Initial support - model loads, generates random stuff
This commit is contained in:
parent
233fc1c69f
commit
27467a5ced
3 changed files with 728 additions and 0 deletions
213
convert-stablelm-hf-to-gguf.py
Executable file
213
convert-stablelm-hf-to-gguf.py
Executable file
|
@ -0,0 +1,213 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
# HF gptneox--> gguf conversion
|
||||||
|
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import struct
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from transformers import AutoTokenizer # type: ignore[import]
|
||||||
|
|
||||||
|
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||||
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||||||
|
import gguf
|
||||||
|
|
||||||
|
|
||||||
|
def count_model_parts(dir_model: Path) -> int:
|
||||||
|
num_parts = 0
|
||||||
|
for filename in os.listdir(dir_model):
|
||||||
|
if filename.startswith("pytorch_model-"):
|
||||||
|
num_parts += 1
|
||||||
|
|
||||||
|
if num_parts > 0:
|
||||||
|
print("gguf: found " + str(num_parts) + " model parts")
|
||||||
|
return num_parts
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args() -> argparse.Namespace:
|
||||||
|
parser = argparse.ArgumentParser(description="Convert a GPT-NeoX model to a GGML compatible file")
|
||||||
|
parser.add_argument(
|
||||||
|
"--vocab-only", action="store_true",
|
||||||
|
help="extract only the vocab",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--outfile", type=Path,
|
||||||
|
help="path to write to; default: based on input",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"model", type=Path,
|
||||||
|
help="directory containing model file, or model file itself (*.bin)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"ftype", type=int, choices=[0, 1], default=1, nargs='?',
|
||||||
|
help="output format - use 0 for float32, 1 for float16",
|
||||||
|
)
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
args = parse_args()
|
||||||
|
|
||||||
|
dir_model = args.model
|
||||||
|
ftype = args.ftype
|
||||||
|
if not dir_model.is_dir():
|
||||||
|
print(f'Error: {args.model} is not a directory', file = sys.stderr)
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
# possible tensor data types
|
||||||
|
# ftype == 0 -> float32
|
||||||
|
# ftype == 1 -> float16
|
||||||
|
|
||||||
|
# map from ftype to string
|
||||||
|
ftype_str = ["f32", "f16"]
|
||||||
|
|
||||||
|
if args.outfile is not None:
|
||||||
|
fname_out = args.outfile
|
||||||
|
else:
|
||||||
|
# output in the same directory as the model by default
|
||||||
|
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
|
||||||
|
|
||||||
|
print("gguf: loading model "+dir_model.name)
|
||||||
|
|
||||||
|
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||||
|
hparams = json.load(f)
|
||||||
|
|
||||||
|
if hparams["architectures"][0] != "GPTNeoXForCausalLM" and hparams["architectures"][0] != "StableLMEpochForCausalLM":
|
||||||
|
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||||
|
|
||||||
|
sys.exit()
|
||||||
|
|
||||||
|
# get number of model parts
|
||||||
|
num_parts = count_model_parts(dir_model)
|
||||||
|
|
||||||
|
ARCH=gguf.MODEL_ARCH.STABLELM
|
||||||
|
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||||
|
|
||||||
|
print("gguf: get model metadata")
|
||||||
|
|
||||||
|
block_count = hparams["num_hidden_layers"]
|
||||||
|
|
||||||
|
gguf_writer.add_name(dir_model.name)
|
||||||
|
gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||||||
|
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||||
|
gguf_writer.add_block_count(block_count)
|
||||||
|
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||||
|
gguf_writer.add_rope_dimension_count(int(hparams["rope_pct"]*hparams["hidden_size"]))
|
||||||
|
gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||||||
|
gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
|
||||||
|
gguf_writer.add_layer_norm_eps(1e-5)
|
||||||
|
|
||||||
|
# TOKENIZATION
|
||||||
|
|
||||||
|
print("gguf: get tokenizer metadata")
|
||||||
|
|
||||||
|
tokens: list[bytearray] = []
|
||||||
|
scores: list[float] = []
|
||||||
|
toktypes: list[int] = []
|
||||||
|
|
||||||
|
# gpt2 tokenizer
|
||||||
|
gguf_writer.add_tokenizer_model("gpt2")
|
||||||
|
|
||||||
|
print("gguf: get gpt2 tokenizer vocab")
|
||||||
|
|
||||||
|
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||||
|
|
||||||
|
# The number of tokens in tokenizer.json can differ from the expected vocab size.
|
||||||
|
# This causes downstream issues with mismatched tensor sizes when running the inference
|
||||||
|
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||||||
|
assert max(tokenizer.vocab.values()) < vocab_size
|
||||||
|
|
||||||
|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
||||||
|
|
||||||
|
for i in range(vocab_size):
|
||||||
|
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
|
||||||
|
scores.append(0.0) # dummy
|
||||||
|
toktypes.append(gguf.TokenType.NORMAL)
|
||||||
|
|
||||||
|
gguf_writer.add_token_list(tokens)
|
||||||
|
gguf_writer.add_token_scores(scores)
|
||||||
|
gguf_writer.add_token_types(toktypes)
|
||||||
|
|
||||||
|
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
|
||||||
|
special_vocab.add_to_gguf(gguf_writer)
|
||||||
|
|
||||||
|
# TENSORS
|
||||||
|
|
||||||
|
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
||||||
|
print(tensor_map)
|
||||||
|
|
||||||
|
# tensor info
|
||||||
|
print("gguf: get tensor metadata")
|
||||||
|
|
||||||
|
if num_parts == 0:
|
||||||
|
part_names = iter(("pytorch_model.bin",))
|
||||||
|
else:
|
||||||
|
part_names = (
|
||||||
|
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
||||||
|
)
|
||||||
|
|
||||||
|
for part_name in part_names:
|
||||||
|
if args.vocab_only:
|
||||||
|
break
|
||||||
|
print("gguf: loading model part '" + part_name + "'")
|
||||||
|
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
||||||
|
|
||||||
|
for name in model_part.keys():
|
||||||
|
data = model_part[name]
|
||||||
|
|
||||||
|
# we don't need these
|
||||||
|
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
|
||||||
|
continue
|
||||||
|
|
||||||
|
old_dtype = data.dtype
|
||||||
|
|
||||||
|
# convert any unsupported data types to float32
|
||||||
|
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||||
|
data = data.to(torch.float32)
|
||||||
|
|
||||||
|
data = data.squeeze().numpy()
|
||||||
|
|
||||||
|
# map tensor names
|
||||||
|
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
||||||
|
if new_name is None:
|
||||||
|
print("Can not map tensor '" + name + "'")
|
||||||
|
sys.exit()
|
||||||
|
|
||||||
|
n_dims = len(data.shape)
|
||||||
|
data_dtype = data.dtype
|
||||||
|
|
||||||
|
# if f32 desired, convert any float16 to float32
|
||||||
|
if ftype == 0 and data_dtype == np.float16:
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
|
||||||
|
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||||
|
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
|
||||||
|
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||||
|
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||||
|
data = data.astype(np.float16)
|
||||||
|
|
||||||
|
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||||
|
|
||||||
|
gguf_writer.add_tensor(new_name, data)
|
||||||
|
|
||||||
|
|
||||||
|
print("gguf: write header")
|
||||||
|
gguf_writer.write_header_to_file()
|
||||||
|
print("gguf: write metadata")
|
||||||
|
gguf_writer.write_kv_data_to_file()
|
||||||
|
if not args.vocab_only:
|
||||||
|
print("gguf: write tensors")
|
||||||
|
gguf_writer.write_tensors_to_file()
|
||||||
|
|
||||||
|
gguf_writer.close()
|
||||||
|
|
||||||
|
print(f"gguf: model successfully exported to '{fname_out}'")
|
||||||
|
print("")
|
|
@ -89,6 +89,7 @@ class MODEL_ARCH(IntEnum):
|
||||||
REFACT : int = auto()
|
REFACT : int = auto()
|
||||||
BERT : int = auto()
|
BERT : int = auto()
|
||||||
BLOOM : int = auto()
|
BLOOM : int = auto()
|
||||||
|
STABLELM : int = auto()
|
||||||
|
|
||||||
|
|
||||||
class MODEL_TENSOR(IntEnum):
|
class MODEL_TENSOR(IntEnum):
|
||||||
|
@ -128,6 +129,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||||
MODEL_ARCH.REFACT: "refact",
|
MODEL_ARCH.REFACT: "refact",
|
||||||
MODEL_ARCH.BERT: "bert",
|
MODEL_ARCH.BERT: "bert",
|
||||||
MODEL_ARCH.BLOOM: "bloom",
|
MODEL_ARCH.BLOOM: "bloom",
|
||||||
|
MODEL_ARCH.STABLELM: "stablelm",
|
||||||
}
|
}
|
||||||
|
|
||||||
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||||
|
@ -298,6 +300,22 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||||
MODEL_TENSOR.FFN_DOWN,
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
MODEL_TENSOR.FFN_UP,
|
MODEL_TENSOR.FFN_UP,
|
||||||
],
|
],
|
||||||
|
MODEL_ARCH.STABLELM: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_Q,
|
||||||
|
MODEL_TENSOR.ATTN_K,
|
||||||
|
MODEL_TENSOR.ATTN_V,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_GATE,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
|
||||||
MODEL_ARCH.GPT2: [
|
MODEL_ARCH.GPT2: [
|
||||||
# TODO
|
# TODO
|
||||||
],
|
],
|
||||||
|
|
497
llama.cpp
497
llama.cpp
|
@ -189,6 +189,7 @@ enum llm_arch {
|
||||||
LLM_ARCH_PERSIMMON,
|
LLM_ARCH_PERSIMMON,
|
||||||
LLM_ARCH_REFACT,
|
LLM_ARCH_REFACT,
|
||||||
LLM_ARCH_BLOOM,
|
LLM_ARCH_BLOOM,
|
||||||
|
LLM_ARCH_STABLELM,
|
||||||
LLM_ARCH_UNKNOWN,
|
LLM_ARCH_UNKNOWN,
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -204,6 +205,7 @@ static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
|
||||||
{ LLM_ARCH_PERSIMMON, "persimmon" },
|
{ LLM_ARCH_PERSIMMON, "persimmon" },
|
||||||
{ LLM_ARCH_REFACT, "refact" },
|
{ LLM_ARCH_REFACT, "refact" },
|
||||||
{ LLM_ARCH_BLOOM, "bloom" },
|
{ LLM_ARCH_BLOOM, "bloom" },
|
||||||
|
{ LLM_ARCH_STABLELM, "stablelm" },
|
||||||
};
|
};
|
||||||
|
|
||||||
enum llm_kv {
|
enum llm_kv {
|
||||||
|
@ -484,6 +486,26 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
|
||||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
LLM_ARCH_STABLELM,
|
||||||
|
{
|
||||||
|
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||||
|
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||||
|
{ LLM_TENSOR_OUTPUT, "output" },
|
||||||
|
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||||||
|
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||||
|
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||||
|
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||||
|
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||||
|
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||||
|
// { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||||||
|
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||||
|
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||||
|
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||||
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||||
|
},
|
||||||
|
},
|
||||||
|
|
||||||
{
|
{
|
||||||
LLM_ARCH_UNKNOWN,
|
LLM_ARCH_UNKNOWN,
|
||||||
{
|
{
|
||||||
|
@ -2118,6 +2140,16 @@ static void llm_load_hparams(
|
||||||
default: model.type = e_model::MODEL_UNKNOWN;
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_STABLELM:
|
||||||
|
{
|
||||||
|
GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
|
||||||
|
|
||||||
|
switch (hparams.n_layer) {
|
||||||
|
case 32: model.type = e_model::MODEL_3B; fprintf(stdout, "Selected 3b model!"); break;
|
||||||
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
|
}
|
||||||
|
} break;
|
||||||
|
|
||||||
default: (void)0;
|
default: (void)0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -2858,6 +2890,81 @@ static void llm_load_tensors(
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_STABLELM:
|
||||||
|
{
|
||||||
|
model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
|
||||||
|
|
||||||
|
// output
|
||||||
|
{
|
||||||
|
ggml_backend_type backend_norm;
|
||||||
|
ggml_backend_type backend_output;
|
||||||
|
|
||||||
|
if (n_gpu_layers > int(n_layer)) {
|
||||||
|
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
|
||||||
|
// on Windows however this is detrimental unless everything is on the GPU
|
||||||
|
#ifndef _WIN32
|
||||||
|
backend_norm = LLAMA_BACKEND_OFFLOAD;
|
||||||
|
#else
|
||||||
|
backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
|
||||||
|
#endif // _WIN32
|
||||||
|
|
||||||
|
backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
|
||||||
|
} else {
|
||||||
|
backend_norm = GGML_BACKEND_CPU;
|
||||||
|
backend_output = GGML_BACKEND_CPU;
|
||||||
|
}
|
||||||
|
|
||||||
|
model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
|
||||||
|
model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
|
||||||
|
model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
|
||||||
|
|
||||||
|
if (backend_norm == GGML_BACKEND_GPU) {
|
||||||
|
vram_weights += ggml_nbytes(model.output_norm);
|
||||||
|
}
|
||||||
|
if (backend_output == GGML_BACKEND_GPU_SPLIT) {
|
||||||
|
vram_weights += ggml_nbytes(model.output);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const uint32_t n_ff = hparams.n_ff;
|
||||||
|
|
||||||
|
const int i_gpu_start = n_layer - n_gpu_layers;
|
||||||
|
|
||||||
|
model.layers.resize(n_layer);
|
||||||
|
|
||||||
|
for (uint32_t i = 0; i < n_layer; ++i) {
|
||||||
|
/*
|
||||||
|
llama_model_loader: - tensor 4: blk.0.attn_output.weight f16 [ 2560, 2560, 1, 1 ]
|
||||||
|
*/
|
||||||
|
const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
|
||||||
|
const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
|
||||||
|
|
||||||
|
auto & layer = model.layers[i];
|
||||||
|
|
||||||
|
layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
|
||||||
|
layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
|
||||||
|
|
||||||
|
layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
|
||||||
|
layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
|
||||||
|
layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
|
||||||
|
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
|
||||||
|
|
||||||
|
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
|
||||||
|
layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
|
||||||
|
|
||||||
|
layer.w1 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
|
||||||
|
layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
|
||||||
|
layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
|
||||||
|
|
||||||
|
if (backend == GGML_BACKEND_GPU) {
|
||||||
|
vram_weights +=
|
||||||
|
ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
|
||||||
|
ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
|
||||||
|
ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} break;
|
||||||
|
|
||||||
default:
|
default:
|
||||||
throw std::runtime_error("unknown architecture");
|
throw std::runtime_error("unknown architecture");
|
||||||
}
|
}
|
||||||
|
@ -5670,6 +5777,392 @@ static struct ggml_cgraph * llm_build_mpt(
|
||||||
return gf;
|
return gf;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static struct ggml_cgraph * llm_build_stablelm(
|
||||||
|
llama_context & lctx,
|
||||||
|
const llama_batch & batch) {
|
||||||
|
const auto & model = lctx.model;
|
||||||
|
const auto & hparams = model.hparams;
|
||||||
|
const auto & cparams = lctx.cparams;
|
||||||
|
|
||||||
|
const auto & kv_self = lctx.kv_self;
|
||||||
|
|
||||||
|
GGML_ASSERT(!!kv_self.ctx);
|
||||||
|
|
||||||
|
const int64_t n_embd = hparams.n_embd;
|
||||||
|
const int64_t n_layer = hparams.n_layer;
|
||||||
|
const int64_t n_ctx = cparams.n_ctx;
|
||||||
|
const int64_t n_head = hparams.n_head;
|
||||||
|
const int64_t n_head_kv = hparams.n_head_kv;
|
||||||
|
const int64_t n_embd_head = hparams.n_embd_head();
|
||||||
|
const int64_t n_embd_gqa = hparams.n_embd_gqa();
|
||||||
|
|
||||||
|
const float freq_base = cparams.rope_freq_base;
|
||||||
|
const float freq_scale = cparams.rope_freq_scale;
|
||||||
|
const float norm_rms_eps = hparams.f_norm_rms_eps;
|
||||||
|
|
||||||
|
const int n_gpu_layers = model.n_gpu_layers;
|
||||||
|
|
||||||
|
const int32_t n_tokens = batch.n_tokens;
|
||||||
|
const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
|
||||||
|
const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
|
||||||
|
|
||||||
|
const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
|
||||||
|
|
||||||
|
//printf("n_kv = %d\n", n_kv);
|
||||||
|
|
||||||
|
auto & buf_compute = lctx.buf_compute;
|
||||||
|
|
||||||
|
struct ggml_init_params params = {
|
||||||
|
/*.mem_size =*/ buf_compute.size,
|
||||||
|
/*.mem_buffer =*/ buf_compute.data,
|
||||||
|
/*.no_alloc =*/ true,
|
||||||
|
};
|
||||||
|
|
||||||
|
struct ggml_context * ctx0 = ggml_init(params);
|
||||||
|
|
||||||
|
ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||||
|
|
||||||
|
struct ggml_tensor * cur;
|
||||||
|
struct ggml_tensor * inpL;
|
||||||
|
|
||||||
|
if (batch.token) {
|
||||||
|
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||||
|
|
||||||
|
ggml_allocr_alloc(lctx.alloc, inp_tokens);
|
||||||
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
|
memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
|
||||||
|
}
|
||||||
|
ggml_set_name(inp_tokens, "inp_tokens");
|
||||||
|
|
||||||
|
inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
|
||||||
|
} else {
|
||||||
|
#ifdef GGML_USE_MPI
|
||||||
|
GGML_ASSERT(false && "not implemented");
|
||||||
|
#endif
|
||||||
|
|
||||||
|
inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
|
||||||
|
|
||||||
|
ggml_allocr_alloc(lctx.alloc, inpL);
|
||||||
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
|
memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const int i_gpu_start = n_layer - n_gpu_layers;
|
||||||
|
(void) i_gpu_start;
|
||||||
|
|
||||||
|
// offload functions set the tensor output backend to GPU
|
||||||
|
// tensors are GPU-accelerated if any input or the output has been offloaded
|
||||||
|
offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
|
||||||
|
offload_func_t offload_func_kq = llama_nop;
|
||||||
|
offload_func_t offload_func_v = llama_nop;
|
||||||
|
|
||||||
|
#ifdef GGML_USE_CUBLAS
|
||||||
|
if (n_gpu_layers > n_layer) {
|
||||||
|
offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
|
||||||
|
}
|
||||||
|
if (n_gpu_layers > n_layer + 1) {
|
||||||
|
offload_func_v = ggml_cuda_assign_buffers_no_alloc;
|
||||||
|
}
|
||||||
|
if (n_gpu_layers > n_layer + 2) {
|
||||||
|
offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
|
||||||
|
}
|
||||||
|
#endif // GGML_USE_CUBLAS
|
||||||
|
|
||||||
|
// KQ_scale
|
||||||
|
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||||
|
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
|
||||||
|
ggml_allocr_alloc(lctx.alloc, KQ_scale);
|
||||||
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
|
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head)));
|
||||||
|
}
|
||||||
|
|
||||||
|
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||||
|
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||||
|
offload_func_kq(KQ_mask);
|
||||||
|
ggml_set_name(KQ_mask, "KQ_mask");
|
||||||
|
ggml_allocr_alloc(lctx.alloc, KQ_mask);
|
||||||
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
|
float * data = (float *) KQ_mask->data;
|
||||||
|
memset(data, 0, ggml_nbytes(KQ_mask));
|
||||||
|
|
||||||
|
for (int h = 0; h < 1; ++h) {
|
||||||
|
for (int j = 0; j < n_tokens; ++j) {
|
||||||
|
const llama_pos pos = batch.pos[j];
|
||||||
|
const llama_seq_id seq_id = batch.seq_id[j];
|
||||||
|
|
||||||
|
for (int i = 0; i < n_kv; ++i) {
|
||||||
|
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||||
|
data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// KQ_pos - contains the positions
|
||||||
|
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||||
|
offload_func_kq(KQ_pos);
|
||||||
|
ggml_set_name(KQ_pos, "KQ_pos");
|
||||||
|
ggml_allocr_alloc(lctx.alloc, KQ_pos);
|
||||||
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
|
int * data = (int *) KQ_pos->data;
|
||||||
|
for (int i = 0; i < n_tokens; ++i) {
|
||||||
|
data[i] = batch.pos[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// shift the entire K-cache if needed
|
||||||
|
if (do_rope_shift) {
|
||||||
|
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
|
||||||
|
offload_func_kq(K_shift);
|
||||||
|
ggml_set_name(K_shift, "K_shift");
|
||||||
|
ggml_allocr_alloc(lctx.alloc, K_shift);
|
||||||
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
|
int * data = (int *) K_shift->data;
|
||||||
|
for (int i = 0; i < n_ctx; ++i) {
|
||||||
|
data[i] = kv_self.cells[i].delta;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
|
struct ggml_tensor * tmp =
|
||||||
|
ggml_rope_custom_inplace(ctx0,
|
||||||
|
ggml_view_3d(ctx0, kv_self.k,
|
||||||
|
n_embd_head, n_head_kv, n_ctx,
|
||||||
|
ggml_element_size(kv_self.k)*n_embd_head,
|
||||||
|
ggml_element_size(kv_self.k)*n_embd_gqa,
|
||||||
|
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
|
||||||
|
K_shift, n_embd_head, 0, 0, freq_base, freq_scale);
|
||||||
|
offload_func_kq(tmp);
|
||||||
|
ggml_build_forward_expand(gf, tmp);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
|
ggml_format_name(inpL, "layer_inp_%d", il);
|
||||||
|
|
||||||
|
offload_func_t offload_func = llama_nop;
|
||||||
|
|
||||||
|
#ifdef GGML_USE_CUBLAS
|
||||||
|
if (il >= i_gpu_start) {
|
||||||
|
offload_func = ggml_cuda_assign_buffers_no_alloc;
|
||||||
|
}
|
||||||
|
#endif // GGML_USE_CUBLAS
|
||||||
|
|
||||||
|
struct ggml_tensor * inpSA = inpL;
|
||||||
|
|
||||||
|
// norm
|
||||||
|
{
|
||||||
|
cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
|
||||||
|
offload_func(cur);
|
||||||
|
ggml_set_name(cur, "rms_norm_0");
|
||||||
|
|
||||||
|
// cur = cur*attn_norm(broadcasted)
|
||||||
|
cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
|
||||||
|
offload_func(cur);
|
||||||
|
ggml_set_name(cur, "attention_norm_0");
|
||||||
|
}
|
||||||
|
|
||||||
|
// self-attention
|
||||||
|
{
|
||||||
|
// compute Q and K and RoPE them
|
||||||
|
struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
||||||
|
offload_func_kq(tmpk);
|
||||||
|
ggml_set_name(tmpk, "tmpk");
|
||||||
|
|
||||||
|
struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
||||||
|
offload_func_kq(tmpq);
|
||||||
|
ggml_set_name(tmpq, "tmpq");
|
||||||
|
|
||||||
|
struct ggml_tensor * Kcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
|
||||||
|
offload_func_kq(Kcur);
|
||||||
|
ggml_set_name(Kcur, "Kcur");
|
||||||
|
|
||||||
|
struct ggml_tensor * Qcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
|
||||||
|
offload_func_kq(Qcur);
|
||||||
|
ggml_set_name(Qcur, "Qcur");
|
||||||
|
|
||||||
|
// store key and value to memory
|
||||||
|
{
|
||||||
|
// compute the transposed [n_tokens, n_embd] V matrix
|
||||||
|
|
||||||
|
struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
||||||
|
offload_func_v(tmpv);
|
||||||
|
ggml_set_name(tmpv, "tmpv");
|
||||||
|
|
||||||
|
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
|
||||||
|
offload_func_v(Vcur);
|
||||||
|
ggml_set_name(Vcur, "Vcur");
|
||||||
|
|
||||||
|
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
|
||||||
|
offload_func_kq(k);
|
||||||
|
ggml_set_name(k, "k");
|
||||||
|
|
||||||
|
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
|
||||||
|
( n_ctx)*ggml_element_size(kv_self.v),
|
||||||
|
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
|
||||||
|
offload_func_v(v);
|
||||||
|
ggml_set_name(v, "v");
|
||||||
|
|
||||||
|
// important: storing RoPE-ed version of K in the KV cache!
|
||||||
|
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
|
||||||
|
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
|
||||||
|
offload_func_kq(Q);
|
||||||
|
ggml_set_name(Q, "Q");
|
||||||
|
|
||||||
|
struct ggml_tensor * K =
|
||||||
|
ggml_view_3d(ctx0, kv_self.k,
|
||||||
|
n_embd_head, n_kv, n_head_kv,
|
||||||
|
ggml_element_size(kv_self.k)*n_embd_gqa,
|
||||||
|
ggml_element_size(kv_self.k)*n_embd_head,
|
||||||
|
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
|
||||||
|
offload_func_kq(K);
|
||||||
|
ggml_set_name(K, "K");
|
||||||
|
|
||||||
|
// K * Q
|
||||||
|
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
||||||
|
offload_func_kq(KQ);
|
||||||
|
ggml_set_name(KQ, "KQ");
|
||||||
|
|
||||||
|
// KQ_scaled = KQ / sqrt(n_embd_head)
|
||||||
|
// KQ_scaled shape [n_kv, n_tokens, n_head, 1]
|
||||||
|
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
|
||||||
|
offload_func_kq(KQ_scaled);
|
||||||
|
ggml_set_name(KQ_scaled, "KQ_scaled");
|
||||||
|
|
||||||
|
// KQ_masked = mask_past(KQ_scaled)
|
||||||
|
struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
|
||||||
|
offload_func_kq(KQ_masked);
|
||||||
|
ggml_set_name(KQ_masked, "KQ_masked");
|
||||||
|
|
||||||
|
// KQ = soft_max(KQ_masked)
|
||||||
|
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
|
||||||
|
offload_func_v(KQ_soft_max);
|
||||||
|
ggml_set_name(KQ_soft_max, "KQ_soft_max");
|
||||||
|
|
||||||
|
// split cached V into n_head heads
|
||||||
|
struct ggml_tensor * V =
|
||||||
|
ggml_view_3d(ctx0, kv_self.v,
|
||||||
|
n_kv, n_embd_head, n_head_kv,
|
||||||
|
ggml_element_size(kv_self.v)*n_ctx,
|
||||||
|
ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
|
||||||
|
ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
|
||||||
|
offload_func_v(V);
|
||||||
|
ggml_set_name(V, "V");
|
||||||
|
|
||||||
|
#if 1
|
||||||
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
|
||||||
|
offload_func_v(KQV);
|
||||||
|
ggml_set_name(KQV, "KQV");
|
||||||
|
#else
|
||||||
|
// make V contiguous in memory to speed up the matmul, however we waste time on the copy
|
||||||
|
// on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
|
||||||
|
// is there a better way?
|
||||||
|
struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_ctx, n_embd_head, n_head));
|
||||||
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// KQV_merged = KQV.permute(0, 2, 1, 3)
|
||||||
|
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||||
|
offload_func_v(KQV_merged);
|
||||||
|
ggml_set_name(KQV_merged, "KQV_merged");
|
||||||
|
|
||||||
|
// cur = KQV_merged.contiguous().view(n_embd, n_tokens)
|
||||||
|
cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
|
||||||
|
offload_func_v(cur);
|
||||||
|
ggml_set_name(cur, "KQV_merged_contiguous");
|
||||||
|
|
||||||
|
// projection (no bias)
|
||||||
|
cur = ggml_mul_mat(ctx0,
|
||||||
|
model.layers[il].wo,
|
||||||
|
cur);
|
||||||
|
offload_func(cur);
|
||||||
|
ggml_set_name(cur, "result_wo");
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
|
||||||
|
offload_func(inpFF);
|
||||||
|
ggml_set_name(inpFF, "inpFF");
|
||||||
|
|
||||||
|
// feed-forward network
|
||||||
|
{
|
||||||
|
// norm
|
||||||
|
{
|
||||||
|
cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
|
||||||
|
offload_func(cur);
|
||||||
|
ggml_set_name(cur, "rms_norm_1");
|
||||||
|
|
||||||
|
// cur = cur*ffn_norm(broadcasted)
|
||||||
|
cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
|
||||||
|
offload_func(cur);
|
||||||
|
ggml_set_name(cur, "ffn_norm");
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
|
||||||
|
model.layers[il].w3,
|
||||||
|
cur);
|
||||||
|
offload_func(tmp);
|
||||||
|
ggml_set_name(tmp, "result_w3");
|
||||||
|
|
||||||
|
cur = ggml_mul_mat(ctx0,
|
||||||
|
model.layers[il].w1,
|
||||||
|
cur);
|
||||||
|
offload_func(cur);
|
||||||
|
ggml_set_name(cur, "result_w1");
|
||||||
|
|
||||||
|
// SILU activation
|
||||||
|
cur = ggml_silu(ctx0, cur);
|
||||||
|
offload_func(cur);
|
||||||
|
ggml_set_name(cur, "silu");
|
||||||
|
|
||||||
|
cur = ggml_mul(ctx0, cur, tmp);
|
||||||
|
offload_func(cur);
|
||||||
|
ggml_set_name(cur, "silu_x_result_w3");
|
||||||
|
|
||||||
|
cur = ggml_mul_mat(ctx0,
|
||||||
|
model.layers[il].w2,
|
||||||
|
cur);
|
||||||
|
offload_func(cur);
|
||||||
|
ggml_set_name(cur, "result_w2");
|
||||||
|
}
|
||||||
|
|
||||||
|
cur = ggml_add(ctx0, cur, inpFF);
|
||||||
|
offload_func(cur);
|
||||||
|
ggml_set_name(cur, "inpFF_+_result_w2");
|
||||||
|
|
||||||
|
// input for next layer
|
||||||
|
inpL = cur;
|
||||||
|
}
|
||||||
|
|
||||||
|
cur = inpL;
|
||||||
|
|
||||||
|
// norm
|
||||||
|
{
|
||||||
|
cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
|
||||||
|
offload_func_nr(cur);
|
||||||
|
ggml_set_name(cur, "rms_norm_2");
|
||||||
|
|
||||||
|
// cur = cur*norm(broadcasted)
|
||||||
|
cur = ggml_mul(ctx0, cur, model.output_norm);
|
||||||
|
// offload_func_nr(cur); // TODO CPU + GPU mirrored backend
|
||||||
|
ggml_set_name(cur, "result_norm");
|
||||||
|
}
|
||||||
|
|
||||||
|
// lm_head
|
||||||
|
cur = ggml_mul_mat(ctx0, model.output, cur);
|
||||||
|
ggml_set_name(cur, "result_output");
|
||||||
|
|
||||||
|
ggml_build_forward_expand(gf, cur);
|
||||||
|
|
||||||
|
ggml_free(ctx0);
|
||||||
|
|
||||||
|
return gf;
|
||||||
|
}
|
||||||
|
|
||||||
static struct ggml_cgraph * llama_build_graph(
|
static struct ggml_cgraph * llama_build_graph(
|
||||||
llama_context & lctx,
|
llama_context & lctx,
|
||||||
const llama_batch & batch) {
|
const llama_batch & batch) {
|
||||||
|
@ -5710,6 +6203,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||||
{
|
{
|
||||||
result = llm_build_mpt(lctx, batch);
|
result = llm_build_mpt(lctx, batch);
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_STABLELM:
|
||||||
|
{
|
||||||
|
result = llm_build_stablelm(lctx, batch);
|
||||||
|
} break;
|
||||||
default:
|
default:
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
}
|
}
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue