Merge branch 'master' into server-probs

This commit is contained in:
Jhen 2023-08-21 06:39:00 +08:00
commit 25e6747a56
16 changed files with 1368 additions and 223 deletions

1
.gitignore vendored
View file

@ -48,6 +48,7 @@ models-mnt
/Pipfile /Pipfile
/embd-input-test /embd-input-test
/libllama.so /libllama.so
/llama-bench
build-info.h build-info.h
arm_neon.h arm_neon.h
compile_commands.json compile_commands.json

View file

@ -1,5 +1,5 @@
# Define the default target now so that it is always the first target # Define the default target now so that it is always the first target
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple server embd-input-test BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple server embd-input-test llama-bench
# Binaries only useful for tests # Binaries only useful for tests
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0 TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0
@ -345,7 +345,7 @@ libllama.so: llama.o ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS) $(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
clean: clean:
rm -vf *.o *.so *.dll main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server simple vdot train-text-from-scratch convert-llama2c-to-ggml embd-input-test build-info.h $(TEST_TARGETS) rm -vf *.o *.so *.dll main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server simple vdot train-text-from-scratch convert-llama2c-to-ggml embd-input-test llama-bench build-info.h $(TEST_TARGETS)
# #
# Examples # Examples
@ -391,6 +391,9 @@ train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratc
convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp build-info.h ggml.o llama.o $(OBJS) convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp build-info.h ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
llama-bench: examples/llama-bench/llama-bench.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
build-info.h: $(wildcard .git/index) scripts/build-info.sh build-info.h: $(wildcard .git/index) scripts/build-info.sh
@sh scripts/build-info.sh > $@.tmp @sh scripts/build-info.sh > $@.tmp
@if ! cmp -s $@.tmp $@; then \ @if ! cmp -s $@.tmp $@; then \

View file

@ -9,13 +9,13 @@
Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
**Hot topics:** ### 🚧 Incoming breaking change + refactoring:
- Simple web chat example: https://github.com/ggerganov/llama.cpp/pull/1998 See PR https://github.com/ggerganov/llama.cpp/pull/2398 for more info.
- k-quants now support super-block size of 64: https://github.com/ggerganov/llama.cpp/pull/2001
- New roadmap: https://github.com/users/ggerganov/projects/7 To devs: avoid making big changes to `llama.h` / `llama.cpp` until merged
- Azure CI brainstorming: https://github.com/ggerganov/llama.cpp/discussions/1985
- p1 : LLM-based code completion engine at the edge : https://github.com/ggml-org/p1/discussions/1 ----
<details> <details>
<summary>Table of Contents</summary> <summary>Table of Contents</summary>
@ -96,8 +96,10 @@ as the main playground for developing new features for the [ggml](https://github
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp) - Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
- Node.js: [hlhr202/llama-node](https://github.com/hlhr202/llama-node) - Node.js: [hlhr202/llama-node](https://github.com/hlhr202/llama-node)
- Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb) - Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb)
- Rust: [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp)
- C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp) - C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp)
- Scala 3: [donderom/llm4s](https://github.com/donderom/llm4s) - Scala 3: [donderom/llm4s](https://github.com/donderom/llm4s)
- Clojure: [phronmophobic/llama.clj](https://github.com/phronmophobic/llama.clj)
**UI:** **UI:**

View file

@ -45,6 +45,7 @@ else()
add_subdirectory(convert-llama2c-to-ggml) add_subdirectory(convert-llama2c-to-ggml)
add_subdirectory(simple) add_subdirectory(simple)
add_subdirectory(embd-input) add_subdirectory(embd-input)
add_subdirectory(llama-bench)
if (LLAMA_METAL) if (LLAMA_METAL)
add_subdirectory(metal) add_subdirectory(metal)
endif() endif()

View file

@ -0,0 +1,8 @@
set(TARGET llama-bench)
add_executable(${TARGET} llama-bench.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View file

@ -0,0 +1,967 @@
#include <algorithm>
#include <array>
#include <cassert>
#include <chrono>
#include <cinttypes>
#include <cstring>
#include <ctime>
#include <iterator>
#include <map>
#include <numeric>
#include <regex>
#include <sstream>
#include <stdio.h>
#include <string>
#include <vector>
#include "ggml.h"
#include "llama.h"
#include "common.h"
#include "build-info.h"
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#endif
// utils
static uint64_t get_time_ns() {
using clock = std::chrono::high_resolution_clock;
return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
}
template<class T>
static std::string join(const std::vector<T> & values, const std::string & delim) {
std::ostringstream str;
for (size_t i = 0; i < values.size(); i++) {
str << values[i];
if (i < values.size() - 1) {
str << delim;
}
}
return str.str();
}
template<class T>
static std::vector<T> split(const std::string & str, char delim) {
std::vector<T> values;
std::istringstream str_stream(str);
std::string token;
while (std::getline(str_stream, token, delim)) {
T value;
std::istringstream token_stream(token);
token_stream >> value;
values.push_back(value);
}
return values;
}
template<typename T>
static T avg(const std::vector<T> & v) {
if (v.empty()) {
return 0;
}
T sum = std::accumulate(v.begin(), v.end(), T(0));
return sum / (T)v.size();
}
template<typename T>
static T stdev(const std::vector<T> & v) {
if (v.size() <= 1) {
return 0;
}
T mean = avg(v);
T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
return stdev;
}
static bool ggml_cpu_has_metal() {
#if defined(GGML_USE_METAL)
return true;
#else
return false;
#endif
}
static std::string get_cpu_info() {
std::string id;
#ifdef __linux__
FILE * f = fopen("/proc/cpuinfo", "r");
if (f) {
char buf[1024];
while (fgets(buf, sizeof(buf), f)) {
if (strncmp(buf, "model name", 10) == 0) {
char * p = strchr(buf, ':');
if (p) {
p++;
while (std::isspace(*p)) {
p++;
}
while (std::isspace(p[strlen(p) - 1])) {
p[strlen(p) - 1] = '\0';
}
id = p;
break;
}
}
}
}
#endif
// TODO: other platforms
return id;
}
static std::string get_gpu_info() {
std::string id;
#ifdef GGML_USE_CUBLAS
int count = ggml_cuda_get_device_count();
for (int i = 0; i < count; i++) {
char buf[128];
ggml_cuda_get_device_description(i, buf, sizeof(buf));
id += buf;
if (i < count - 1) {
id += "/";
}
}
#endif
// TODO: other backends
return id;
}
// command line params
enum output_formats {CSV, JSON, MARKDOWN, SQL};
struct cmd_params {
std::vector<std::string> model;
std::vector<int> n_prompt;
std::vector<int> n_gen;
std::vector<int> n_batch;
std::vector<bool> f32_kv;
std::vector<int> n_threads;
std::vector<int> n_gpu_layers;
std::vector<int> main_gpu;
std::vector<bool> mul_mat_q;
std::vector<bool> low_vram;
std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
int reps;
bool verbose;
output_formats output_format;
};
static const cmd_params cmd_params_defaults = {
/* model */ {"models/7B/ggml-model-q4_0.bin"},
/* n_prompt */ {512},
/* n_gen */ {128},
/* n_batch */ {512},
/* f32_kv */ {false},
/* n_threads */ {get_num_physical_cores()},
/* n_gpu_layers */ {99},
/* main_gpu */ {0},
/* mul_mat_q */ {true},
/* low_vram */ {false},
/* tensor_split */ {{}},
/* reps */ 5,
/* verbose */ false,
/* output_format */ MARKDOWN
};
static void print_usage(int /* argc */, char ** argv) {
fprintf(stdout, "usage: %s [options]\n", argv[0]);
fprintf(stdout, "\n");
fprintf(stdout, "options:\n");
fprintf(stdout, " -h, --help\n");
fprintf(stdout, " -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
fprintf(stdout, " -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
fprintf(stdout, " -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
fprintf(stdout, " -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
fprintf(stdout, " --memory-f32 <0|1> (default: %s)\n", join(cmd_params_defaults.f32_kv, ",").c_str());
fprintf(stdout, " -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
fprintf(stdout, " -ngl N, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
fprintf(stdout, " -mg i, --main-gpu <n> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
fprintf(stdout, " -lv, --low-vram <0|1> (default: %s)\n", join(cmd_params_defaults.low_vram, ",").c_str());
fprintf(stdout, " -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
fprintf(stdout, " -ts, --tensor_split <ts> \n");
fprintf(stdout, " -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
fprintf(stdout, " -o, --output <csv|json|md|sql> (default: %s)\n", cmd_params_defaults.output_format == CSV ? "csv" : cmd_params_defaults.output_format == JSON ? "json" : "md");
fprintf(stdout, " -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
fprintf(stdout, "\n");
fprintf(stdout, "Multiple values can be given for each parameter by separating them with ',' or by repeating the parameter.\n");
}
static cmd_params parse_cmd_params(int argc, char ** argv) {
cmd_params params;
std::string arg;
bool invalid_param = false;
const std::string arg_prefix = "--";
const char split_delim = ',';
params.verbose = cmd_params_defaults.verbose;
params.output_format = cmd_params_defaults.output_format;
params.reps = cmd_params_defaults.reps;
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
std::replace(arg.begin(), arg.end(), '_', '-');
}
if (arg == "-h" || arg == "--help") {
print_usage(argc, argv);
exit(0);
} else if (arg == "-m" || arg == "--model") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<std::string>(argv[i], split_delim);
params.model.insert(params.model.end(), p.begin(), p.end());
} else if (arg == "-p" || arg == "--n-prompt") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<int>(argv[i], split_delim);
params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
} else if (arg == "-n" || arg == "--n-gen") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<int>(argv[i], split_delim);
params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
} else if (arg == "-b" || arg == "--batch-size") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<int>(argv[i], split_delim);
params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
} else if (arg == "--memory-f32") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<int>(argv[i], split_delim);
params.f32_kv.insert(params.f32_kv.end(), p.begin(), p.end());
} else if (arg == "-t" || arg == "--threads") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<int>(argv[i], split_delim);
params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
} else if (arg == "-ngl" || arg == "--n-gpu-layers") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<int>(argv[i], split_delim);
params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
} else if (arg == "-mg" || arg == "--main-gpu") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.main_gpu = split<int>(argv[i], split_delim);
} else if (arg == "-lv" || arg == "--low-vram") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<bool>(argv[i], split_delim);
params.low_vram.insert(params.low_vram.end(), p.begin(), p.end());
} else if (arg == "-mmq" || arg == "--mul-mat-q") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<bool>(argv[i], split_delim);
params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
} else if (arg == "-ts" || arg == "--tensor-split") {
if (++i >= argc) {
invalid_param = true;
break;
}
for (auto ts : split<std::string>(argv[i], split_delim)) {
// split string by ; and /
const std::regex regex{R"([;/]+)"};
std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
std::vector<std::string> split_arg{it, {}};
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
if (i < split_arg.size()) {
tensor_split[i] = std::stof(split_arg[i]);
} else {
tensor_split[i] = 0.0f;
}
}
params.tensor_split.push_back(tensor_split);
}
} else if (arg == "-r" || arg == "--repetitions") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.reps = std::stoi(argv[i]);
} else if (arg == "-o" || arg == "--output") {
if (++i >= argc) {
invalid_param = true;
break;
}
if (argv[i] == std::string("csv")) {
params.output_format = CSV;
} else if (argv[i] == std::string("json")) {
params.output_format = JSON;
} else if (argv[i] == std::string("md")) {
params.output_format = MARKDOWN;
} else if (argv[i] == std::string("sql")) {
params.output_format = SQL;
} else {
invalid_param = true;
break;
}
} else if (arg == "-v" || arg == "--verbose") {
params.verbose = true;
} else {
invalid_param = true;
break;
}
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
print_usage(argc, argv);
exit(1);
}
// set defaults
if (params.model.empty()) { params.model = cmd_params_defaults.model; }
if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
if (params.f32_kv.empty()) { params.f32_kv = cmd_params_defaults.f32_kv; }
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
if (params.low_vram.empty()) { params.low_vram = cmd_params_defaults.low_vram; }
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
return params;
}
struct cmd_params_instance {
std::string model;
int n_prompt;
int n_gen;
int n_batch;
bool f32_kv;
int n_threads;
int n_gpu_layers;
int main_gpu;
bool mul_mat_q;
bool low_vram;
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
llama_context_params to_llama_params() const {
llama_context_params lparams = llama_context_default_params();
lparams.n_ctx = n_prompt + n_gen;
lparams.n_batch = n_batch;
lparams.f16_kv = !f32_kv;
lparams.n_gpu_layers = n_gpu_layers;
lparams.main_gpu = main_gpu;
lparams.mul_mat_q = mul_mat_q;
lparams.low_vram = low_vram;
lparams.tensor_split = tensor_split.data();
return lparams;
}
};
static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_params & params, int n_gen, int n_prompt) {
std::vector<cmd_params_instance> instances;
for (const auto & m : params.model)
for (const auto & nb : params.n_batch)
for (const auto & fk : params.f32_kv)
for (const auto & nl : params.n_gpu_layers)
for (const auto & mg : params.main_gpu)
for (const auto & mmq : params.mul_mat_q)
for (const auto & lv : params.low_vram)
for (const auto & ts : params.tensor_split)
for (const auto & nt : params.n_threads) {
cmd_params_instance instance = {
/* .model = */ m,
/* .n_prompt = */ n_prompt,
/* .n_gen = */ n_gen,
/* .n_batch = */ nb,
/* .f32_kv = */ fk,
/* .n_threads = */ nt,
/* .n_gpu_layers = */ nl,
/* .main_gpu = */ mg,
/* .mul_mat_q = */ mmq,
/* .low_vram = */ lv,
/* .tensor_split = */ ts,
};
instances.push_back(instance);
}
return instances;
}
static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
std::vector<cmd_params_instance> instances;
for (const auto & n_prompt : params.n_prompt) {
if (n_prompt == 0) {
continue;
}
auto instances_prompt = get_cmd_params_instances_int(params, 0, n_prompt);
instances.insert(instances.end(), instances_prompt.begin(), instances_prompt.end());
}
for (const auto & n_gen : params.n_gen) {
if (n_gen == 0) {
continue;
}
auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0);
instances.insert(instances.end(), instances_gen.begin(), instances_gen.end());
}
return instances;
}
struct test {
static const std::string build_commit;
static const int build_number;
static const bool cuda;
static const bool opencl;
static const bool metal;
static const bool gpu_blas;
static const bool blas;
static const std::string cpu_info;
static const std::string gpu_info;
std::string model_filename;
std::string model_type;
int n_batch;
int n_threads;
bool f32_kv;
int n_gpu_layers;
int main_gpu;
bool mul_mat_q;
bool low_vram;
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
int n_prompt;
int n_gen;
std::string test_time;
std::vector<uint64_t> samples_ns;
test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
model_filename = inst.model;
char buf[128];
llama_model_type(lmodel, buf, sizeof(buf));
model_type = buf;
n_batch = inst.n_batch;
n_threads = inst.n_threads;
f32_kv = inst.f32_kv;
n_gpu_layers = inst.n_gpu_layers;
main_gpu = inst.main_gpu;
mul_mat_q = inst.mul_mat_q;
low_vram = inst.low_vram;
tensor_split = inst.tensor_split;
n_prompt = inst.n_prompt;
n_gen = inst.n_gen;
// RFC 3339 date-time format
time_t t = time(NULL);
std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
test_time = buf;
(void) ctx;
}
uint64_t avg_ns() const {
return ::avg(samples_ns);
}
uint64_t stdev_ns() const {
return ::stdev(samples_ns);
}
std::vector<double> get_ts() const {
int n_tokens = n_prompt + n_gen;
std::vector<double> ts;
std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
return ts;
}
double avg_ts() const {
return ::avg(get_ts());
}
double stdev_ts() const {
return ::stdev(get_ts());
}
static std::string get_backend() {
if (cuda) {
return "CUDA";
}
if (opencl) {
return "OpenCL";
}
if (metal) {
return "Metal";
}
if (gpu_blas) {
return "GPU BLAS";
}
if (blas) {
return "BLAS";
}
return "CPU";
}
static const std::vector<std::string> & get_fields() {
static const std::vector<std::string> fields = {
"build_commit", "build_number",
"cuda", "opencl", "metal", "gpu_blas", "blas",
"cpu_info", "gpu_info",
"model_filename", "model_type",
"n_batch", "n_threads", "f16_kv",
"n_gpu_layers", "main_gpu", "mul_mat_q", "low_vram", "tensor_split",
"n_prompt", "n_gen", "test_time",
"avg_ns", "stddev_ns",
"avg_ts", "stddev_ts"
};
return fields;
}
enum field_type {STRING, BOOL, INT, FLOAT};
static field_type get_field_type(const std::string & field) {
if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
field == "n_gpu_layers" || field == "main_gpu" ||
field == "n_prompt" || field == "n_gen" ||
field == "avg_ns" || field == "stddev_ns") {
return INT;
}
if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" ||
field == "f16_kv" || field == "mul_mat_q" || field == "low_vram") {
return BOOL;
}
if (field == "avg_ts" || field == "stddev_ts") {
return FLOAT;
}
return STRING;
}
std::vector<std::string> get_values() const {
std::string tensor_split_str;
int max_nonzero = 0;
for (int i = 0; i < LLAMA_MAX_DEVICES; i++) {
if (tensor_split[i] > 0) {
max_nonzero = i;
}
}
for (int i = 0; i <= max_nonzero; i++) {
char buf[32];
snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
tensor_split_str += buf;
if (i < max_nonzero) {
tensor_split_str += "/";
}
}
std::vector<std::string> values = {
build_commit, std::to_string(build_number),
std::to_string(cuda), std::to_string(opencl), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
cpu_info, gpu_info,
model_filename, model_type,
std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv),
std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), std::to_string(low_vram), tensor_split_str,
std::to_string(n_prompt), std::to_string(n_gen), test_time,
std::to_string(avg_ns()), std::to_string(stdev_ns()),
std::to_string(avg_ts()), std::to_string(stdev_ts())
};
return values;
}
std::map<std::string, std::string> get_map() const {
std::map<std::string, std::string> map;
auto fields = get_fields();
auto values = get_values();
std::transform(fields.begin(), fields.end(), values.begin(),
std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
return map;
}
};
const std::string test::build_commit = BUILD_COMMIT;
const int test::build_number = BUILD_NUMBER;
const bool test::cuda = !!ggml_cpu_has_cublas();
const bool test::opencl = !!ggml_cpu_has_clblast();
const bool test::metal = !!ggml_cpu_has_metal();
const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
const bool test::blas = !!ggml_cpu_has_blas();
const std::string test::cpu_info = get_cpu_info();
const std::string test::gpu_info = get_gpu_info();
struct printer {
FILE * fout;
virtual void print_header(const cmd_params & params) { (void) params; };
virtual void print_test(const test & t) = 0;
virtual void print_footer() { };
};
struct csv_printer : public printer {
static std::string escape_csv(const std::string & field) {
std::string escaped = "\"";
for (auto c : field) {
if (c == '"') {
escaped += "\"";
}
escaped += c;
}
escaped += "\"";
return escaped;
}
void print_header(const cmd_params & params) override {
std::vector<std::string> fields = test::get_fields();
fprintf(fout, "%s\n", join(fields, ",").c_str());
(void) params;
}
void print_test(const test & t) override {
std::vector<std::string> values = t.get_values();
std::transform(values.begin(), values.end(), values.begin(), escape_csv);
fprintf(fout, "%s\n", join(values, ",").c_str());
}
};
struct json_printer : public printer {
bool first = true;
static std::string escape_json(const std::string & value) {
std::string escaped;
for (auto c : value) {
if (c == '"') {
escaped += "\\\"";
} else if (c == '\\') {
escaped += "\\\\";
} else if (c <= 0x1f) {
char buf[8];
snprintf(buf, sizeof(buf), "\\u%04x", c);
escaped += buf;
} else {
escaped += c;
}
}
return escaped;
}
static std::string format_value(const std::string & field, const std::string & value) {
switch (test::get_field_type(field)) {
case test::STRING:
return "\"" + escape_json(value) + "\"";
case test::BOOL:
return value == "0" ? "false" : "true";
default:
return value;
}
}
void print_header(const cmd_params & params) override {
fprintf(fout, "[\n");
(void) params;
}
void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
assert(fields.size() == values.size());
for (size_t i = 0; i < fields.size(); i++) {
fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
}
}
void print_test(const test & t) override {
if (first) {
first = false;
} else {
fprintf(fout, ",\n");
}
fprintf(fout, " {\n");
print_fields(test::get_fields(), t.get_values());
fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
fprintf(fout, " }");
fflush(fout);
}
void print_footer() override {
fprintf(fout, "\n]\n");
}
};
struct markdown_printer : public printer {
std::vector<std::string> fields;
static int get_field_width(const std::string & field) {
if (field == "model") {
return -30;
}
if (field == "t/s") {
return 15;
}
int width = std::max((int)field.length(), 10);
if (test::get_field_type(field) == test::STRING) {
return -width;
}
return width;
}
void print_header(const cmd_params & params) override {
// select fields to print
fields = { "model", "backend" };
bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
if (!is_cpu_backend) {
fields.push_back("n_gpu_layers");
}
if (params.n_batch.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
fields.push_back("n_threads");
}
if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
fields.push_back("n_batch");
}
if (params.f32_kv.size() > 1 || params.f32_kv != cmd_params_defaults.f32_kv) {
fields.push_back("f16_kv");
}
if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
fields.push_back("main_gpu");
}
if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
fields.push_back("mul_mat_q");
}
if (params.low_vram.size() > 1 || params.low_vram != cmd_params_defaults.low_vram) {
fields.push_back("low_vram");
}
if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
fields.push_back("tensor_split");
}
fields.push_back("test");
fields.push_back("t/s");
fprintf(fout, "|");
for (const auto & field : fields) {
fprintf(fout, " %*s |", get_field_width(field), field.c_str());
}
fprintf(fout, "\n");
fprintf(fout, "|");
for (const auto & field : fields) {
int width = get_field_width(field);
fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
}
fprintf(fout, "\n");
}
void print_test(const test & t) override {
std::map<std::string, std::string> vmap = t.get_map();
fprintf(fout, "|");
for (const auto & field : fields) {
std::string value;
if (field == "model") {
value = t.model_type;
} else if (field == "backend") {
value = test::get_backend();
} else if (field == "test") {
char buf[128];
if (t.n_prompt > 0 && t.n_gen == 0) {
snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
} else if (t.n_gen > 0 && t.n_prompt == 0) {
snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
} else {
assert(false);
exit(1);
}
value = buf;
} else if (field == "t/s") {
char buf[128];
snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
value = buf;
} else if (vmap.find(field) != vmap.end()) {
value = vmap.at(field);
} else {
assert(false);
exit(1);
}
int width = get_field_width(field);
if (field == "t/s") {
// HACK: the utf-8 character is 2 bytes
width += 1;
}
fprintf(fout, " %*s |", width, value.c_str());
}
fprintf(fout, "\n");
}
void print_footer() override {
fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
}
};
struct sql_printer : public printer {
static std::string get_sql_field_type(const std::string & field) {
switch (test::get_field_type(field)) {
case test::STRING:
return "TEXT";
case test::BOOL:
case test::INT:
return "INTEGER";
case test::FLOAT:
return "REAL";
default:
assert(false);
exit(1);
}
}
void print_header(const cmd_params & params) override {
std::vector<std::string> fields = test::get_fields();
fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
for (size_t i = 0; i < fields.size(); i++) {
fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
}
fprintf(fout, ");\n");
fprintf(fout, "\n");
(void) params;
}
void print_test(const test & t) override {
fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
fprintf(fout, "VALUES (");
std::vector<std::string> values = t.get_values();
for (size_t i = 0; i < values.size(); i++) {
fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
}
fprintf(fout, ");\n");
}
};
static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
std::vector<llama_token> tokens(n_batch, llama_token_bos());
int n_processed = 0;
while (n_processed < n_prompt) {
int n_tokens = std::min(n_prompt - n_processed, n_batch);
llama_eval(ctx, tokens.data(), n_tokens, n_past + n_processed, n_threads);
n_processed += n_tokens;
}
}
static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
llama_token token = llama_token_bos();
for (int i = 0; i < n_gen; i++) {
llama_eval(ctx, &token, 1, n_past + i, n_threads);
}
}
static void llama_null_log_callback(enum llama_log_level level, const char * text, void * user_data) {
(void) level;
(void) text;
(void) user_data;
}
int main(int argc, char ** argv) {
#if !defined(NDEBUG)
fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
#endif
#if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
fprintf(stderr, "warning: debug build, performance may be affected\n");
#endif
#if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
#endif
cmd_params params = parse_cmd_params(argc, argv);
// initialize llama.cpp
if (!params.verbose) {
llama_log_set(llama_null_log_callback, NULL);
}
bool numa = false;
llama_backend_init(numa);
// initialize printer
std::unique_ptr<printer> p;
switch (params.output_format) {
case CSV:
p.reset(new csv_printer());
break;
case JSON:
p.reset(new json_printer());
break;
case MARKDOWN:
p.reset(new markdown_printer());
break;
case SQL:
p.reset(new sql_printer());
break;
default:
assert(false);
exit(1);
}
p->fout = stdout;
p->print_header(params);
std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
for (const auto & inst : params_instances) {
// TODO: keep the model between tests when possible
llama_context_params lparams = inst.to_llama_params();
llama_model * lmodel = llama_load_model_from_file(inst.model.c_str(), lparams);
if (lmodel == NULL) {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
return 1;
}
llama_context * ctx = llama_new_context_with_model(lmodel, lparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
llama_free_model(lmodel);
return 1;
}
test t(inst, lmodel, ctx);
// warmup run
test_gen(ctx, 1, 0, t.n_threads);
for (int i = 0; i < params.reps; i++) {
uint64_t t_start = get_time_ns();
if (t.n_prompt > 0) {
test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
}
if (t.n_gen > 0) {
test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
}
uint64_t t_ns = get_time_ns() - t_start;
t.samples_ns.push_back(t_ns);
}
p->print_test(t);
llama_print_timings(ctx);
llama_free(ctx);
llama_free_model(lmodel);
}
p->print_footer();
llama_backend_free();
return 0;
}

View file

@ -5,6 +5,7 @@
#include <cmath> #include <cmath>
#include <ctime> #include <ctime>
#include <sstream> #include <sstream>
#include <cstring>
#if defined(_MSC_VER) #if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data #pragma warning(disable: 4244 4267) // possible loss of data
@ -88,7 +89,7 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
fprintf(stderr, "%d hours ", total_seconds / (60*60)); fprintf(stderr, "%d hours ", total_seconds / (60*60));
total_seconds = total_seconds % (60*60); total_seconds = total_seconds % (60*60);
} }
fprintf(stderr, "%d minutes\n", total_seconds / 60); fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
} }
// We get the logits for all the tokens in the context window (params.n_ctx) // We get the logits for all the tokens in the context window (params.n_ctx)
@ -209,17 +210,19 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
double acc = 0.0f; double acc = 0.0f;
const int n_vocab = llama_n_vocab(ctx); const int n_vocab = llama_n_vocab(ctx);
std::vector<float> tok_logits(n_vocab);
for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) { for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) {
// Tokenize the context to count tokens // Tokenize the context to count tokens
std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, prepend_bos); std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, prepend_bos);
size_t context_size = context_embd.size(); size_t context_size = context_embd.size();
for (size_t ending_idx=0;ending_idx<4;ending_idx++) { // Do the 1st ending
// In this case we include the context when evaluating
// Tokenize the query auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], prepend_bos);
std::vector<int> query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[ending_idx], prepend_bos); auto query_size = query_embd.size();
size_t query_size = query_embd.size(); //printf("First query: %d\n",(int)query_size);
// Stop if query wont fit the ctx window // Stop if query wont fit the ctx window
if (query_size > (size_t)params.n_ctx) { if (query_size > (size_t)params.n_ctx) {
@ -238,19 +241,64 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
return; return;
} }
const auto query_logits = llama_get_logits(ctx); auto query_logits = llama_get_logits(ctx);
std::vector<float> logits;
logits.insert(logits.end(), query_logits, query_logits + query_size * n_vocab);
hs_data[task_idx].ending_logprob_count[ending_idx] = 0; std::memcpy(tok_logits.data(), query_logits + (context_size-1)*n_vocab, n_vocab*sizeof(float));
hs_data[task_idx].ending_logprob[ending_idx] = 0.0f; const auto first_probs = softmax(tok_logits);
hs_data[task_idx].ending_logprob_count[0] = 1;
hs_data[task_idx].ending_logprob[0] = std::log(first_probs[query_embd[context_size]]);
// Calculate the logprobs over the ending // Calculate the logprobs over the ending
for (size_t j = context_size-1; j < query_size - 1; j++) { for (size_t j = context_size; j < query_size - 1; j++) {
// Calculate probability of next token, given the previous ones.
const std::vector<float> tok_logits( std::memcpy(tok_logits.data(), query_logits + j*n_vocab, n_vocab*sizeof(float));
logits.begin() + (j + 0) * n_vocab,
logits.begin() + (j + 1) * n_vocab); const float prob = softmax(tok_logits)[query_embd[j + 1]];
hs_data[task_idx].ending_logprob[0] += std::log(prob);
hs_data[task_idx].ending_logprob_count[0]++;
}
// Calculate the mean token logprob for acc_norm
hs_data[task_idx].ending_logprob[0] /= hs_data[task_idx].ending_logprob_count[0];
// Do the remaining endings
// For these, we use the bare ending with n_past = context_size
//
for (size_t ending_idx = 1; ending_idx < 4; ending_idx++) {
// Tokenize the query
query_embd = ::llama_tokenize(ctx, hs_data[task_idx].ending[ending_idx], false);
query_size = query_embd.size();
//printf("Second query: %d\n",(int)query_size);
// Stop if query wont fit the ctx window
if (context_size + query_size > (size_t)params.n_ctx) {
fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
return;
}
// Speedup small evaluations by evaluating atleast 32 tokens
// No, resizing to 32 is actually slightly slower (at least on CUDA)
//if (query_size < 32) {
// query_embd.resize(32);
//}
// Evaluate the query
if (llama_eval(ctx, query_embd.data(), query_embd.size(), context_size, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return;
}
query_logits = llama_get_logits(ctx);
hs_data[task_idx].ending_logprob_count[ending_idx] = 1;
hs_data[task_idx].ending_logprob[ending_idx] = std::log(first_probs[query_embd[0]]);
// Calculate the logprobs over the ending
for (size_t j = 0; j < query_size - 1; j++) {
std::memcpy(tok_logits.data(), query_logits + j*n_vocab, n_vocab*sizeof(float));
const float prob = softmax(tok_logits)[query_embd[j + 1]]; const float prob = softmax(tok_logits)[query_embd[j + 1]];
@ -267,9 +315,9 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
} }
// Find the ending with maximum logprob // Find the ending with maximum logprob
size_t ending_logprob_max_idx = -1; size_t ending_logprob_max_idx = 0;
double ending_logprob_max_val = -INFINITY; double ending_logprob_max_val = hs_data[task_idx].ending_logprob[0];
for (size_t j=0; j < 4; j++) { for (size_t j = 1; j < 4; j++) {
if (hs_data[task_idx].ending_logprob[j] > ending_logprob_max_val) { if (hs_data[task_idx].ending_logprob[j] > ending_logprob_max_val) {
ending_logprob_max_idx = j; ending_logprob_max_idx = j;
ending_logprob_max_val = hs_data[task_idx].ending_logprob[j]; ending_logprob_max_val = hs_data[task_idx].ending_logprob[j];

View file

@ -11,8 +11,10 @@ echo >> $PUBLIC/index.js # add newline
FILES=$(ls $PUBLIC) FILES=$(ls $PUBLIC)
cd $PUBLIC
for FILE in $FILES; do for FILE in $FILES; do
func=$(echo $FILE | tr '.' '_') echo "generate $FILE.hpp"
echo "generate $FILE.hpp ($func)"
xxd -n $func -i $PUBLIC/$FILE > $DIR/$FILE.hpp # use simple flag for old version of xxd
xxd -i $FILE > $DIR/$FILE.hpp
done done

View file

@ -161,12 +161,12 @@
import { SchemaConverter } from '/json-schema-to-grammar.mjs'; import { SchemaConverter } from '/json-schema-to-grammar.mjs';
const session = signal({ const session = signal({
prompt: "This is a conversation between user and llama, a friendly chatbot. respond in simple markdown.", prompt: "This is a conversation between User and Llama, a friendly chatbot. Llama is helpful, kind, honest, good at writing, and never fails to answer any requests immediately and with precision.",
template: "{{prompt}}\n\n{{history}}\n{{char}}:", template: "{{prompt}}\n\n{{history}}\n{{char}}:",
historyTemplate: "{{name}}: {{message}}", historyTemplate: "{{name}}: {{message}}",
transcript: [], transcript: [],
type: "chat", type: "chat",
char: "llama", char: "Llama",
user: "User", user: "User",
}) })

View file

@ -6469,3 +6469,15 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
func(tensor->src[0], tensor->src[1], tensor); func(tensor->src[0], tensor->src[1], tensor);
return true; return true;
} }
int ggml_cuda_get_device_count() {
int device_count;
CUDA_CHECK(cudaGetDeviceCount(&device_count));
return device_count;
}
void ggml_cuda_get_device_description(int device, char * description, size_t description_size) {
cudaDeviceProp prop;
CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
snprintf(description, description_size, "%s", prop.name);
}

View file

@ -8,29 +8,25 @@ extern "C" {
#define GGML_CUDA_MAX_DEVICES 16 #define GGML_CUDA_MAX_DEVICES 16
void ggml_init_cublas(void); GGML_API void ggml_init_cublas(void);
void ggml_cuda_set_tensor_split(const float * tensor_split); GGML_API void * ggml_cuda_host_malloc(size_t size);
GGML_API void ggml_cuda_host_free(void * ptr);
void ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); GGML_API bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); GGML_API void ggml_cuda_set_tensor_split(const float * tensor_split);
size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); GGML_API void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize); GGML_API void ggml_cuda_free_data(struct ggml_tensor * tensor);
GGML_API void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
GGML_API void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
GGML_API void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
GGML_API void ggml_cuda_set_main_device(int main_device);
GGML_API void ggml_cuda_set_mul_mat_q(bool mul_mat_q);
GGML_API void ggml_cuda_set_scratch_size(size_t scratch_size);
GGML_API void ggml_cuda_free_scratch(void);
GGML_API bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
// TODO: export these with GGML_API GGML_API int ggml_cuda_get_device_count(void);
void * ggml_cuda_host_malloc(size_t size); GGML_API void ggml_cuda_get_device_description(int device, char * description, size_t description_size);
void ggml_cuda_host_free(void * ptr);
void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
void ggml_cuda_free_data(struct ggml_tensor * tensor);
void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
void ggml_cuda_set_main_device(int main_device);
void ggml_cuda_set_mul_mat_q(bool mul_mat_q);
void ggml_cuda_set_scratch_size(size_t scratch_size);
void ggml_cuda_free_scratch(void);
bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
#ifdef __cplusplus #ifdef __cplusplus
} }

245
ggml.c
View file

@ -1643,11 +1643,37 @@ static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void *
static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
[GGML_TYPE_I8] = {
.type_name = "i8",
.blck_size = 1,
.type_size = sizeof(int8_t),
.is_quantized = false,
},
[GGML_TYPE_I16] = {
.type_name = "i16",
.blck_size = 1,
.type_size = sizeof(int16_t),
.is_quantized = false,
},
[GGML_TYPE_I32] = {
.type_name = "i32",
.blck_size = 1,
.type_size = sizeof(int32_t),
.is_quantized = false,
},
[GGML_TYPE_F32] = { [GGML_TYPE_F32] = {
.type_name = "f32",
.blck_size = 1,
.type_size = sizeof(float),
.is_quantized = false,
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32, .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
.vec_dot_type = GGML_TYPE_F32, .vec_dot_type = GGML_TYPE_F32,
}, },
[GGML_TYPE_F16] = { [GGML_TYPE_F16] = {
.type_name = "f16",
.blck_size = 1,
.type_size = sizeof(ggml_fp16_t),
.is_quantized = false,
.to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row, .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
.from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row, .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
.from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row, .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
@ -1655,6 +1681,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.vec_dot_type = GGML_TYPE_F16, .vec_dot_type = GGML_TYPE_F16,
}, },
[GGML_TYPE_Q4_0] = { [GGML_TYPE_Q4_0] = {
.type_name = "q4_0",
.blck_size = QK4_0,
.type_size = sizeof(block_q4_0),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q4_0, .to_float = (ggml_to_float_t) dequantize_row_q4_0,
.from_float = quantize_row_q4_0, .from_float = quantize_row_q4_0,
.from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference, .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
@ -1662,6 +1692,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.vec_dot_type = GGML_TYPE_Q8_0, .vec_dot_type = GGML_TYPE_Q8_0,
}, },
[GGML_TYPE_Q4_1] = { [GGML_TYPE_Q4_1] = {
.type_name = "q4_1",
.blck_size = QK4_1,
.type_size = sizeof(block_q4_1),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q4_1, .to_float = (ggml_to_float_t) dequantize_row_q4_1,
.from_float = quantize_row_q4_1, .from_float = quantize_row_q4_1,
.from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference, .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
@ -1669,6 +1703,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.vec_dot_type = GGML_TYPE_Q8_1, .vec_dot_type = GGML_TYPE_Q8_1,
}, },
[GGML_TYPE_Q5_0] = { [GGML_TYPE_Q5_0] = {
.type_name = "q5_0",
.blck_size = QK5_0,
.type_size = sizeof(block_q5_0),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q5_0, .to_float = (ggml_to_float_t) dequantize_row_q5_0,
.from_float = quantize_row_q5_0, .from_float = quantize_row_q5_0,
.from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference, .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
@ -1676,6 +1714,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.vec_dot_type = GGML_TYPE_Q8_0, .vec_dot_type = GGML_TYPE_Q8_0,
}, },
[GGML_TYPE_Q5_1] = { [GGML_TYPE_Q5_1] = {
.type_name = "q5_1",
.blck_size = QK5_1,
.type_size = sizeof(block_q5_1),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q5_1, .to_float = (ggml_to_float_t) dequantize_row_q5_1,
.from_float = quantize_row_q5_1, .from_float = quantize_row_q5_1,
.from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference, .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
@ -1683,6 +1725,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.vec_dot_type = GGML_TYPE_Q8_1, .vec_dot_type = GGML_TYPE_Q8_1,
}, },
[GGML_TYPE_Q8_0] = { [GGML_TYPE_Q8_0] = {
.type_name = "q8_0",
.blck_size = QK8_0,
.type_size = sizeof(block_q8_0),
.is_quantized = true,
.to_float = dequantize_row_q8_0, .to_float = dequantize_row_q8_0,
.from_float = quantize_row_q8_0, .from_float = quantize_row_q8_0,
.from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference, .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
@ -1690,12 +1736,20 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.vec_dot_type = GGML_TYPE_Q8_0, .vec_dot_type = GGML_TYPE_Q8_0,
}, },
[GGML_TYPE_Q8_1] = { [GGML_TYPE_Q8_1] = {
.type_name = "q8_1",
.blck_size = QK8_1,
.type_size = sizeof(block_q8_1),
.is_quantized = true,
.from_float = quantize_row_q8_1, .from_float = quantize_row_q8_1,
.from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference, .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
.vec_dot_type = GGML_TYPE_Q8_1, .vec_dot_type = GGML_TYPE_Q8_1,
}, },
#ifdef GGML_USE_K_QUANTS #ifdef GGML_USE_K_QUANTS
[GGML_TYPE_Q2_K] = { [GGML_TYPE_Q2_K] = {
.type_name = "q2_K",
.blck_size = QK_K,
.type_size = sizeof(block_q2_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q2_K, .to_float = (ggml_to_float_t) dequantize_row_q2_K,
.from_float = quantize_row_q2_K, .from_float = quantize_row_q2_K,
.from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference, .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
@ -1703,6 +1757,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.vec_dot_type = GGML_TYPE_Q8_K, .vec_dot_type = GGML_TYPE_Q8_K,
}, },
[GGML_TYPE_Q3_K] = { [GGML_TYPE_Q3_K] = {
.type_name = "q3_K",
.blck_size = QK_K,
.type_size = sizeof(block_q3_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q3_K, .to_float = (ggml_to_float_t) dequantize_row_q3_K,
.from_float = quantize_row_q3_K, .from_float = quantize_row_q3_K,
.from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference, .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
@ -1710,6 +1768,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.vec_dot_type = GGML_TYPE_Q8_K, .vec_dot_type = GGML_TYPE_Q8_K,
}, },
[GGML_TYPE_Q4_K] = { [GGML_TYPE_Q4_K] = {
.type_name = "q4_K",
.blck_size = QK_K,
.type_size = sizeof(block_q4_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q4_K, .to_float = (ggml_to_float_t) dequantize_row_q4_K,
.from_float = quantize_row_q4_K, .from_float = quantize_row_q4_K,
.from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference, .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
@ -1717,6 +1779,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.vec_dot_type = GGML_TYPE_Q8_K, .vec_dot_type = GGML_TYPE_Q8_K,
}, },
[GGML_TYPE_Q5_K] = { [GGML_TYPE_Q5_K] = {
.type_name = "q5_K",
.blck_size = QK_K,
.type_size = sizeof(block_q5_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q5_K, .to_float = (ggml_to_float_t) dequantize_row_q5_K,
.from_float = quantize_row_q5_K, .from_float = quantize_row_q5_K,
.from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference, .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
@ -1724,6 +1790,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.vec_dot_type = GGML_TYPE_Q8_K, .vec_dot_type = GGML_TYPE_Q8_K,
}, },
[GGML_TYPE_Q6_K] = { [GGML_TYPE_Q6_K] = {
.type_name = "q6_K",
.blck_size = QK_K,
.type_size = sizeof(block_q6_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q6_K, .to_float = (ggml_to_float_t) dequantize_row_q6_K,
.from_float = quantize_row_q6_K, .from_float = quantize_row_q6_K,
.from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference, .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
@ -1731,15 +1801,19 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.vec_dot_type = GGML_TYPE_Q8_K, .vec_dot_type = GGML_TYPE_Q8_K,
}, },
[GGML_TYPE_Q8_K] = { [GGML_TYPE_Q8_K] = {
.type_name = "q8_K",
.blck_size = QK_K,
.type_size = sizeof(block_q8_K),
.is_quantized = true,
.from_float = quantize_row_q8_K, .from_float = quantize_row_q8_K,
} }
#endif #endif
}; };
// For internal test use // For internal test use
ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) { ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
GGML_ASSERT(i < GGML_TYPE_COUNT); GGML_ASSERT(type < GGML_TYPE_COUNT);
return type_traits[i]; return type_traits[type];
} }
@ -3648,99 +3722,6 @@ inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
*s = idx; *s = idx;
} }
//
// data types
//
static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
[GGML_TYPE_F32] = 1,
[GGML_TYPE_F16] = 1,
[GGML_TYPE_Q4_0] = QK4_0,
[GGML_TYPE_Q4_1] = QK4_1,
[GGML_TYPE_Q5_0] = QK5_0,
[GGML_TYPE_Q5_1] = QK5_1,
[GGML_TYPE_Q8_0] = QK8_0,
[GGML_TYPE_Q8_1] = QK8_1,
#ifdef GGML_USE_K_QUANTS
[GGML_TYPE_Q2_K] = QK_K,
[GGML_TYPE_Q3_K] = QK_K,
[GGML_TYPE_Q4_K] = QK_K,
[GGML_TYPE_Q5_K] = QK_K,
[GGML_TYPE_Q6_K] = QK_K,
[GGML_TYPE_Q8_K] = QK_K,
#endif
[GGML_TYPE_I8] = 1,
[GGML_TYPE_I16] = 1,
[GGML_TYPE_I32] = 1,
};
static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
[GGML_TYPE_F32] = sizeof(float),
[GGML_TYPE_F16] = sizeof(ggml_fp16_t),
[GGML_TYPE_Q4_0] = sizeof(block_q4_0),
[GGML_TYPE_Q4_1] = sizeof(block_q4_1),
[GGML_TYPE_Q5_0] = sizeof(block_q5_0),
[GGML_TYPE_Q5_1] = sizeof(block_q5_1),
[GGML_TYPE_Q8_0] = sizeof(block_q8_0),
[GGML_TYPE_Q8_1] = sizeof(block_q8_1),
#ifdef GGML_USE_K_QUANTS
[GGML_TYPE_Q2_K] = sizeof(block_q2_K),
[GGML_TYPE_Q3_K] = sizeof(block_q3_K),
[GGML_TYPE_Q4_K] = sizeof(block_q4_K),
[GGML_TYPE_Q5_K] = sizeof(block_q5_K),
[GGML_TYPE_Q6_K] = sizeof(block_q6_K),
[GGML_TYPE_Q8_K] = sizeof(block_q8_K),
#endif
[GGML_TYPE_I8] = sizeof(int8_t),
[GGML_TYPE_I16] = sizeof(int16_t),
[GGML_TYPE_I32] = sizeof(int32_t),
};
static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
[GGML_TYPE_F32] = "f32",
[GGML_TYPE_F16] = "f16",
[GGML_TYPE_Q4_0] = "q4_0",
[GGML_TYPE_Q4_1] = "q4_1",
[GGML_TYPE_Q5_0] = "q5_0",
[GGML_TYPE_Q5_1] = "q5_1",
[GGML_TYPE_Q8_0] = "q8_0",
[GGML_TYPE_Q8_1] = "q8_1",
[GGML_TYPE_Q2_K] = "q2_K",
[GGML_TYPE_Q3_K] = "q3_K",
[GGML_TYPE_Q4_K] = "q4_K",
[GGML_TYPE_Q5_K] = "q5_K",
[GGML_TYPE_Q6_K] = "q6_K",
[GGML_TYPE_Q8_K] = "q8_K",
[GGML_TYPE_I8] = "i8",
[GGML_TYPE_I16] = "i16",
[GGML_TYPE_I32] = "i32",
};
static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
[GGML_TYPE_F32] = false,
[GGML_TYPE_F16] = false,
[GGML_TYPE_Q4_0] = true,
[GGML_TYPE_Q4_1] = true,
[GGML_TYPE_Q5_0] = true,
[GGML_TYPE_Q5_1] = true,
[GGML_TYPE_Q8_0] = true,
[GGML_TYPE_Q8_1] = true,
[GGML_TYPE_Q2_K] = true,
[GGML_TYPE_Q3_K] = true,
[GGML_TYPE_Q4_K] = true,
[GGML_TYPE_Q5_K] = true,
[GGML_TYPE_Q6_K] = true,
[GGML_TYPE_Q8_K] = true,
[GGML_TYPE_I8] = false,
[GGML_TYPE_I16] = false,
[GGML_TYPE_I32] = false,
};
static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
static const char * GGML_OP_NAME[GGML_OP_COUNT] = { static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"NONE", "NONE",
@ -4110,29 +4091,33 @@ size_t ggml_nbytes(const struct ggml_tensor * tensor) {
// //
// is enough, but just in case, adding the second part // is enough, but just in case, adding the second part
return GGML_PAD(MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]), GGML_MEM_ALIGN); return GGML_PAD(MAX(tensor->ne[3]*tensor->nb[3], ggml_nelements(tensor)*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type), GGML_MEM_ALIGN);
} }
size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) { size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]; return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
} }
int ggml_blck_size(enum ggml_type type) { int ggml_blck_size(enum ggml_type type) {
return GGML_BLCK_SIZE[type]; return type_traits[type].blck_size;
} }
size_t ggml_type_size(enum ggml_type type) { size_t ggml_type_size(enum ggml_type type) {
return GGML_TYPE_SIZE[type]; return type_traits[type].type_size;
} }
float ggml_type_sizef(enum ggml_type type) { float ggml_type_sizef(enum ggml_type type) {
return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type]; return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
} }
const char * ggml_type_name(enum ggml_type type) { const char * ggml_type_name(enum ggml_type type) {
return GGML_TYPE_NAME[type]; return type_traits[type].type_name;
}
bool ggml_is_quantized(enum ggml_type type) {
return type_traits[type].is_quantized;
} }
const char * ggml_op_name(enum ggml_op op) { const char * ggml_op_name(enum ggml_op op) {
@ -4144,7 +4129,7 @@ const char * ggml_op_symbol(enum ggml_op op) {
} }
size_t ggml_element_size(const struct ggml_tensor * tensor) { size_t ggml_element_size(const struct ggml_tensor * tensor) {
return GGML_TYPE_SIZE[tensor->type]; return ggml_type_size(tensor->type);
} }
static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) { static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
@ -4182,10 +4167,6 @@ static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct
(t0->ne[3] == t1->ne[3]); (t0->ne[3] == t1->ne[3]);
} }
bool ggml_is_quantized(enum ggml_type type) {
return GGML_IS_QUANTIZED[type];
}
enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
enum ggml_type wtype = GGML_TYPE_COUNT; enum ggml_type wtype = GGML_TYPE_COUNT;
@ -4223,8 +4204,8 @@ bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return return
tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] && tensor->nb[0] == ggml_type_size(tensor->type) &&
tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] && tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] && tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
} }
@ -4233,7 +4214,7 @@ static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * te
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return return
tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] && tensor->nb[0] == ggml_type_size(tensor->type) &&
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] && tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
} }
@ -4248,7 +4229,7 @@ static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return return
tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] && tensor->nb[0] == ggml_type_size(tensor->type) &&
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] && tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
} }
@ -4567,7 +4548,7 @@ static struct ggml_tensor * ggml_new_tensor_impl(
size_t data_size = 0; size_t data_size = 0;
if (data == NULL && !ctx->no_alloc) { if (data == NULL && !ctx->no_alloc) {
data_size += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]); data_size += ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
for (int i = 1; i < n_dims; i++) { for (int i = 1; i < n_dims; i++) {
data_size *= ne[i]; data_size *= ne[i];
} }
@ -4622,8 +4603,8 @@ static struct ggml_tensor * ggml_new_tensor_impl(
result->ne[i] = ne[i]; result->ne[i] = ne[i];
} }
result->nb[0] = GGML_TYPE_SIZE[type]; result->nb[0] = ggml_type_size(type);
result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]); result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
for (int i = 2; i < GGML_MAX_DIMS; i++) { for (int i = 2; i < GGML_MAX_DIMS; i++) {
result->nb[i] = result->nb[i - 1]*result->ne[i - 1]; result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
} }
@ -7745,7 +7726,7 @@ static void ggml_compute_forward_dup_same_cont(
memcpy( memcpy(
((char *) dst->data + ie0*nb0), ((char *) dst->data + ie0*nb0),
((char *) src0->data + ie0*nb00), ((char *) src0->data + ie0*nb00),
(ie1 - ie0) * GGML_TYPE_SIZE[src0->type]); (ie1 - ie0) * ggml_type_size(src0->type));
} }
} }
@ -7779,7 +7760,7 @@ static void ggml_compute_forward_dup_f16(
if (src0->type == dst->type && if (src0->type == dst->type &&
ne00 == ne0 && ne00 == ne0 &&
nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) { nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
// copy by rows // copy by rows
const size_t rs = ne00*nb00; const size_t rs = ne00*nb00;
for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i03 = 0; i03 < ne03; i03++) {
@ -7837,7 +7818,7 @@ static void ggml_compute_forward_dup_f16(
float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith; float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
size_t id = 0; size_t id = 0;
size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]); size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
char * dst_ptr = (char *) dst->data; char * dst_ptr = (char *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) { for (int i03 = 0; i03 < ne03; i03++) {
@ -8050,7 +8031,7 @@ static void ggml_compute_forward_dup_f32(
if (src0->type == dst->type && if (src0->type == dst->type &&
ne00 == ne0 && ne00 == ne0 &&
nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) { nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
// copy by rows // copy by rows
const size_t rs = ne00*nb00; const size_t rs = ne00*nb00;
for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i03 = 0; i03 < ne03; i03++) {
@ -8089,7 +8070,7 @@ static void ggml_compute_forward_dup_f32(
ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float; ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
size_t id = 0; size_t id = 0;
size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]); size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
char * dst_ptr = (char *) dst->data; char * dst_ptr = (char *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) { for (int i03 = 0; i03 < ne03; i03++) {
@ -8501,7 +8482,7 @@ static void ggml_compute_forward_add_q_f32(
ggml_from_float_t const quantize_row_q = type_traits[type].from_float; ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
// we don't support permuted src0 or src1 // we don't support permuted src0 or src1
GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]); GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb10 == sizeof(float)); GGML_ASSERT(nb10 == sizeof(float));
// dst cannot be transposed or permuted // dst cannot be transposed or permuted
@ -8775,7 +8756,7 @@ static void ggml_compute_forward_add1_q_f32(
ggml_from_float_t const quantize_row_q = type_traits[type].from_float; ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
// we don't support permuted src0 // we don't support permuted src0
GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]); GGML_ASSERT(nb00 == ggml_type_size(type));
// dst cannot be transposed or permuted // dst cannot be transposed or permuted
GGML_ASSERT(nb0 <= nb1); GGML_ASSERT(nb0 <= nb1);
@ -10629,7 +10610,7 @@ static void ggml_compute_forward_mul_mat(
GGML_ASSERT(ne3 == ne13); GGML_ASSERT(ne3 == ne13);
// we don't support permuted src0 or src1 // we don't support permuted src0 or src1
GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]); GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb10 == sizeof(float)); GGML_ASSERT(nb10 == sizeof(float));
// dst cannot be transposed or permuted // dst cannot be transposed or permuted
@ -10712,7 +10693,7 @@ static void ggml_compute_forward_mul_mat(
if (params->type == GGML_TASK_INIT) { if (params->type == GGML_TASK_INIT) {
if (src1->type != vec_dot_type) { if (src1->type != vec_dot_type) {
char * wdata = params->wdata; char * wdata = params->wdata;
const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type]; const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
for (int64_t i13 = 0; i13 < ne13; ++i13) { for (int64_t i13 = 0; i13 < ne13; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) { for (int64_t i12 = 0; i12 < ne12; ++i12) {
@ -10732,7 +10713,7 @@ static void ggml_compute_forward_mul_mat(
} }
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata; const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type]; const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
const int64_t nr0 = ne01; // src0 rows const int64_t nr0 = ne01; // src0 rows
const int64_t nr1 = ne11*ne12*ne13; // src1 rows const int64_t nr1 = ne11*ne12*ne13; // src1 rows
@ -11205,7 +11186,7 @@ static void ggml_compute_forward_get_rows_q(
assert( dst->ne[0] == nc); assert( dst->ne[0] == nc);
assert( dst->ne[1] == nr); assert( dst->ne[1] == nr);
assert(src0->nb[0] == GGML_TYPE_SIZE[type]); assert(src0->nb[0] == ggml_type_size(type));
for (int i = 0; i < nr; ++i) { for (int i = 0; i < nr; ++i) {
const int r = ((int32_t *) src1->data)[i]; const int r = ((int32_t *) src1->data)[i];
@ -16382,7 +16363,7 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
size_t cur = 0; size_t cur = 0;
if (ggml_is_quantized(node->type)) { if (ggml_is_quantized(node->type)) {
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks; cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
} }
work_size = MAX(work_size, cur); work_size = MAX(work_size, cur);
@ -16395,7 +16376,7 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
size_t cur = 0; size_t cur = 0;
if (ggml_is_quantized(node->src[0]->type)) { if (ggml_is_quantized(node->src[0]->type)) {
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[0]->ne[0] * n_tasks; cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
} }
work_size = MAX(work_size, cur); work_size = MAX(work_size, cur);
@ -16407,7 +16388,7 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
size_t cur = 0; size_t cur = 0;
if (ggml_is_quantized(node->src[0]->type)) { if (ggml_is_quantized(node->src[0]->type)) {
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[1]->ne[0] * n_tasks; cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
} }
work_size = MAX(work_size, cur); work_size = MAX(work_size, cur);
@ -16490,12 +16471,12 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
// the threads are still spinning // the threads are still spinning
if (node->src[0]->type != GGML_TYPE_F32) { if (node->src[0]->type != GGML_TYPE_F32) {
// here we need memory just for single 2D matrix from src0 // here we need memory just for single 2D matrix from src0
cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src[0]->ne[0]*node->src[0]->ne[1]); cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
} }
} else } else
#endif #endif
if (node->src[1]->type != vec_dot_type) { if (node->src[1]->type != vec_dot_type) {
cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src[1])/GGML_BLCK_SIZE[vec_dot_type]; cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
} else { } else {
cur = 0; cur = 0;
} }
@ -18301,8 +18282,8 @@ enum ggml_opt_result ggml_opt_resume(
struct ggml_tensor * f) { struct ggml_tensor * f) {
// build forward + backward compute graphs // build forward + backward compute graphs
struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0)); struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0)); struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data; struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data; struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;

6
ggml.h
View file

@ -1740,6 +1740,10 @@ extern "C" {
typedef void (*ggml_vec_dot_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y); typedef void (*ggml_vec_dot_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
typedef struct { typedef struct {
const char * type_name;
int blck_size;
size_t type_size;
bool is_quantized;
ggml_to_float_t to_float; ggml_to_float_t to_float;
ggml_from_float_t from_float; ggml_from_float_t from_float;
ggml_from_float_t from_float_reference; ggml_from_float_t from_float_reference;
@ -1747,7 +1751,7 @@ extern "C" {
enum ggml_type vec_dot_type; enum ggml_type vec_dot_type;
} ggml_type_traits_t; } ggml_type_traits_t;
ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i); ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
#ifdef __cplusplus #ifdef __cplusplus
} }

170
llama.cpp
View file

@ -115,9 +115,9 @@ static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph *
// memory sizes (calculated for n_batch == 512) // memory sizes (calculated for n_batch == 512)
// //
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0(int n_ctx) static std::map<e_model, size_t> MEM_REQ_SCRATCH0(int n_ctx)
{ {
static std::map<e_model, size_t> k_sizes = { std::map<e_model, size_t> k_sizes = {
{ MODEL_3B, ((size_t) n_ctx / 16ull + 92ull) * MB }, { MODEL_3B, ((size_t) n_ctx / 16ull + 92ull) * MB },
{ MODEL_7B, ((size_t) n_ctx / 16ull + 100ull) * MB }, { MODEL_7B, ((size_t) n_ctx / 16ull + 100ull) * MB },
{ MODEL_13B, ((size_t) n_ctx / 12ull + 120ull) * MB }, { MODEL_13B, ((size_t) n_ctx / 12ull + 120ull) * MB },
@ -996,7 +996,7 @@ static const char *llama_file_version_name(llama_file_version version) {
return "unknown"; return "unknown";
} }
static const char *llama_ftype_name(enum llama_ftype ftype) { const char * llama_ftype_name(enum llama_ftype ftype) {
switch (ftype) { switch (ftype) {
case LLAMA_FTYPE_ALL_F32: return "all F32"; case LLAMA_FTYPE_ALL_F32: return "all F32";
case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16"; case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
@ -1799,6 +1799,13 @@ static bool llama_eval_internal(
LLAMA_ASSERT((!tokens && embd) || (tokens && !embd)); LLAMA_ASSERT((!tokens && embd) || (tokens && !embd));
LLAMA_ASSERT(n_tokens > 0);
LLAMA_ASSERT(n_past >= 0);
LLAMA_ASSERT(n_threads > 0);
// TODO: keep the values of n_batch and n_ctx
// LLAMA_ASSERT(n_tokens <= n_batch);
// LLAMA_ASSERT(n_past + n_tokens <= n_ctx);
const int64_t t_start_us = ggml_time_us(); const int64_t t_start_us = ggml_time_us();
#ifdef GGML_USE_MPI #ifdef GGML_USE_MPI
@ -2077,37 +2084,81 @@ static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, co
// grammar - internal // grammar - internal
// //
struct llama_partial_utf8 {
uint32_t value; // bit value so far (unshifted)
int n_remain; // num bytes remaining; -1 indicates invalid sequence
};
struct llama_grammar { struct llama_grammar {
const std::vector<std::vector<llama_grammar_element>> rules; const std::vector<std::vector<llama_grammar_element>> rules;
std::vector<std::vector<const llama_grammar_element *>> stacks; std::vector<std::vector<const llama_grammar_element *>> stacks;
// buffer for partially generated UTF-8 sequence from accepted tokens
llama_partial_utf8 partial_utf8;
}; };
struct llama_grammar_candidate { struct llama_grammar_candidate {
size_t index; size_t index;
const uint32_t * code_points; const uint32_t * code_points;
llama_partial_utf8 partial_utf8;
}; };
// NOTE: assumes valid utf8 (but checks for overrun) // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
// adds a terminating 0 for use as pointer // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
std::vector<uint32_t> decode_utf8(const char * src) { std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; const char * src,
llama_partial_utf8 partial_start) {
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
const char * pos = src; const char * pos = src;
std::vector<uint32_t> code_points; std::vector<uint32_t> code_points;
uint32_t value = partial_start.value;
int n_remain = partial_start.n_remain;
// continue previous decode, if applicable
while (*pos != 0 && n_remain > 0) {
uint8_t next_byte = static_cast<uint8_t>(*pos);
if ((next_byte >> 6) != 2) {
// invalid sequence, abort
code_points.push_back(0);
return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
}
value = (value << 6) + (next_byte & 0x3F);
++pos;
--n_remain;
}
if (partial_start.n_remain > 0 && n_remain == 0) {
code_points.push_back(value);
}
// decode any subsequent utf-8 sequences, which may end in an incomplete one
while (*pos != 0) { while (*pos != 0) {
uint8_t first_byte = static_cast<uint8_t>(*pos); uint8_t first_byte = static_cast<uint8_t>(*pos);
uint8_t highbits = first_byte >> 4; uint8_t highbits = first_byte >> 4;
int len = lookup[highbits]; n_remain = lookup[highbits] - 1;
uint8_t mask = (1 << (8 - len)) - 1;
uint32_t value = first_byte & mask; if (n_remain < 0) {
const char * end = pos + len; // may overrun! // invalid sequence, abort
++pos; code_points.clear();
for ( ; pos < end && *pos != 0; ++pos) { code_points.push_back(0);
value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F); return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
} }
uint8_t mask = (1 << (7 - n_remain)) - 1;
value = first_byte & mask;
++pos;
while (*pos != 0 && n_remain > 0) {
value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
++pos;
--n_remain;
}
if (n_remain == 0) {
code_points.push_back(value); code_points.push_back(value);
} }
}
code_points.push_back(0); code_points.push_back(0);
return code_points;
return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
} }
// returns true iff pos points to the end of one of the definitions of a rule // returns true iff pos points to the end of one of the definitions of a rule
@ -2144,6 +2195,56 @@ static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
return std::make_pair(found == is_positive_char, pos); return std::make_pair(found == is_positive_char, pos);
} }
// returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
// range at pos (regular or inverse range)
// asserts that pos is pointing to a char range element
static bool llama_grammar_match_partial_char(
const llama_grammar_element * pos,
const llama_partial_utf8 partial_utf8) {
bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
LLAMA_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
uint32_t partial_value = partial_utf8.value;
int n_remain = partial_utf8.n_remain;
// invalid sequence or 7-bit char split across 2 bytes (overlong)
if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
return false;
}
// range of possible code points this partial UTF-8 sequence could complete to
uint32_t low = partial_value << (n_remain * 6);
uint32_t high = low | ((1 << (n_remain * 6)) - 1);
if (low == 0) {
if (n_remain == 2) {
low = 1 << 11;
} else if (n_remain == 3) {
low = 1 << 16;
}
}
do {
if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
// inclusive range, e.g. [a-z]
if (pos->value <= high && low <= pos[1].value) {
return is_positive_char;
}
pos += 2;
} else {
// exact char match, e.g. [a] or "a"
if (low <= pos->value && pos->value <= high) {
return is_positive_char;
}
pos += 1;
}
} while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
return !is_positive_char;
}
// transforms a grammar pushdown stack into N possible stacks, all ending // transforms a grammar pushdown stack into N possible stacks, all ending
// at a character range (terminal element) // at a character range (terminal element)
static void llama_grammar_advance_stack( static void llama_grammar_advance_stack(
@ -2244,8 +2345,11 @@ static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_
std::vector<llama_grammar_candidate> rejects; std::vector<llama_grammar_candidate> rejects;
if (stack.empty()) { if (stack.empty()) {
// accept nothing; EOS is handled elsewhere for (auto tok : candidates) {
rejects.insert(rejects.end(), candidates.begin(), candidates.end()); if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
rejects.push_back(tok);
}
}
return rejects; return rejects;
} }
@ -2253,10 +2357,15 @@ static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_
std::vector<llama_grammar_candidate> next_candidates; std::vector<llama_grammar_candidate> next_candidates;
for (auto tok : candidates) { for (auto tok : candidates) {
if (llama_grammar_match_char(stack_pos, tok.code_points[0]).first) { if (*tok.code_points == 0) {
if (tok.code_points[1] != 0) { // reached end of full codepoints in token, reject iff it ended in a partial sequence
next_candidates.push_back({ tok.index, tok.code_points + 1 }); // that cannot satisfy this position in grammar
if (tok.partial_utf8.n_remain != 0 &&
!llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
rejects.push_back(tok);
} }
} else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
} else { } else {
rejects.push_back(tok); rejects.push_back(tok);
} }
@ -2274,7 +2383,7 @@ static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_
auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates); auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
for (auto tok : next_rejects) { for (auto tok : next_rejects) {
rejects.push_back({ tok.index, tok.code_points - 1 }); rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
} }
return rejects; return rejects;
@ -2339,7 +2448,7 @@ struct llama_grammar * llama_grammar_init(
} }
} while (true); } while (true);
return new llama_grammar{ std::move(vec_rules), std::move(stacks) }; return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
} }
void llama_grammar_free(struct llama_grammar * grammar) { void llama_grammar_free(struct llama_grammar * grammar) {
@ -2645,7 +2754,7 @@ void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * c
const llama_token eos = llama_token_eos(); const llama_token eos = llama_token_eos();
std::vector<std::vector<uint32_t>> candidates_decoded; std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
std::vector<llama_grammar_candidate> candidates_grammar; std::vector<llama_grammar_candidate> candidates_grammar;
for (size_t i = 0; i < candidates->size; ++i) { for (size_t i = 0; i < candidates->size; ++i) {
@ -2658,8 +2767,10 @@ void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * c
} else if (*str == 0) { } else if (*str == 0) {
candidates->data[i].logit = -INFINITY; candidates->data[i].logit = -INFINITY;
} else { } else {
candidates_decoded.push_back(decode_utf8(str)); candidates_decoded.push_back(decode_utf8(str, grammar->partial_utf8));
candidates_grammar.push_back({ i, candidates_decoded.back().data() }); candidates_grammar.push_back({
i, candidates_decoded.back().first.data(), candidates_decoded.back().second
});
} }
} }
@ -2860,11 +2971,14 @@ void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar
} }
const char * str = llama_token_to_str(ctx, token); const char * str = llama_token_to_str(ctx, token);
// Note terminating 0 in decoded string // Note terminating 0 in decoded string
auto code_points = decode_utf8(str); const auto decoded = decode_utf8(str, grammar->partial_utf8);
const auto & code_points = decoded.first;
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) { for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it); grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
} }
grammar->partial_utf8 = decoded.second;
LLAMA_ASSERT(!grammar->stacks.empty()); LLAMA_ASSERT(!grammar->stacks.empty());
ctx->t_sample_us += ggml_time_us() - t_start_sample_us; ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
@ -4167,6 +4281,10 @@ int llama_n_embd(const struct llama_context * ctx) {
return ctx->model.hparams.n_embd; return ctx->model.hparams.n_embd;
} }
int llama_model_type(const struct llama_model * model, char * buf, size_t buf_size) {
return snprintf(buf, buf_size, "LLaMA %s %s", llama_model_type_name(model->type), llama_ftype_name(model->hparams.ftype));
}
int llama_get_vocab_from_model( int llama_get_vocab_from_model(
const struct llama_model * model, const struct llama_model * model,
const char * * strings, const char * * strings,

View file

@ -351,6 +351,8 @@ extern "C" {
LLAMA_API int llama_n_ctx_from_model (const struct llama_model * model); LLAMA_API int llama_n_ctx_from_model (const struct llama_model * model);
LLAMA_API int llama_n_embd_from_model (const struct llama_model * model); LLAMA_API int llama_n_embd_from_model (const struct llama_model * model);
LLAMA_API int llama_model_type(const struct llama_model * model, char * buf, size_t buf_size);
// Get the vocabulary as output parameters. // Get the vocabulary as output parameters.
// Returns number of results. // Returns number of results.
LLAMA_API int llama_get_vocab( LLAMA_API int llama_get_vocab(

View file

@ -199,7 +199,7 @@ int main()
uint32_t *cp = new uint32_t[2]; // dynamically allocate memory for code_point uint32_t *cp = new uint32_t[2]; // dynamically allocate memory for code_point
cp[0] = 37 + i; cp[0] = 37 + i;
cp[1] = 0; cp[1] = 0;
next_candidates[i] = {i, cp}; next_candidates[i] = {i, cp, {}};
} }
std::vector<std::vector<std::pair<uint32_t, uint16_t>>> expected_reject = { std::vector<std::vector<std::pair<uint32_t, uint16_t>>> expected_reject = {