contrastive: initial example
This commit is contained in:
parent
0a7c980b6f
commit
25d60dcf50
4 changed files with 227 additions and 2 deletions
7
Makefile
7
Makefile
|
@ -1,8 +1,8 @@
|
|||
# Define the default target now so that it is always the first target
|
||||
BUILD_TARGETS = \
|
||||
main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
|
||||
simple batched batched-bench save-load-state server gguf llama-bench libllava.a llava-cli baby-llama beam-search \
|
||||
speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o
|
||||
contrastive simple batched batched-bench save-load-state server gguf llama-bench libllava.a llava-cli baby-llama \
|
||||
beam-search speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o
|
||||
|
||||
# Binaries only useful for tests
|
||||
TEST_TARGETS = \
|
||||
|
@ -614,6 +614,9 @@ train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratc
|
|||
convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
contrastive: examples/contrastive/contrastive.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-bench: examples/llama-bench/llama-bench.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
|
|
|
@ -18,6 +18,7 @@ else()
|
|||
add_subdirectory(beam-search)
|
||||
add_subdirectory(benchmark)
|
||||
add_subdirectory(convert-llama2c-to-ggml)
|
||||
add_subdirectory(contrastive)
|
||||
add_subdirectory(embedding)
|
||||
add_subdirectory(finetune)
|
||||
add_subdirectory(infill)
|
||||
|
|
8
examples/contrastive/CMakeLists.txt
Normal file
8
examples/contrastive/CMakeLists.txt
Normal file
|
@ -0,0 +1,8 @@
|
|||
set(TARGET contrastive)
|
||||
add_executable(${TARGET} contrastive.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
endif()
|
213
examples/contrastive/contrastive.cpp
Normal file
213
examples/contrastive/contrastive.cpp
Normal file
|
@ -0,0 +1,213 @@
|
|||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <limits>
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params_expert;
|
||||
gpt_params params_amateur;
|
||||
if (argc == 1 || argv[1][0] == '-') {
|
||||
printf("usage: %s EXPERT_MODEL_PATH AMATEUR_MODEL_PATH [PROMPT]\n" , argv[0]);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (argc >= 2) {
|
||||
params_expert.model = argv[1];
|
||||
}
|
||||
|
||||
if (argc >= 3) {
|
||||
params_amateur.model = argv[2];
|
||||
}
|
||||
|
||||
if (argc >= 4) {
|
||||
params_expert.prompt = argv[3];
|
||||
params_amateur.prompt = argv[3];
|
||||
}
|
||||
|
||||
if (params_expert.prompt.empty()) {
|
||||
params_expert.prompt = "Hello my name is";
|
||||
params_amateur.prompt = "Hello my name is";
|
||||
}
|
||||
|
||||
// total length of the sequence including the prompt
|
||||
const int n_len = 32;
|
||||
|
||||
// init LLM
|
||||
|
||||
llama_backend_init(params_expert.numa);
|
||||
|
||||
// initialize the model
|
||||
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
|
||||
// model_params.n_gpu_layers = 99; // offload all layers to the GPU
|
||||
|
||||
llama_model * model_expert = llama_load_model_from_file(params_expert.model.c_str(), model_params);
|
||||
llama_model * model_amateur = llama_load_model_from_file(params_amateur.model.c_str(), model_params);
|
||||
|
||||
|
||||
if (model_expert == NULL or model_amateur == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// initialize the context
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
|
||||
ctx_params.seed = 1234;
|
||||
ctx_params.n_ctx = 2048;
|
||||
ctx_params.n_threads = params_expert.n_threads;
|
||||
ctx_params.n_threads_batch = params_expert.n_threads_batch == -1 ? params_expert.n_threads : params_expert.n_threads_batch;
|
||||
|
||||
llama_context * ctx_expert = llama_new_context_with_model(model_expert, ctx_params);
|
||||
llama_context * ctx_amateur = llama_new_context_with_model(model_amateur, ctx_params);
|
||||
|
||||
if (ctx_expert == NULL or ctx_amateur == NULL) {
|
||||
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// tokenize the prompt
|
||||
|
||||
std::vector<llama_token> tokens_list;
|
||||
tokens_list = ::llama_tokenize(ctx_expert, params_expert.prompt, true);
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx_expert);
|
||||
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
|
||||
|
||||
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_kv_req);
|
||||
|
||||
// make sure the KV cache is big enough to hold all the prompt and generated tokens
|
||||
if (n_kv_req > n_ctx) {
|
||||
LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
|
||||
LOG_TEE("%s: either reduce n_parallel or increase n_ctx\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// print the prompt token-by-token
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
for (auto id : tokens_list) {
|
||||
fprintf(stderr, "%s", llama_token_to_piece(ctx_expert, id).c_str());
|
||||
}
|
||||
|
||||
fflush(stderr);
|
||||
|
||||
// create a llama_batch with size 512
|
||||
// we use this object to submit token data for decoding
|
||||
|
||||
llama_batch batch = llama_batch_init(512, 0, 1);
|
||||
|
||||
// evaluate the initial prompt
|
||||
for (size_t i = 0; i < tokens_list.size(); i++) {
|
||||
llama_batch_add(batch, tokens_list[i], i, { 0 }, false);
|
||||
}
|
||||
|
||||
// llama_decode will output logits only for the last token of the prompt
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
|
||||
if (llama_decode(ctx_expert, batch) != 0) {
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (llama_decode(ctx_amateur, batch) != 0) {
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// main loop
|
||||
|
||||
int n_cur = batch.n_tokens;
|
||||
int n_decode = 0;
|
||||
|
||||
const auto t_main_start = ggml_time_us();
|
||||
|
||||
float alpha = 0.1;
|
||||
float beta = 0.5;
|
||||
|
||||
while (n_cur <= n_len) {
|
||||
// sample the next token
|
||||
{
|
||||
auto n_vocab = llama_n_vocab(model_expert);
|
||||
auto * logits_expert = llama_get_logits_ith(ctx_expert, batch.n_tokens - 1);
|
||||
auto * logits_amateur = llama_get_logits_ith(ctx_amateur, batch.n_tokens - 1);
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
float cd_logit = std::numeric_limits<float>::lowest();
|
||||
if(logits_expert[token_id] > alpha){
|
||||
cd_logit = (1+beta)*logits_expert[token_id] - beta*logits_amateur[token_id];
|
||||
}
|
||||
candidates.emplace_back(llama_token_data{ token_id, cd_logit, 0.0f });
|
||||
}
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
// sample the most likely token
|
||||
const llama_token new_token_id_expert = llama_sample_token_greedy(ctx_expert, &candidates_p);
|
||||
|
||||
// is it an end of stream?
|
||||
if (new_token_id_expert == llama_token_eos(model_expert) || n_cur == n_len) {
|
||||
LOG_TEE("\n");
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
LOG_TEE("%s", llama_token_to_piece(ctx_expert, new_token_id_expert).c_str());
|
||||
fflush(stdout);
|
||||
|
||||
// prepare the next batch
|
||||
llama_batch_clear(batch);
|
||||
|
||||
// push this new token for next evaluation
|
||||
llama_batch_add(batch, new_token_id_expert, n_cur, { 0 }, true);
|
||||
|
||||
n_decode += 1;
|
||||
}
|
||||
|
||||
n_cur += 1;
|
||||
|
||||
// evaluate the current batch with the transformer model
|
||||
if (llama_decode(ctx_expert, batch)) {
|
||||
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
|
||||
return 1;
|
||||
}
|
||||
if (llama_decode(ctx_amateur, batch)) {
|
||||
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
LOG_TEE("\n");
|
||||
|
||||
const auto t_main_end = ggml_time_us();
|
||||
|
||||
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
|
||||
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
|
||||
|
||||
llama_print_timings(ctx_expert);
|
||||
llama_print_timings(ctx_amateur);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
llama_free(ctx_expert);
|
||||
llama_free(ctx_amateur);
|
||||
llama_free_model(model_expert);
|
||||
llama_free_model(model_amateur);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue