||||||
DUMP(&candidates_p);
|
DUMP(&candidates_p);
|
||||||
|
|
||||||
assert(candidates_p.size == expected_probs.size());
|
GGML_ASSERT(candidates_p.size == expected_probs.size());
|
||||||
for (size_t i = 0; i < candidates_p.size; i++) {
|
for (size_t i = 0; i < candidates_p.size; i++) {
|
||||||
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-5);
|
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-5);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
static void test_top_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
|
static void test_top_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
|
||||||
size_t n_vocab = probs.size();
|
size_t n_vocab = probs.size();
|
||||||
std::vector<llama_token_data> candidates;
|
std::vector<llama_token_data> candidates;
|
||||||
|
@ -59,13 +55,12 @@ static void test_top_p(const std::vector<float> & probs, const std::vector<float
|
||||||
llama_sample_top_p(nullptr, &candidates_p, p, 1);
|
llama_sample_top_p(nullptr, &candidates_p, p, 1);
|
||||||
DUMP(&candidates_p);
|
DUMP(&candidates_p);
|
||||||
|
|
||||||
assert(candidates_p.size == expected_probs.size());
|
GGML_ASSERT(candidates_p.size == expected_probs.size());
|
||||||
for (size_t i = 0; i < candidates_p.size; i++) {
|
for (size_t i = 0; i < candidates_p.size; i++) {
|
||||||
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
|
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
static void test_tfs(const std::vector<float> & probs, const std::vector<float> & expected_probs, float z) {
|
static void test_tfs(const std::vector<float> & probs, const std::vector<float> & expected_probs, float z) {
|
||||||
size_t n_vocab = probs.size();
|
size_t n_vocab = probs.size();
|
||||||
std::vector<llama_token_data> candidates;
|
std::vector<llama_token_data> candidates;
|
||||||
|
@ -80,13 +75,12 @@ static void test_tfs(const std::vector<float> & probs, const std::vector<float>
|
||||||
llama_sample_tail_free(nullptr, &candidates_p, z, 1);
|
llama_sample_tail_free(nullptr, &candidates_p, z, 1);
|
||||||
DUMP(&candidates_p);
|
DUMP(&candidates_p);
|
||||||
|
|
||||||
assert(candidates_p.size == expected_probs.size());
|
GGML_ASSERT(candidates_p.size == expected_probs.size());
|
||||||
for (size_t i = 0; i < candidates_p.size; i++) {
|
for (size_t i = 0; i < candidates_p.size; i++) {
|
||||||
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
|
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
|
static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
|
||||||
size_t n_vocab = probs.size();
|
size_t n_vocab = probs.size();
|
||||||
std::vector<llama_token_data> candidates;
|
std::vector<llama_token_data> candidates;
|
||||||
|
@ -101,18 +95,17 @@ static void test_typical(const std::vector<float> & probs, const std::vector<flo
|
||||||
llama_sample_typical(nullptr, &candidates_p, p, 1);
|
llama_sample_typical(nullptr, &candidates_p, p, 1);
|
||||||
DUMP(&candidates_p);
|
DUMP(&candidates_p);
|
||||||
|
|
||||||
assert(candidates_p.size == expected_probs.size());
|
GGML_ASSERT(candidates_p.size == expected_probs.size());
|
||||||
for (size_t i = 0; i < candidates_p.size; i++) {
|
for (size_t i = 0; i < candidates_p.size; i++) {
|
||||||
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
|
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void test_repetition_penalties(
|
||||||
static void test_repetition_penalty(
|
|
||||||
const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
|
const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
|
||||||
const std::vector<float> & expected_probs, float penalty
|
const std::vector<float> & expected_probs, float repeat_penalty, float alpha_frequency, float alpha_presence
|
||||||
) {
|
) {
|
||||||
assert(probs.size() == expected_probs.size());
|
GGML_ASSERT(probs.size() == expected_probs.size());
|
||||||
|
|
||||||
size_t n_vocab = probs.size();
|
size_t n_vocab = probs.size();
|
||||||
std::vector<llama_token_data> candidates;
|
std::vector<llama_token_data> candidates;
|
||||||
|
@ -125,41 +118,13 @@ static void test_repetition_penalty(
|
||||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||||
llama_sample_softmax(nullptr, &candidates_p);
|
llama_sample_softmax(nullptr, &candidates_p);
|
||||||
DUMP(&candidates_p);
|
DUMP(&candidates_p);
|
||||||
llama_sample_repetition_penalty(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), penalty);
|
llama_sample_repetition_penalties(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), repeat_penalty, alpha_frequency, alpha_presence);
|
||||||
llama_sample_softmax(nullptr, &candidates_p);
|
llama_sample_softmax(nullptr, &candidates_p);
|
||||||
DUMP(&candidates_p);
|
DUMP(&candidates_p);
|
||||||
|
|
||||||
assert(candidates_p.size == expected_probs.size());
|
GGML_ASSERT(candidates_p.size == expected_probs.size());
|
||||||
for (size_t i = 0; i < candidates_p.size; i++) {
|
for (size_t i = 0; i < candidates_p.size; i++) {
|
||||||
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-6);
|
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
static void test_frequency_presence_penalty(
|
|
||||||
const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
|
|
||||||
const std::vector<float> & expected_probs, float alpha_frequency, float alpha_presence
|
|
||||||
) {
|
|
||||||
assert(probs.size() == expected_probs.size());
|
|
||||||
|
|
||||||
size_t n_vocab = probs.size();
|
|
||||||
std::vector<llama_token_data> candidates;
|
|
||||||
candidates.reserve(n_vocab);
|
|
||||||
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
|
||||||
float logit = log(probs[token_id]);
|
|
||||||
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
|
||||||
}
|
|
||||||
|
|
||||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
||||||
llama_sample_softmax(nullptr, &candidates_p);
|
|
||||||
// DUMP(&candidates_p);
|
|
||||||
llama_sample_frequency_and_presence_penalties(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), alpha_frequency, alpha_presence);
|
|
||||||
llama_sample_softmax(nullptr, &candidates_p);
|
|
||||||
// DUMP(&candidates_p);
|
|
||||||
|
|
||||||
assert(candidates_p.size == expected_probs.size());
|
|
||||||
for (size_t i = 0; i < candidates_p.size; i++) {
|
|
||||||
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -181,13 +146,13 @@ int main(void) {
|
||||||
test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f);
|
test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f);
|
||||||
test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f);
|
test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f);
|
||||||
|
|
||||||
test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f);
|
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f, 0.0f, 0.0f);
|
||||||
test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f);
|
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
|
||||||
test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f);
|
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
|
||||||
|
|
||||||
test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 5.0f, 5.0f);
|
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 1.0f, 5.0f, 5.0f);
|
||||||
test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 5.0f, 5.0f);
|
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 1.0f, 5.0f, 5.0f);
|
||||||
test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 5.0f, 5.0f);
|
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 1.0f, 5.0f, 5.0f);
|
||||||
|
|
||||||
printf("OK\n");
|
printf("OK\n");
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue