Reverted blocked multiplication code as it still has issues and could affect other Llama arches
This commit is contained in:
parent
6745ea7a65
commit
26e8f23bf3
1 changed files with 1 additions and 335 deletions
336
llama.cpp
336
llama.cpp
|
@ -5734,340 +5734,6 @@ static void llm_build_kv_store(
|
|||
ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur_t, v_cache_view));
|
||||
}
|
||||
|
||||
static struct ggml_tensor * llama_build_mat_mul_blocked_computation(
|
||||
/*
|
||||
* Does (almost) same thing as ggml_mat_mul mathematically speaking,
|
||||
* but splits the computation into chunks.
|
||||
*
|
||||
* Why would you want to do this? As part of Command-R+ coding, we
|
||||
* discovered that quite a bit of the GPU code is not prepared for
|
||||
* matrices with more than 2**31-1 elements (~2 billion).
|
||||
*
|
||||
* Some context:
|
||||
* https://github.com/ggerganov/llama.cpp/pull/6491
|
||||
*
|
||||
* This function has a limit (set to 2B) that if any constituent parts
|
||||
* of it (input, output, result) would go over that limit byte-wise,
|
||||
* it'll use the splitted computation. This is based on the idea that
|
||||
* this minimizes the chance that somewhere downstream in GPU code, be
|
||||
* it MPS or Cuda, has something like: int x = y * z; where the values
|
||||
* of y and z overflow the multiplication and then silently (or not so
|
||||
* silently) does something weird. At the time of writing (2024-04-05);
|
||||
* it seems that CUDA code outright crashes and MPS silently gives bad
|
||||
* results.
|
||||
*
|
||||
* This is a band-aid workaround. The ideal state of the world is that
|
||||
* this function does nothing but "return ggml_mat_mul(ctx, a, b)".
|
||||
*
|
||||
* The last argument (forced_block_size) is for debugging. You can
|
||||
* force a certain block size to use with the computation. If zero
|
||||
* (default) then the block size is determined on the fly. Production
|
||||
* code should always have it zero; and only set it to a non-zero value
|
||||
* for debugging and testing.
|
||||
*/
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
const llama_model & model,
|
||||
const llm_build_cb & cb,
|
||||
int64_t il,
|
||||
size_t forced_block_size)
|
||||
{
|
||||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||||
|
||||
if (forced_block_size != 0) {
|
||||
//fprintf(stderr, "warning: llama_build_mat_mul_blocked_computation() forced block size: %zu\n", forced_block_size);
|
||||
}
|
||||
|
||||
const size_t MAX_BYTES_BEFORE_SPLIT = 2000000000;
|
||||
|
||||
// the actual ggml_mul_mat supports batching. But this one doesn't.
|
||||
GGML_ASSERT(a->ne[2] == 1 && b->ne[2] == 1);
|
||||
GGML_ASSERT(a->ne[3] == 1 && b->ne[3] == 1);
|
||||
|
||||
// bail out if if the number of elements would be zero.
|
||||
// nicer than getting a segfault.
|
||||
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
|
||||
GGML_ASSERT(a->ne[i] > 0 && "Matrix multiplication with a 0-side length matrix ('a').");
|
||||
GGML_ASSERT(b->ne[i] > 0 && "Matrix multiplication with a 0-side length matrix ('b').");
|
||||
}
|
||||
|
||||
// Use the max size of: a, b, result size
|
||||
const size_t a_rows = a->ne[1];
|
||||
const size_t a_cols = a->ne[0];
|
||||
|
||||
// b is transposed
|
||||
const size_t b_rows = b->ne[0];
|
||||
const size_t b_cols = b->ne[1];
|
||||
|
||||
const size_t c_rows = a_rows;
|
||||
const size_t c_cols = b_cols;
|
||||
|
||||
// determine a size of a block that's as big as possible.
|
||||
// we start with block size of the maximum size, and if that passes,
|
||||
// then we just use ggml_mat_mul()
|
||||
//
|
||||
// the block is square.
|
||||
size_t cand_block_size = a_rows;
|
||||
if (a_cols > cand_block_size) { cand_block_size = a_cols; }
|
||||
if (b_rows > cand_block_size) { cand_block_size = b_rows; }
|
||||
if (b_cols > cand_block_size) { cand_block_size = b_cols; }
|
||||
if (c_rows > cand_block_size) { cand_block_size = c_rows; }
|
||||
if (c_cols > cand_block_size) { cand_block_size = c_cols; }
|
||||
|
||||
size_t block_size = 1;
|
||||
while (block_size < cand_block_size) {
|
||||
block_size <<= 1;
|
||||
}
|
||||
|
||||
if (forced_block_size != 0) {
|
||||
block_size = forced_block_size;
|
||||
} else {
|
||||
// figure out what is largest block_size we can use that will never
|
||||
// have an intermediate result bigger than
|
||||
// MAX_BYTES_BEFORE_SPLIT
|
||||
bool ok = true;
|
||||
while (block_size > 0) {
|
||||
ok = true;
|
||||
|
||||
// keep the byte calculations in sync with the blocked code in
|
||||
// the computation part.
|
||||
|
||||
// Criteria:
|
||||
// 1. result block size
|
||||
{
|
||||
const size_t i_min = 0;
|
||||
const size_t j_min = 0;
|
||||
size_t i_max = i_min + block_size;
|
||||
size_t j_max = j_min + block_size;
|
||||
if (i_max > a_rows) { i_max = a_rows; }
|
||||
if (j_max > b_cols) { j_max = b_cols; }
|
||||
|
||||
const size_t bytes_size = sizeof(float) * (i_max - i_min) * (j_max - j_min);
|
||||
if (bytes_size > MAX_BYTES_BEFORE_SPLIT) {
|
||||
ok = false;
|
||||
}
|
||||
}
|
||||
// 2. and 3.
|
||||
// Block size from 'a' and 'b'
|
||||
{
|
||||
const size_t i_min = 0;
|
||||
const size_t j_min = 0;
|
||||
const size_t k_min = 0;
|
||||
|
||||
size_t i_max = i_min + block_size;
|
||||
size_t j_max = j_min + block_size;
|
||||
size_t k_max = k_min + block_size;
|
||||
|
||||
if (i_max > a_rows) { i_max = a_rows; }
|
||||
if (j_max > b_cols) { j_max = b_cols; }
|
||||
if (k_max > a_cols) { k_max = a_cols; }
|
||||
|
||||
const size_t bytes_size_a = sizeof(float) * (k_max - k_min) * (i_max - i_min);
|
||||
const size_t bytes_size_b = sizeof(float) * (k_max - k_min) * (j_max - j_min);
|
||||
|
||||
if (bytes_size_a > MAX_BYTES_BEFORE_SPLIT || bytes_size_b > MAX_BYTES_BEFORE_SPLIT) {
|
||||
ok = false;
|
||||
}
|
||||
}
|
||||
|
||||
if (!ok) {
|
||||
block_size /= 2;
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
}
|
||||
GGML_ASSERT(block_size > 0);
|
||||
}
|
||||
|
||||
//fprintf(stderr, "block_size=%zu a shape: %d %d b shape: %d %d\n", block_size, a_rows, a_cols, b_rows, b_cols);
|
||||
|
||||
// O(N^3) nested loop, where N is number of blocks on one of the
|
||||
// constituent parts.
|
||||
size_t nb_A = (a_rows + block_size - 1) / block_size;
|
||||
size_t nb_B = (b_cols + block_size - 1) / block_size;
|
||||
size_t nb_A2 = (a_cols + block_size - 1) / block_size;
|
||||
|
||||
// make placeholder tensors for each block results.
|
||||
// 2D: (row, col) -> offset is: (x, y) -> x * nb_B + y
|
||||
struct ggml_tensor ** result_blocks = (struct ggml_tensor **) malloc(nb_A * nb_B * sizeof(struct ggml_tensor *));
|
||||
|
||||
for (size_t i = 0; i < nb_A; ++i) {
|
||||
for (size_t j = 0; j < nb_B; ++j) {
|
||||
const size_t i_min = i * block_size;
|
||||
const size_t j_min = j * block_size;
|
||||
size_t i_max = i_min + block_size;
|
||||
size_t j_max = j_min + block_size;
|
||||
|
||||
if (i_max > a_rows) { i_max = a_rows; }
|
||||
if (j_max > b_cols) { j_max = b_cols; }
|
||||
|
||||
struct ggml_tensor * result_block = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, i_max - i_min, j_max - j_min);
|
||||
result_block = ggml_scale(ctx, result_block, 0.0f);
|
||||
|
||||
cb(result_block, "result_block-fresh", il);
|
||||
result_blocks[i * nb_B + j] = result_block;
|
||||
}
|
||||
}
|
||||
|
||||
size_t num_blocks = 0;
|
||||
for (size_t i = 0; i < nb_A; ++i) {
|
||||
for (size_t j = 0; j < nb_B; ++j) {
|
||||
for (size_t k = 0; k < nb_A2; ++k) {
|
||||
num_blocks++;
|
||||
|
||||
const size_t i_min = i * block_size;
|
||||
const size_t j_min = j * block_size;
|
||||
const size_t k_min = k * block_size;
|
||||
|
||||
size_t i_max = i_min + block_size;
|
||||
size_t j_max = j_min + block_size;
|
||||
size_t k_max = k_min + block_size;
|
||||
if (i_max > a_rows) { i_max = a_rows; }
|
||||
if (j_max > b_cols) { j_max = b_cols; }
|
||||
if (k_max > a_cols) { k_max = a_cols; }
|
||||
|
||||
const size_t blck_size_a = (const size_t) ggml_blck_size(a->type);
|
||||
const size_t blck_size_b = (const size_t) ggml_blck_size(b->type);
|
||||
const size_t type_size_a = ggml_type_size(a->type);
|
||||
const size_t type_size_b = ggml_type_size(b->type);
|
||||
|
||||
GGML_ASSERT(k_min * type_size_a % blck_size_a == 0);
|
||||
GGML_ASSERT(k_min * type_size_b % blck_size_b == 0);
|
||||
|
||||
// blck_size=32
|
||||
// type_size_a=19
|
||||
//
|
||||
// k_min = 4
|
||||
//
|
||||
// byte_offset = (type_size_a * (k_min/blck_size)) =
|
||||
// 19 * (4/32) = 2
|
||||
|
||||
struct ggml_tensor * a_slice = ggml_view_2d(
|
||||
ctx, a,
|
||||
k_max - k_min, // k:k_max size
|
||||
i_max - i_min, // i:i_max size
|
||||
ggml_row_size(a->type, a->ne[0]),
|
||||
ggml_row_size(a->type, a->ne[0]) * i_min + k_min * type_size_a / blck_size_a);
|
||||
|
||||
cb(a_slice, "a_slice", il);
|
||||
|
||||
struct ggml_tensor * b_slice = ggml_view_2d(
|
||||
ctx, b,
|
||||
k_max - k_min, // k:k_max size
|
||||
j_max - j_min, // j:j_max size
|
||||
ggml_row_size(b->type, b->ne[0]),
|
||||
ggml_row_size(b->type, b->ne[0]) * j_min + k_min * type_size_b / blck_size_b);
|
||||
|
||||
cb(b_slice, "b_slice", il);
|
||||
|
||||
struct ggml_tensor * result_slice = result_blocks[i * nb_B + j];
|
||||
|
||||
struct ggml_tensor * mm_result = ggml_mul_mat(ctx, a_slice, b_slice);
|
||||
cb(mm_result, "mm_result", il);
|
||||
|
||||
result_blocks[i * nb_B + j] = ggml_add(ctx, result_slice, mm_result);
|
||||
cb(result_blocks[i * nb_B + j], "result_slice", il);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// concate the results into one chonky tensor.
|
||||
// ggml_concat goes mad if the first two dimensions are not the same.
|
||||
//
|
||||
// We use this strategy: find largest power of two that divides the
|
||||
// size of all the tensors. Power of two to make it friendly to GPU
|
||||
// code; (TODO: LCD might be better? but not sure it won't break code).
|
||||
//
|
||||
// Flatten all the tensors to (X, 1, N, 1).
|
||||
size_t split_size = 1;
|
||||
while (1) {
|
||||
size_t candidate_split_size = split_size << 1;
|
||||
bool bad = false;
|
||||
|
||||
for (size_t i = 0; i < nb_A * nb_B; ++i) {
|
||||
size_t rows = result_blocks[i]->ne[0];
|
||||
size_t cols = result_blocks[i]->ne[1];
|
||||
|
||||
if (candidate_split_size > rows * cols) {
|
||||
bad = true;
|
||||
break;
|
||||
}
|
||||
|
||||
if ((rows * cols) % candidate_split_size != 0) {
|
||||
bad = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (bad) {
|
||||
break;
|
||||
}
|
||||
|
||||
split_size = candidate_split_size;
|
||||
}
|
||||
|
||||
struct ggml_tensor * result_final = nullptr;
|
||||
const ggml_type wanted_final_type = a->type;
|
||||
|
||||
// TODO: looks like concat also wants f32, so everything is casted to
|
||||
// f32 here.. A datatype-agnostic concat would be nice; or ability to
|
||||
// do the tensor equivalent of unsafe type cast.
|
||||
//
|
||||
// The Command-R+ tensor this code was written for was 6GB. So this is
|
||||
// going to handle 12GB I guess. Oof.
|
||||
//
|
||||
// I believe you could be smarter and combine hierarchially instead of
|
||||
// one by one. I.e. we are doing a concetenation like this:
|
||||
// for x in range(100):
|
||||
// accum = accum + [x] (copies accum every time? maybe. didn't read concat code)
|
||||
//
|
||||
// You could instead divide and conquer to make it a bit smarter.
|
||||
for (size_t i = 0; i < nb_A; ++i) {
|
||||
for (size_t j = 0; j < nb_B; ++j) {
|
||||
struct ggml_tensor * src_block = result_blocks[i * nb_B + j];
|
||||
|
||||
const size_t rows = src_block->ne[0];
|
||||
const size_t cols = src_block->ne[1];
|
||||
GGML_ASSERT(rows * cols % split_size == 0);
|
||||
|
||||
const size_t nflattened_rows = split_size;
|
||||
const size_t n3 = (rows * cols) / split_size;
|
||||
|
||||
src_block = ggml_view_3d(ctx, src_block,
|
||||
nflattened_rows,
|
||||
1,
|
||||
n3,
|
||||
nflattened_rows * ggml_element_size(src_block),
|
||||
nflattened_rows * ggml_element_size(src_block),
|
||||
0);
|
||||
|
||||
if (result_final == nullptr) {
|
||||
if (src_block->type != GGML_TYPE_F32) {
|
||||
result_final = ggml_cast(ctx, src_block, GGML_TYPE_F32);
|
||||
cb(result_final, "result-upcast", il);
|
||||
} else {
|
||||
result_final = src_block;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
if (src_block->type != GGML_TYPE_F32) {
|
||||
src_block = ggml_cast(ctx, src_block, GGML_TYPE_F32);
|
||||
}
|
||||
result_final = ggml_concat(ctx, result_final, src_block);
|
||||
cb(result_final, "result_final-accumulator", il);
|
||||
}
|
||||
}
|
||||
|
||||
result_final = ggml_reshape_2d(ctx, result_final, c_rows, c_cols);
|
||||
cb(result_final, "result_final", il);
|
||||
|
||||
free(result_blocks);
|
||||
|
||||
return result_final;
|
||||
}
|
||||
|
||||
static struct ggml_tensor * llm_build_norm(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * cur,
|
||||
|
@ -6813,7 +6479,7 @@ struct llm_build_context {
|
|||
cb(cur, "result_norm", -1);
|
||||
|
||||
// lm_head
|
||||
cur = llama_build_mat_mul_blocked_computation(ctx0, model.output, cur, model, cb, -1, 0);
|
||||
cur = ggml_mul_mat(ctx0, model.output, cur);
|
||||
cb(cur, "result_output", -1);
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue