metal : q3_K finally working

Not optimized at all.

What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.

No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
This commit is contained in:
Iwan Kawrakow 2023-06-11 19:00:57 +03:00
parent 982c7cf5cc
commit 27a69d6a75

View file

@ -727,39 +727,48 @@ static void dequantize_row_q3_k(device const block_q3_k * x, device float * y, i
const uint32_t kmask1 = 0x03030303;
const uint32_t kmask2 = 0x0f0f0f0f;
uint32_t aux[4];
thread const int8_t * scales = (thread const int8_t *)aux;
//uint32_t aux[4];
uint16_t aux[8];
thread const int8_t * scales = (thread const int8_t*)aux;
for (int i = 0; i < nb; i++) {
const float d_all = (float)x[i].d;
const float d_all = (float)(x[i].d);
device const uint8_t * q = x[i].qs;
device const uint8_t * hm = x[i].hmask;
device const uint8_t * h = x[i].hmask;
uint8_t m = 1;
device const uint32_t * a = (device const uint32_t *)x[i].scales;
uint32_t tmp = a[2];
aux[2] = ((a[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
aux[3] = ((a[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
aux[0] = (a[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
aux[1] = (a[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
//device const uint32_t * a = (device const uint32_t *)x[i].scales;
//aux[0] = (a[0] & kmask2) | (((a[2] >> 0) & kmask1) << 4);
//aux[1] = (a[1] & kmask2) | (((a[2] >> 2) & kmask1) << 4);
//aux[2] = ((a[0] >> 4) & kmask2) | (((a[2] >> 4) & kmask1) << 4);
//aux[3] = ((a[1] >> 4) & kmask2) | (((a[2] >> 6) & kmask1) << 4);
device const uint16_t * a = (device const uint16_t *)x[i].scales;
aux[0] = (a[0] & kmask2) | (((a[4] >> 0) & kmask1) << 4);
aux[1] = (a[1] & kmask2) | (((a[5] >> 0) & kmask1) << 4);
aux[2] = (a[2] & kmask2) | (((a[4] >> 2) & kmask1) << 4);
aux[3] = (a[3] & kmask2) | (((a[5] >> 2) & kmask1) << 4);
aux[4] = ((a[0] >> 4) & kmask2) | (((a[4] >> 4) & kmask1) << 4);
aux[5] = ((a[1] >> 4) & kmask2) | (((a[5] >> 4) & kmask1) << 4);
aux[6] = ((a[2] >> 4) & kmask2) | (((a[4] >> 6) & kmask1) << 4);
aux[7] = ((a[3] >> 4) & kmask2) | (((a[5] >> 6) & kmask1) << 4);
int is = 0;
float dl;
for (int n = 0; n < QK_K; n += 128) {
int shift = 0;
for (int j = 0; j < 4; ++j) {
dl = d_all * (scales[is++] - 32);
for (int l = 0; l < 16; ++l) {
*y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
*y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((h[l+ 0] & m) ? 0 : 4));
}
dl = d_all * (scales[is++] - 32);
for (int l = 0; l < 16; ++l) {
*y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
*y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((h[l+16] & m) ? 0 : 4));
}
shift += 2;
@ -1052,8 +1061,10 @@ kernel void kernel_mul_mat_q3_k_f32(
uint2 tpitg[[thread_position_in_threadgroup]],
uint2 tptg[[threads_per_threadgroup]]) {
const uint32_t kmask1 = 0x03030303;
const uint32_t kmask2 = 0x0f0f0f0f;
//const uint32_t kmask1 = 0x03030303;
//const uint32_t kmask2 = 0x0f0f0f0f;
const uint16_t kmask1 = 0x0303;
const uint16_t kmask2 = 0x0f0f;
const uint8_t m3 = 3;
const int8_t m4 = 4;
@ -1069,80 +1080,74 @@ kernel void kernel_mul_mat_q3_k_f32(
const int nth = tptg.x*tptg.y;
const int ith = tptg.y*tpitg.x + tpitg.y;
const int tid = tpitg.y;
const int il = tid/4; // 0...3 0 -> 0...63, 1 -> 64...127, 2 -> 128...191, 3 -> 192...255
const int ip = il / 2; // 0 or 1 0 -> use 1st 32 q's (0...127), 1 -> 2nd 32 (128...255)
const int is = il % 2; // 0 or 1 0 -> 0...63, 128...191, 1 -> 64...127, 192...255
const int ir = tid - 4*il; // 0...3
const int n = 4;
const int l0 = n * ir; // first index for this thread within a group of 32 (0, 4, 8, 12)
// 0...31 use 1<<0, 32...63 use 1<<1, 64...95 use 1<<2, 96...128 use 1<<3, etc.
// we process 64*il...64*il+63 -> 1st mask is 1<<(2*il), second is 1<<(2*il+1)
// masks for high bit
const uint8_t m = 1 << (2*il);
const uchar2 mask = {m, (uint8_t)(m << 1)};
const int tid = tpitg.y; // expecting 16
const int ip = tid/8; // 0 or 1
const int il = tid/2 - 4*ip; // 0...3
const int ir = tid%2;
const int n = 8;
const int l0 = n*ir;
const int shift1 = 4*ip; // 1st shift for scale. must be 0 (0...127) or 4 (128...255)
const int shift2 = 2*il; // 2nd shift for scale. 0, 2, 4, or 6
// 1st shift for quants must be 0 in 0...31, 2 in 32...64, 4 in 64...96, 6 in 96...128, then agsin 0, 2, etc.
const int shift3 = 4*is;
const int shift4 = shift3 + 2;
const int q_offset = 32*ip + l0;
const int y_offset = 64*il + l0;
uint16_t aux[8];
thread const int8_t * scales = (thread const int8_t*)aux;
float sumf = 0;
for (int i = tpitg.x; i < nb; i += tptg.x) {
// Copied from the C de-quantization code
//aux[0] = ((a[0] >> 0) & kmask2) | (((a[2] >> 0) & kmask1) << 4);
//aux[1] = ((a[1] >> 0) & kmask2) | (((a[2] >> 2) & kmask1) << 4);
const float d_all = (float)(x[i].d);
device const uint8_t * q = x[i].qs + 32*ip + l0;
device const uint8_t * h = x[i].hmask + l0;
device const float * y = yy + i * QK_K + 128*ip + 32*il + l0;
//device const uint32_t * a = (device const uint32_t *)x[i].scales;
//aux[0] = (a[0] & kmask2) | (((a[2] >> 0) & kmask1) << 4);
//aux[1] = (a[1] & kmask2) | (((a[2] >> 2) & kmask1) << 4);
//aux[2] = ((a[0] >> 4) & kmask2) | (((a[2] >> 4) & kmask1) << 4);
//aux[3] = ((a[1] >> 4) & kmask2) | (((a[2] >> 6) & kmask1) << 4);
//// 0....63 we need a[0] with shift=0, a[2] with shift 0
//// 64...127 we need a[1] with shift=0, a[2] with shift 2
////128...191 we need a[0] with shift=4, a[2] with shift 4
////192...255 we need a[1] with shift=4, a[2] with shift 6
//// a[is] >> (4*ip) & 0xF | a[2] >> (2*il) & 3
device const uint32_t * a = (device const uint32_t *)x[i].scales;
const char4 sc = as_type<char4>(((a[is] >> shift1) & kmask2) | (((a[2] >> shift2) & kmask1) << 4));
device const uint16_t * a = (device const uint16_t *)x[i].scales;
aux[0] = (a[0] & kmask2) | (((a[4] >> 0) & kmask1) << 4);
aux[1] = (a[1] & kmask2) | (((a[5] >> 0) & kmask1) << 4);
aux[2] = (a[2] & kmask2) | (((a[4] >> 2) & kmask1) << 4);
aux[3] = (a[3] & kmask2) | (((a[5] >> 2) & kmask1) << 4);
aux[4] = ((a[0] >> 4) & kmask2) | (((a[4] >> 4) & kmask1) << 4);
aux[5] = ((a[1] >> 4) & kmask2) | (((a[5] >> 4) & kmask1) << 4);
aux[6] = ((a[2] >> 4) & kmask2) | (((a[4] >> 6) & kmask1) << 4);
aux[7] = ((a[3] >> 4) & kmask2) | (((a[5] >> 6) & kmask1) << 4);
// Here I was thinking "what if the above is not processed correctly because x[i].scales is not 4-byte
// aligned?". If that was the issue, using a uint16_t pointer should solve it as x[i].scales is 2-byte aligned.
// It does not solve the problem, it just makes it run slower.
//device const uint16_t * a = (device const uint16_t *)x[i].scales;
//const char2 sc1 = as_type<char2>((uint16_t)(((a[2*is+0] >> shift1) & kmask2) | (((a[4] >> shift2) & kmask1) << 4)));
//const char2 sc2 = as_type<char2>((uint16_t)(((a[2*is+1] >> shift1) & kmask2) | (((a[5] >> shift2) & kmask1) << 4)));
uint8_t m = 1 << (4*ip + il);
int is = 8*ip + 2*il;
float dl;
//for (int n = 0; n < QK_K; n += 128) {
int shift = 2*il;
//for (int j = 0; j < 4; ++j) {
device const uint8_t * q = x[i].qs + q_offset;
device const uint8_t * h = x[i].hmask + l0;
dl = d_all * (scales[is++] - 32);
for (int l = 0; l < n; ++l) {
sumf += y[l+ 0] * dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((h[l+ 0] & m) ? 0 : 4));
}
device const float * y = yy + i * QK_K + y_offset;
const float dall = (float)x[i].d;
float4 sums = {0.f, 0.f, 0.f, 0.f};
for (int l = 0; l < n; ++l) {
sums[0] += y[l+ 0] * ((int8_t)((q[l+ 0] >> shift3) & m3) - ((h[l+ 0] & mask[0]) ? 0 : m4));
sums[1] += y[l+16] * ((int8_t)((q[l+16] >> shift3) & m3) - ((h[l+16] & mask[0]) ? 0 : m4));
sums[2] += y[l+32] * ((int8_t)((q[l+ 0] >> shift4) & m3) - ((h[l+ 0] & mask[1]) ? 0 : m4));
sums[3] += y[l+48] * ((int8_t)((q[l+16] >> shift4) & m3) - ((h[l+16] & mask[1]) ? 0 : m4));
}
sumf += dall * (sums[0] * (sc[0] - 32)
+ sums[1] * (sc[1] - 32)
+ sums[2] * (sc[2] - 32)
+ sums[3] * (sc[3] - 32));
//sumf += dall * (sums[0] * (sc1[0] - 32)
// + sums[1] * (sc1[1] - 32)
// + sums[2] * (sc2[0] - 32)
// + sums[3] * (sc2[1] - 32));
dl = d_all * (scales[is++] - 32);
for (int l = 0; l < n; ++l) {
sumf += y[l+16] * dl * ((int8_t)((q[l+16] >> shift) & 3) - ((h[l+16] & m) ? 0 : 4));
}
y += 32;
shift += 2;
m <<= 1;
//}
//q += 32;
//}
}
sum[ith] = sumf;
//threadgroup_barrier(mem_flags::mem_threadgroup);
//if (ith == 0) {
// for (int i = 1; i < nth; ++i) sum[0] += sum[i];
// dst[r1*ne0 + r0] = sum[0];
//}
//
// Accumulate the sum from all threads in the threadgroup
//