updated lite, fixed some encoding issues

This commit is contained in:
Concedo 2023-05-21 17:29:00 +08:00
parent 75e4548821
commit 24127ebf98
3 changed files with 28 additions and 16 deletions

File diff suppressed because one or more lines are too long

View file

@ -191,6 +191,14 @@ def generate(prompt,max_length=20, max_context_length=512,temperature=0.8,top_k=
return ret.text.decode("UTF-8","ignore")
return ""
def utfprint(str):
try:
print(str)
except UnicodeEncodeError:
# Replace or omit the problematic character
utf_string = str.encode('ascii', 'ignore').decode('ascii')
print(utf_string)
#################################################################
### A hacky simple HTTP server simulating a kobold api by Concedo
### we are intentionally NOT using flask, because we want MINIMAL dependencies
@ -301,7 +309,7 @@ class ServerRequestHandler(http.server.SimpleHTTPRequestHandler):
self.send_response(503)
self.end_headers()
return
print("\nInput: " + json.dumps(genparams))
utfprint("\nInput: " + json.dumps(genparams))
modelbusy = True
if kai_api_flag:
@ -327,7 +335,7 @@ class ServerRequestHandler(http.server.SimpleHTTPRequestHandler):
seed=-1,
stop_sequence=genparams.get('stop_sequence', [])
)
print("\nOutput: " + recvtxt)
utfprint("\nOutput: " + recvtxt)
res = {"results": [{"text": recvtxt}]}
else:
recvtxt = generate(
@ -343,7 +351,7 @@ class ServerRequestHandler(http.server.SimpleHTTPRequestHandler):
seed=-1,
stop_sequence=genparams.get('stop_sequence', [])
)
print("\nOutput: " + recvtxt)
utfprint("\nOutput: " + recvtxt)
res = {"data": {"seqs":[recvtxt]}}
try:

View file

@ -1071,17 +1071,17 @@ static void llama_v2_model_load_internal(
for (int i = 0; i < n_gpu; ++i) {
const auto & layer = model.layers[i];
ggml_v2_cuda_transform_tensor(layer.wq); vram_total += ggml_v2_nbytes(layer.wq);
ggml_v2_cuda_transform_tensor(layer.wk); vram_total += ggml_v2_nbytes(layer.wk);
ggml_v2_cuda_transform_tensor(layer.wv); vram_total += ggml_v2_nbytes(layer.wv);
ggml_v2_cuda_transform_tensor(layer.wo); vram_total += ggml_v2_nbytes(layer.wo);
ggml_v2_cuda_transform_tensor(layer.w1); vram_total += ggml_v2_nbytes(layer.w1);
ggml_v2_cuda_transform_tensor(layer.w2); vram_total += ggml_v2_nbytes(layer.w2);
ggml_v2_cuda_transform_tensor(layer.w3); vram_total += ggml_v2_nbytes(layer.w3);
ggml_cuda_transform_tensor(layer.wq); vram_total += ggml_v2_nbytes(layer.wq);
ggml_cuda_transform_tensor(layer.wk); vram_total += ggml_v2_nbytes(layer.wk);
ggml_cuda_transform_tensor(layer.wv); vram_total += ggml_v2_nbytes(layer.wv);
ggml_cuda_transform_tensor(layer.wo); vram_total += ggml_v2_nbytes(layer.wo);
ggml_cuda_transform_tensor(layer.w1); vram_total += ggml_v2_nbytes(layer.w1);
ggml_cuda_transform_tensor(layer.w2); vram_total += ggml_v2_nbytes(layer.w2);
ggml_cuda_transform_tensor(layer.w3); vram_total += ggml_v2_nbytes(layer.w3);
}
if (n_gpu_layers > (int) hparams.n_layer) {
fprintf(stderr, "%s: [cublas] offloading output layer to GPU\n", __func__);
ggml_v2_cuda_transform_tensor(model.output); vram_total += ggml_v2_nbytes(model.output);
ggml_cuda_transform_tensor(model.output); vram_total += ggml_v2_nbytes(model.output);
}
fprintf(stderr, "%s: [cublas] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024);