contrastive: initial example

This commit is contained in:
Bartosz Podkanowicz 2023-11-08 02:08:45 +01:00
parent 0a7c980b6f
commit 25d60dcf50
4 changed files with 227 additions and 2 deletions

View file

@ -1,8 +1,8 @@
# Define the default target now so that it is always the first target
BUILD_TARGETS = \
main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
simple batched batched-bench save-load-state server gguf llama-bench libllava.a llava-cli baby-llama beam-search \
speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o
contrastive simple batched batched-bench save-load-state server gguf llama-bench libllava.a llava-cli baby-llama \
beam-search speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o
# Binaries only useful for tests
TEST_TARGETS = \
@ -614,6 +614,9 @@ train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratc
convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
contrastive: examples/contrastive/contrastive.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
llama-bench: examples/llama-bench/llama-bench.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)

View file

@ -18,6 +18,7 @@ else()
add_subdirectory(beam-search)
add_subdirectory(benchmark)
add_subdirectory(convert-llama2c-to-ggml)
add_subdirectory(contrastive)
add_subdirectory(embedding)
add_subdirectory(finetune)
add_subdirectory(infill)

View file

@ -0,0 +1,8 @@
set(TARGET contrastive)
add_executable(${TARGET} contrastive.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View file

@ -0,0 +1,213 @@
#include "common.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
#include <limits>
int main(int argc, char ** argv) {
gpt_params params_expert;
gpt_params params_amateur;
if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s EXPERT_MODEL_PATH AMATEUR_MODEL_PATH [PROMPT]\n" , argv[0]);
return 1;
}
if (argc >= 2) {
params_expert.model = argv[1];
}
if (argc >= 3) {
params_amateur.model = argv[2];
}
if (argc >= 4) {
params_expert.prompt = argv[3];
params_amateur.prompt = argv[3];
}
if (params_expert.prompt.empty()) {
params_expert.prompt = "Hello my name is";
params_amateur.prompt = "Hello my name is";
}
// total length of the sequence including the prompt
const int n_len = 32;
// init LLM
llama_backend_init(params_expert.numa);
// initialize the model
llama_model_params model_params = llama_model_default_params();
// model_params.n_gpu_layers = 99; // offload all layers to the GPU
llama_model * model_expert = llama_load_model_from_file(params_expert.model.c_str(), model_params);
llama_model * model_amateur = llama_load_model_from_file(params_amateur.model.c_str(), model_params);
if (model_expert == NULL or model_amateur == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
// initialize the context
llama_context_params ctx_params = llama_context_default_params();
ctx_params.seed = 1234;
ctx_params.n_ctx = 2048;
ctx_params.n_threads = params_expert.n_threads;
ctx_params.n_threads_batch = params_expert.n_threads_batch == -1 ? params_expert.n_threads : params_expert.n_threads_batch;
llama_context * ctx_expert = llama_new_context_with_model(model_expert, ctx_params);
llama_context * ctx_amateur = llama_new_context_with_model(model_amateur, ctx_params);
if (ctx_expert == NULL or ctx_amateur == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
// tokenize the prompt
std::vector<llama_token> tokens_list;
tokens_list = ::llama_tokenize(ctx_expert, params_expert.prompt, true);
const int n_ctx = llama_n_ctx(ctx_expert);
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_kv_req);
// make sure the KV cache is big enough to hold all the prompt and generated tokens
if (n_kv_req > n_ctx) {
LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
LOG_TEE("%s: either reduce n_parallel or increase n_ctx\n", __func__);
return 1;
}
// print the prompt token-by-token
fprintf(stderr, "\n");
for (auto id : tokens_list) {
fprintf(stderr, "%s", llama_token_to_piece(ctx_expert, id).c_str());
}
fflush(stderr);
// create a llama_batch with size 512
// we use this object to submit token data for decoding
llama_batch batch = llama_batch_init(512, 0, 1);
// evaluate the initial prompt
for (size_t i = 0; i < tokens_list.size(); i++) {
llama_batch_add(batch, tokens_list[i], i, { 0 }, false);
}
// llama_decode will output logits only for the last token of the prompt
batch.logits[batch.n_tokens - 1] = true;
if (llama_decode(ctx_expert, batch) != 0) {
LOG_TEE("%s: llama_decode() failed\n", __func__);
return 1;
}
if (llama_decode(ctx_amateur, batch) != 0) {
LOG_TEE("%s: llama_decode() failed\n", __func__);
return 1;
}
// main loop
int n_cur = batch.n_tokens;
int n_decode = 0;
const auto t_main_start = ggml_time_us();
float alpha = 0.1;
float beta = 0.5;
while (n_cur <= n_len) {
// sample the next token
{
auto n_vocab = llama_n_vocab(model_expert);
auto * logits_expert = llama_get_logits_ith(ctx_expert, batch.n_tokens - 1);
auto * logits_amateur = llama_get_logits_ith(ctx_amateur, batch.n_tokens - 1);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
float cd_logit = std::numeric_limits<float>::lowest();
if(logits_expert[token_id] > alpha){
cd_logit = (1+beta)*logits_expert[token_id] - beta*logits_amateur[token_id];
}
candidates.emplace_back(llama_token_data{ token_id, cd_logit, 0.0f });
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// sample the most likely token
const llama_token new_token_id_expert = llama_sample_token_greedy(ctx_expert, &candidates_p);
// is it an end of stream?
if (new_token_id_expert == llama_token_eos(model_expert) || n_cur == n_len) {
LOG_TEE("\n");
break;
}
LOG_TEE("%s", llama_token_to_piece(ctx_expert, new_token_id_expert).c_str());
fflush(stdout);
// prepare the next batch
llama_batch_clear(batch);
// push this new token for next evaluation
llama_batch_add(batch, new_token_id_expert, n_cur, { 0 }, true);
n_decode += 1;
}
n_cur += 1;
// evaluate the current batch with the transformer model
if (llama_decode(ctx_expert, batch)) {
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
return 1;
}
if (llama_decode(ctx_amateur, batch)) {
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
return 1;
}
}
LOG_TEE("\n");
const auto t_main_end = ggml_time_us();
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
llama_print_timings(ctx_expert);
llama_print_timings(ctx_amateur);
fprintf(stderr, "\n");
llama_batch_free(batch);
llama_free(ctx_expert);
llama_free(ctx_amateur);
llama_free_model(model_expert);
llama_free_model(model_amateur);
llama_backend_free();
return 0;
}