use async copy and compute to improve multi-gpu performance
ggml-ci
This commit is contained in:
parent
c4867196b4
commit
23c14ef53e
6 changed files with 201 additions and 167 deletions
|
@ -102,8 +102,6 @@ void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
|
|||
}
|
||||
}
|
||||
|
||||
AT_PRINTF("block %d\n", best_fit_block);
|
||||
|
||||
if (best_fit_block == -1) {
|
||||
// the last block is our last resort
|
||||
struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
|
||||
|
@ -117,6 +115,7 @@ void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
|
|||
return;
|
||||
}
|
||||
}
|
||||
|
||||
struct free_block * block = &alloc->free_blocks[best_fit_block];
|
||||
void * addr = block->addr;
|
||||
block->addr = (char*)block->addr + size;
|
||||
|
@ -129,6 +128,8 @@ void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
|
|||
}
|
||||
}
|
||||
|
||||
AT_PRINTF("block %d, addr %p\n", best_fit_block, addr);
|
||||
|
||||
tensor->data = addr;
|
||||
tensor->buffer = alloc->buffer;
|
||||
if (!alloc->measure) {
|
||||
|
|
|
@ -36,14 +36,12 @@ extern "C" {
|
|||
|
||||
struct ggml_backend_buffer_i {
|
||||
const char * (*get_name) (ggml_backend_buffer_t buffer);
|
||||
void (*free_buffer) (ggml_backend_buffer_t buffer);
|
||||
void (*free_buffer)(ggml_backend_buffer_t buffer);
|
||||
void * (*get_base) (ggml_backend_buffer_t buffer);
|
||||
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
void (*init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
// (optional) copy tensor between different buffer-type, allow for single-copy tranfers
|
||||
void (*cpy_tensor_from)(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
void (*cpy_tensor_to) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
bool (*cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer
|
||||
void (*clear) (ggml_backend_buffer_t buffer, uint8_t value);
|
||||
void (*reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
|
||||
};
|
||||
|
@ -62,6 +60,8 @@ extern "C" {
|
|||
ggml_backend_buffer_context_t context,
|
||||
size_t size);
|
||||
|
||||
// do not use directly, use ggml_backend_tensor_copy instead
|
||||
bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
//
|
||||
// Backend
|
||||
|
@ -77,14 +77,12 @@ extern "C" {
|
|||
// buffer allocation
|
||||
ggml_backend_buffer_type_t (*get_default_buffer_type)(ggml_backend_t backend);
|
||||
|
||||
// (optional) asynchroneous tensor data access
|
||||
// (optional) asynchronous tensor data access
|
||||
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
bool (*cpy_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
// (optional) asynchroneous tensor copy
|
||||
void (*cpy_tensor_from_async)(ggml_backend_t backend, const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
void (*cpy_tensor_to_async) (ggml_backend_t backend, const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
// (optional) complete all pending operations
|
||||
void (*synchronize)(ggml_backend_t backend);
|
||||
|
||||
// compute graph with a plan
|
||||
|
@ -92,7 +90,7 @@ extern "C" {
|
|||
void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
|
||||
// compute graph without a plan
|
||||
// compute graph without a plan (async)
|
||||
bool (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
|
||||
// check if the backend supports an operation
|
||||
|
@ -105,7 +103,6 @@ extern "C" {
|
|||
ggml_backend_context_t context;
|
||||
};
|
||||
|
||||
|
||||
//
|
||||
// Backend registry
|
||||
//
|
||||
|
|
249
ggml-backend.c
249
ggml-backend.c
|
@ -132,6 +132,14 @@ void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
|
|||
}
|
||||
}
|
||||
|
||||
bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
|
||||
if (dst_buf->iface.cpy_tensor) {
|
||||
return src->buffer->iface.cpy_tensor(dst_buf, src, dst);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// backend
|
||||
|
||||
const char * ggml_backend_name(ggml_backend_t backend) {
|
||||
|
@ -165,30 +173,42 @@ void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor *
|
|||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
||||
|
||||
if (backend->iface.set_tensor_async == NULL) {
|
||||
ggml_backend_tensor_set(tensor, data, offset, size);
|
||||
} else {
|
||||
backend->iface.set_tensor_async(backend, tensor, data, offset, size);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
||||
|
||||
if (backend->iface.get_tensor_async == NULL) {
|
||||
ggml_backend_tensor_get(tensor, data, offset, size);
|
||||
} else {
|
||||
backend->iface.get_tensor_async(backend, tensor, data, offset, size);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
|
||||
|
||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set");
|
||||
GGML_ASSERT(buf != NULL && "tensor buffer not set");
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
||||
|
||||
tensor->buffer->iface.set_tensor(tensor->buffer, tensor, data, offset, size);
|
||||
tensor->buffer->iface.set_tensor(buf, tensor, data, offset, size);
|
||||
}
|
||||
|
||||
void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
|
||||
|
||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set");
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
||||
|
||||
tensor->buffer->iface.get_tensor(tensor->buffer, tensor, data, offset, size);
|
||||
tensor->buffer->iface.get_tensor(buf, tensor, data, offset, size);
|
||||
}
|
||||
|
||||
void ggml_backend_synchronize(ggml_backend_t backend) {
|
||||
|
@ -209,19 +229,10 @@ void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_pla
|
|||
|
||||
void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
backend->iface.graph_plan_compute(backend, plan);
|
||||
|
||||
// TODO: optional sync
|
||||
ggml_backend_synchronize(backend);
|
||||
}
|
||||
|
||||
bool ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
if (!backend->iface.graph_compute(backend, cgraph)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// TODO: optional sync
|
||||
ggml_backend_synchronize(backend);
|
||||
return true;
|
||||
return backend->iface.graph_compute(backend, cgraph);
|
||||
}
|
||||
|
||||
bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||
|
@ -246,28 +257,20 @@ static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml
|
|||
}
|
||||
|
||||
void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
//printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]);
|
||||
//printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]);
|
||||
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
|
||||
|
||||
// fprintf(stderr, "cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
|
||||
|
||||
if (src == dst) {
|
||||
return;
|
||||
}
|
||||
|
||||
// TODO: allow backends to support copy to/from same backend
|
||||
|
||||
if (dst->buffer->iface.cpy_tensor_from != NULL) {
|
||||
dst->buffer->iface.cpy_tensor_from(dst->buffer, src, dst);
|
||||
} else if (src->buffer->iface.cpy_tensor_to != NULL) {
|
||||
src->buffer->iface.cpy_tensor_to(src->buffer, src, dst);
|
||||
} else {
|
||||
// shouldn't be hit when copying from/to CPU
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "ggml_backend_tensor_copy: neither cpy_tensor_from nor cpy_tensor_to "
|
||||
"are implemented for %s and %s, falling back to get/set\n", src->name, dst->name);
|
||||
#endif
|
||||
if (ggml_backend_buffer_is_host(src->buffer)) {
|
||||
ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
|
||||
} else if (ggml_backend_buffer_is_host(dst->buffer)) {
|
||||
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
|
||||
} else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
|
||||
#endif
|
||||
size_t nbytes = ggml_nbytes(src);
|
||||
void * data = malloc(nbytes);
|
||||
ggml_backend_tensor_get(src, data, 0, nbytes);
|
||||
|
@ -276,6 +279,31 @@ void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst
|
|||
}
|
||||
}
|
||||
|
||||
void ggml_backend_tensor_copy_async(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
|
||||
|
||||
if (src == dst) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (ggml_backend_buft_supports_backend(src->buffer->buft, backend) && ggml_backend_buft_supports_backend(dst->buffer->buft, backend)) {
|
||||
if (backend->iface.cpy_tensor_async != NULL) {
|
||||
if (backend->iface.cpy_tensor_async(backend, src, dst)) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
size_t nbytes = ggml_nbytes(src);
|
||||
if (ggml_backend_buffer_is_host(src->buffer)) {
|
||||
ggml_backend_tensor_set_async(backend, dst, src->data, 0, nbytes);
|
||||
}
|
||||
else {
|
||||
ggml_backend_tensor_copy(src, dst);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// backend registry
|
||||
|
||||
#define GGML_MAX_BACKENDS_REG 16
|
||||
|
@ -437,14 +465,12 @@ static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, con
|
|||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_buffer_cpy_tensor_from(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
|
||||
static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
if (ggml_backend_buffer_is_host(src->buffer)) {
|
||||
memcpy(dst->data, src->data, ggml_nbytes(src));
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
@ -460,8 +486,7 @@ static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
|
|||
/* .init_tensor = */ NULL, // no initialization required
|
||||
/* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
|
||||
/* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
|
||||
/* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to,
|
||||
/* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
|
||||
/* .clear = */ ggml_backend_cpu_buffer_clear,
|
||||
/* .reset = */ NULL,
|
||||
};
|
||||
|
@ -474,8 +499,7 @@ static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
|
|||
/* .init_tensor = */ NULL, // no initialization required
|
||||
/* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
|
||||
/* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
|
||||
/* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to,
|
||||
/* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
|
||||
/* .clear = */ ggml_backend_cpu_buffer_clear,
|
||||
/* .reset = */ NULL,
|
||||
};
|
||||
|
@ -683,8 +707,7 @@ static struct ggml_backend_i cpu_backend_i = {
|
|||
/* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
|
||||
/* .set_tensor_async = */ NULL,
|
||||
/* .get_tensor_async = */ NULL,
|
||||
/* .cpy_tensor_from_async = */ NULL,
|
||||
/* .cpy_tensor_to_async = */ NULL,
|
||||
/* .cpy_tensor_async = */ NULL,
|
||||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
|
||||
/* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
|
||||
|
@ -748,12 +771,6 @@ struct ggml_backend_sched_split {
|
|||
struct ggml_cgraph graph;
|
||||
};
|
||||
|
||||
// TODO: group all the hash values into a single struct for clarity
|
||||
//struct sched_hash_value {
|
||||
// ggml_tallocr_t tallocr;
|
||||
// struct ggml_tensor * copies[GGML_MAX_BACKENDS];
|
||||
//};
|
||||
|
||||
struct ggml_backend_sched {
|
||||
int n_backends;
|
||||
ggml_backend_t backends[GGML_MAX_BACKENDS];
|
||||
|
@ -810,14 +827,22 @@ static int sched_allocr_prio(ggml_backend_sched_t sched, ggml_tallocr_t allocr)
|
|||
return INT_MAX;
|
||||
}
|
||||
|
||||
static ggml_backend_t get_buffer_backend(ggml_backend_sched_t sched, ggml_backend_buffer_t buffer) {
|
||||
static ggml_tallocr_t sched_allocr_from_buffer(ggml_backend_sched_t sched, ggml_backend_buffer_t buffer) {
|
||||
if (buffer == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// check if this is already allocate in a allocr buffer (from user manual allocations)
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
if (ggml_tallocr_get_buffer(sched->tallocs[i]) == buffer) {
|
||||
return sched->tallocs[i];
|
||||
}
|
||||
}
|
||||
|
||||
// find highest prio backend that supports the buffer type
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
|
||||
return sched->backends[i];
|
||||
return sched->tallocs[i];
|
||||
}
|
||||
}
|
||||
GGML_ASSERT(false && "tensor buffer type not supported by any backend");
|
||||
|
@ -827,7 +852,6 @@ static ggml_backend_t get_allocr_backend(ggml_backend_sched_t sched, ggml_talloc
|
|||
if (allocr == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
// find highest prio backend that supports the buffer type
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
if (sched->tallocs[i] == allocr) {
|
||||
return sched->backends[i];
|
||||
|
@ -837,7 +861,7 @@ static ggml_backend_t get_allocr_backend(ggml_backend_sched_t sched, ggml_talloc
|
|||
}
|
||||
|
||||
#if 0
|
||||
static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove
|
||||
static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug only
|
||||
#define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
|
||||
#define GET_CAUSE(node) causes[hash_id(node)]
|
||||
#else
|
||||
|
@ -846,49 +870,37 @@ static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_I
|
|||
#endif
|
||||
|
||||
// returns the backend that should be used for the node based on the current locations
|
||||
static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * node) {
|
||||
// if the dst tensor is already allocated in a buffer, we must assume that it is critical to keep it there
|
||||
// ie. kv cache updates
|
||||
// note that this doesn't allow fallback to CPU. need to add output tensors to the splits to copy the data back to the original backend.
|
||||
|
||||
static ggml_tallocr_t sched_allocr_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * node) {
|
||||
// assign pre-allocated nodes to their backend
|
||||
// dst
|
||||
ggml_backend_t cur_backend = get_buffer_backend(sched, node->buffer);
|
||||
if (cur_backend != NULL) {
|
||||
ggml_tallocr_t cur_allocr = sched_allocr_from_buffer(sched, node->buffer);
|
||||
if (cur_allocr != NULL) {
|
||||
SET_CAUSE(node, "1.dst");
|
||||
return cur_backend;
|
||||
return cur_allocr;
|
||||
}
|
||||
|
||||
// view_src
|
||||
if (node->view_src != NULL && get_buffer_backend(sched, node->view_src->buffer) != NULL) {
|
||||
if (node->view_src != NULL) {
|
||||
cur_allocr = sched_allocr_from_buffer(sched, node->view_src->buffer);
|
||||
if (cur_allocr != NULL) {
|
||||
SET_CAUSE(node, "1.vsrc");
|
||||
return get_buffer_backend(sched, node->view_src->buffer);
|
||||
return cur_allocr;
|
||||
}
|
||||
|
||||
// src
|
||||
size_t cur_size = 0;
|
||||
|
||||
}
|
||||
// assign nodes that use weights to the backend of the weights
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
const struct ggml_tensor * src = node->src[i];
|
||||
if (src == NULL) {
|
||||
break;
|
||||
}
|
||||
|
||||
ggml_backend_t src_backend = get_buffer_backend(sched, src->buffer);
|
||||
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
|
||||
// operations with weights are always on the same backend as the weights
|
||||
cur_backend = src_backend;
|
||||
ggml_tallocr_t src_allocr = sched_allocr_from_buffer(sched, src->buffer);
|
||||
// operations with weights are always run on the same backend as the weights
|
||||
SET_CAUSE(node, "1.wgt%d", i);
|
||||
break;
|
||||
return src_allocr;
|
||||
}
|
||||
}
|
||||
|
||||
size_t src_size = ggml_nbytes(src);
|
||||
if (src_size >= cur_size) {
|
||||
cur_size = src_size;
|
||||
cur_backend = src_backend;
|
||||
SET_CAUSE(node, "1.src%d", i);
|
||||
}
|
||||
}
|
||||
return cur_backend;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static char * fmt_size(size_t size) {
|
||||
|
@ -953,7 +965,6 @@ static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, co
|
|||
//#define DEBUG_PASS4
|
||||
|
||||
// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
|
||||
// TODO: merge passes
|
||||
static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
// reset splits
|
||||
sched->n_splits = 0;
|
||||
|
@ -972,20 +983,14 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
// pass 1: assign backends to ops with allocated inputs
|
||||
// pass 1: assign backends to ops with pre-allocated inputs
|
||||
for (int i = 0; i < graph->n_leafs; i++) {
|
||||
struct ggml_tensor * leaf = graph->leafs[i];
|
||||
if (node_allocr(leaf) != NULL) {
|
||||
// do not overwrite user assignments
|
||||
continue;
|
||||
}
|
||||
ggml_backend_t leaf_backend = get_buffer_backend(sched, leaf->buffer);
|
||||
if (leaf_backend == NULL && leaf->view_src != NULL) {
|
||||
leaf_backend = get_buffer_backend(sched, leaf->view_src->buffer);
|
||||
}
|
||||
if (leaf_backend != NULL) {
|
||||
node_allocr(leaf) = ggml_backend_sched_get_tallocr(sched, leaf_backend);
|
||||
}
|
||||
node_allocr(leaf) = sched_allocr_from_cur(sched, leaf);
|
||||
}
|
||||
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
|
@ -994,18 +999,24 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|||
// do not overwrite user assignments
|
||||
continue;
|
||||
}
|
||||
ggml_backend_t node_backend = sched_backend_from_cur(sched, node);
|
||||
if (node_backend != NULL) {
|
||||
node_allocr(node) = ggml_backend_sched_get_tallocr(sched, node_backend);
|
||||
node_allocr(node) = sched_allocr_from_cur(sched, node);
|
||||
// src
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
break;
|
||||
}
|
||||
if (node_allocr(src) == NULL) {
|
||||
node_allocr(src) = sched_allocr_from_cur(sched, src);
|
||||
}
|
||||
}
|
||||
}
|
||||
#ifdef DEBUG_PASS1
|
||||
fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
|
||||
#endif
|
||||
|
||||
// pass 2: assign backends to ops from current assignments
|
||||
// start from the end and assign the same backend to previous ops
|
||||
|
||||
// pass 2: expand current backend assignments
|
||||
// assign the same backend to adjacent nodes
|
||||
// expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
|
||||
// thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
|
||||
|
||||
|
@ -1027,7 +1038,7 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|||
}
|
||||
} else {
|
||||
node_allocr(node) = cur_allocr;
|
||||
SET_CAUSE(node, "2.cur");
|
||||
SET_CAUSE(node, "2.1");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1050,7 +1061,7 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|||
}
|
||||
} else {
|
||||
node_allocr(node) = cur_allocr;
|
||||
SET_CAUSE(node, "2.cur");
|
||||
SET_CAUSE(node, "2.2");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1068,7 +1079,7 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|||
cur_allocr = node_allocr;
|
||||
} else {
|
||||
node_allocr(node) = cur_allocr;
|
||||
SET_CAUSE(node, "2.cur");
|
||||
SET_CAUSE(node, "2.3");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1080,7 +1091,7 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
ggml_tallocr_t cur_allocr = node_allocr(node);
|
||||
if (ggml_is_view_op(node->op) && cur_allocr == NULL) {
|
||||
if (node->view_src != NULL && cur_allocr == NULL) {
|
||||
cur_allocr = node_allocr(node) = node_allocr(node->view_src);
|
||||
SET_CAUSE(node, "3.vsrc");
|
||||
}
|
||||
|
@ -1094,8 +1105,10 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|||
if (src->view_src != NULL) {
|
||||
// views are always on the same backend as the source
|
||||
node_allocr(src) = node_allocr(src->view_src);
|
||||
SET_CAUSE(src, "3.vsrc");
|
||||
} else {
|
||||
node_allocr(src) = cur_allocr;
|
||||
SET_CAUSE(src, "3.cur");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1136,7 +1149,6 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|||
sched->splits[cur_split].tallocr = node_allocr;
|
||||
sched->splits[cur_split].i_start = i;
|
||||
sched->splits[cur_split].n_inputs = 0;
|
||||
memset(sched->splits[cur_split].inputs, 0, sizeof(sched->splits[cur_split].inputs)); //HACK
|
||||
cur_allocr = node_allocr;
|
||||
cur_backend_id = sched_allocr_prio(sched, cur_allocr);
|
||||
}
|
||||
|
@ -1148,6 +1160,7 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|||
break;
|
||||
}
|
||||
ggml_tallocr_t src_allocr = node_allocr(src);
|
||||
GGML_ASSERT(src_allocr != NULL); // all inputs should be assigned by now
|
||||
if (src_allocr != node_allocr) {
|
||||
// check if the input is already in the split
|
||||
bool found = false;
|
||||
|
@ -1162,17 +1175,19 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|||
int n_inputs = sched->splits[cur_split].n_inputs++;
|
||||
//printf("split %d input %d: %s (%s)\n", cur_split, n_inputs, src->name, ggml_backend_name(get_allocr_backend(sched, src_allocr)));
|
||||
GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
|
||||
sched->splits[cur_split].inputs[n_inputs] = (struct ggml_tensor *)src;
|
||||
sched->splits[cur_split].inputs[n_inputs] = src;
|
||||
}
|
||||
|
||||
// create a copy of the input in the split's backend
|
||||
size_t id = hash_id(src);
|
||||
if (sched->node_copies[id][cur_backend_id] == NULL) {
|
||||
ggml_backend_t backend = get_allocr_backend(sched, cur_allocr);
|
||||
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
|
||||
ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
|
||||
|
||||
sched->node_copies[id][cur_backend_id] = tensor_copy;
|
||||
node_allocr(tensor_copy) = cur_allocr;
|
||||
ggml_backend_t backend = get_allocr_backend(sched, cur_allocr);
|
||||
ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
|
||||
SET_CAUSE(tensor_copy, "4.cpy");
|
||||
}
|
||||
node->src[j] = sched->node_copies[id][cur_backend_id];
|
||||
}
|
||||
|
@ -1231,6 +1246,7 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|||
struct ggml_tensor * input = split->inputs[j];
|
||||
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_allocr_prio(sched, split->tallocr)];
|
||||
// add a dependency to the input source so that it is not freed before the copy is done
|
||||
GGML_ASSERT(input_cpy->src[0] == NULL || input_cpy->src[0] == input);
|
||||
input_cpy->src[0] = input;
|
||||
graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
|
||||
}
|
||||
|
@ -1265,25 +1281,16 @@ static void sched_compute_splits(ggml_backend_sched_t sched) {
|
|||
uint64_t copy_start_us = ggml_time_us();
|
||||
for (int j = 0; j < split->n_inputs; j++) {
|
||||
struct ggml_tensor * input = split->inputs[j];
|
||||
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_backend_prio(sched, split_backend)];
|
||||
if (input->buffer == NULL) {
|
||||
GGML_ASSERT(false);
|
||||
if (input->view_src == NULL) {
|
||||
fprintf(stderr, "input %s has no buffer and no view_src\n", input->name);
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
// FIXME: may need to use the sched buffer instead
|
||||
ggml_backend_view_init(input->view_src->buffer, input);
|
||||
}
|
||||
if (input_cpy->buffer == NULL) {
|
||||
fprintf(stderr, "input_cpy %s has no buffer\n", input_cpy->name);
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][split_backend_id];
|
||||
|
||||
GGML_ASSERT(input->buffer != NULL);
|
||||
GGML_ASSERT(input_cpy->buffer != NULL);
|
||||
|
||||
// TODO: avoid this copy if it was already copied in a previous split, and the input didn't change
|
||||
// this is important to avoid copying constants such as KQ_mask and inp_pos multiple times
|
||||
ggml_backend_tensor_copy(input, input_cpy);
|
||||
ggml_backend_tensor_copy_async(split_backend, input, input_cpy);
|
||||
}
|
||||
// ggml_backend_synchronize(split_backend);
|
||||
//ggml_backend_synchronize(split_backend); // necessary to measure copy time
|
||||
int64_t copy_end_us = ggml_time_us();
|
||||
copy_us[split_backend_id] += copy_end_us - copy_start_us;
|
||||
|
||||
|
@ -1295,7 +1302,7 @@ static void sched_compute_splits(ggml_backend_sched_t sched) {
|
|||
|
||||
uint64_t compute_start_us = ggml_time_us();
|
||||
ggml_backend_graph_compute(split_backend, &split->graph);
|
||||
// ggml_backend_synchronize(split_backend);
|
||||
//ggml_backend_synchronize(split_backend); // necessary to measure compute time
|
||||
uint64_t compute_end_us = ggml_time_us();
|
||||
compute_us[split_backend_id] += compute_end_us - compute_start_us;
|
||||
}
|
||||
|
|
|
@ -43,7 +43,6 @@ extern "C" {
|
|||
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer);
|
||||
|
||||
|
||||
//
|
||||
// Backend
|
||||
//
|
||||
|
|
54
ggml-cuda.cu
54
ggml-cuda.cu
|
@ -9899,6 +9899,10 @@ static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buff
|
|||
return ctx->name.c_str();
|
||||
}
|
||||
|
||||
static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
|
||||
return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name;
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
||||
CUDA_CHECK(cudaFree(ctx->dev_ptr));
|
||||
|
@ -9961,6 +9965,24 @@ static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, co
|
|||
ggml_cuda_set_device(ctx->device);
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
CUDA_CHECK(cudaMemcpy(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost));
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
|
||||
if (ggml_backend_buffer_is_cuda(src->buffer)) {
|
||||
ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
|
||||
ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
||||
|
||||
ggml_cuda_set_device(src_ctx->device);
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
ggml_cuda_set_device(dst_ctx->device);
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
CUDA_CHECK(cudaMemcpy((char *)dst->data, (const char *)src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice));
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
|
@ -9979,8 +10001,7 @@ static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
|
|||
/* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor,
|
||||
/* .set_tensor = */ ggml_backend_cuda_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor,
|
||||
/* .cpy_tensor_from = */ NULL,
|
||||
/* .cpy_tensor_to = */ NULL,
|
||||
/* .cpy_tensor = */ ggml_backend_cuda_buffer_cpy_tensor,
|
||||
/* .clear = */ ggml_backend_cuda_buffer_clear,
|
||||
/* .reset = */ NULL,
|
||||
};
|
||||
|
@ -10114,6 +10135,11 @@ static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_
|
|||
UNUSED(buffer);
|
||||
}
|
||||
|
||||
// unused at the moment
|
||||
//static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) {
|
||||
// return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name;
|
||||
//}
|
||||
|
||||
static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
|
||||
delete ctx;
|
||||
|
@ -10256,8 +10282,7 @@ static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
|
|||
/* .init_tensor = */ ggml_backend_cuda_split_buffer_init_tensor,
|
||||
/* .set_tensor = */ ggml_backend_cuda_split_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_cuda_split_buffer_get_tensor,
|
||||
/* .cpy_tensor_from = */ NULL,
|
||||
/* .cpy_tensor_to = */ NULL,
|
||||
/* .cpy_tensor = */ NULL,
|
||||
/* .clear = */ ggml_backend_cuda_split_buffer_clear,
|
||||
/* .reset = */ NULL,
|
||||
};
|
||||
|
@ -10457,6 +10482,17 @@ static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggm
|
|||
CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, g_cudaStreams[cuda_ctx->device][0]));
|
||||
}
|
||||
|
||||
static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
if (dst->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && ggml_backend_buffer_is_cuda(src->buffer)) {
|
||||
CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, g_cudaStreams[cuda_ctx->device][0]));
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
|
@ -10476,8 +10512,9 @@ static bool ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph
|
|||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE)
|
||||
if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
|
||||
continue;
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
assert(node->backend == GGML_BACKEND_GPU || node->backend == GGML_BACKEND_GPU_SPLIT);
|
||||
|
@ -10487,7 +10524,7 @@ static bool ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph
|
|||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
if (node->src[j] != nullptr) {
|
||||
assert(node->src[j]->backend == GGML_BACKEND_GPU || node->src[j]->backend == GGML_BACKEND_GPU_SPLIT);
|
||||
//assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
|
||||
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
|
||||
assert(node->src[j]->extra != nullptr);
|
||||
}
|
||||
}
|
||||
|
@ -10500,8 +10537,6 @@ static bool ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph
|
|||
GGML_ASSERT(ok);
|
||||
}
|
||||
|
||||
UNUSED(backend);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -10622,8 +10657,7 @@ static ggml_backend_i ggml_backend_cuda_interface = {
|
|||
/* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type,
|
||||
/* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async,
|
||||
/* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async,
|
||||
/* .cpy_tensor_from_async = */ NULL,
|
||||
/* .cpy_tensor_to_async = */ NULL,
|
||||
/* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async,
|
||||
/* .synchronize = */ ggml_backend_cuda_synchronize,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
|
|
20
ggml-metal.m
20
ggml-metal.m
|
@ -2525,14 +2525,12 @@ static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, c
|
|||
UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_buffer_cpy_tensor_from(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
|
||||
|
||||
UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
|
||||
static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
if (ggml_backend_buffer_is_host(src->buffer)) {
|
||||
memcpy(dst->data, src->data, ggml_nbytes(src));
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
|
||||
UNUSED(buffer);
|
||||
}
|
||||
|
@ -2550,8 +2548,7 @@ static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = {
|
|||
/* .init_tensor = */ NULL,
|
||||
/* .set_tensor = */ ggml_backend_metal_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_metal_buffer_get_tensor,
|
||||
/* .cpy_tensor_from = */ ggml_backend_metal_buffer_cpy_tensor_from,
|
||||
/* .cpy_tensor_to = */ ggml_backend_metal_buffer_cpy_tensor_to,
|
||||
/* .cpy_tensor = */ ggml_backend_metal_buffer_cpy_tensor,
|
||||
/* .clear = */ ggml_backend_metal_buffer_clear,
|
||||
/* .reset = */ NULL,
|
||||
};
|
||||
|
@ -2774,8 +2771,7 @@ static struct ggml_backend_i ggml_backend_metal_i = {
|
|||
/* .get_default_buffer_type = */ ggml_backend_metal_get_default_buffer_type,
|
||||
/* .set_tensor_async = */ NULL,
|
||||
/* .get_tensor_async = */ NULL,
|
||||
/* .cpy_tensor_from_async = */ NULL,
|
||||
/* .cpy_tensor_to_async = */ NULL,
|
||||
/* .cpy_tensor_async = */ NULL,
|
||||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue