add option to save finetune output every N iterations

This commit is contained in:
xaedes 2023-08-20 20:16:46 +02:00
parent d61ed6b431
commit 27c24ffa1b
No known key found for this signature in database
GPG key ID: 30030EDD817EA2B1

View file

@ -1856,8 +1856,19 @@ void read_opt_context(struct llama_file * file, struct ggml_context * ctx, struc
} }
} }
void save_checkpoint(struct my_llama_model * model, struct my_llama_lora * lora, struct ggml_opt_context * opt, const char * filename) { std::string replace_str(const char * s, const char * needle, const char * replacement) {
struct llama_file file(filename, "wb"); std::string str = s;
size_t pos = str.find(needle);
if (pos != std::string::npos) {
str.replace(pos, strlen(needle), replacement);
}
return str;
}
void save_checkpoint(struct my_llama_model * model, struct my_llama_lora * lora, struct ggml_opt_context * opt, const char * filename, const char * pattern_it, int iteration) {
std::string sit = std::to_string(iteration);
std::string fn = replace_str(filename, pattern_it, sit.c_str());
struct llama_file file(fn.c_str(), "wb");
if (file.fp == NULL) { if (file.fp == NULL) {
return; return;
} }
@ -2021,8 +2032,10 @@ bool load_checkpoint(struct my_llama_model * model, struct my_llama_lora * lora,
return (file.fp != NULL); return (file.fp != NULL);
} }
void save_as_llama_lora(struct my_llama_lora * lora, const char * filename) { void save_as_llama_lora(struct my_llama_lora * lora, const char * filename, const char * pattern_it, int iteration) {
struct llama_file file(filename, "wb"); std::string sit = std::to_string(iteration);
std::string fn = replace_str(filename, pattern_it, sit.c_str());
struct llama_file file(fn.c_str(), "wb");
if (file.fp == NULL) { if (file.fp == NULL) {
return; return;
} }
@ -2088,6 +2101,9 @@ struct train_params {
const char * fn_checkpoint_in; const char * fn_checkpoint_in;
const char * fn_checkpoint_out; const char * fn_checkpoint_out;
const char * fn_lora_out; const char * fn_lora_out;
const char * pattern_fn_it;
int save_every;
uint32_t seed; uint32_t seed;
@ -2154,8 +2170,11 @@ struct train_params get_default_train_params() {
params.fn_model_base = ""; params.fn_model_base = "";
params.fn_train_data = "shakespeare.txt"; params.fn_train_data = "shakespeare.txt";
params.fn_checkpoint_in = "checkpoint.bin"; params.fn_checkpoint_in = "checkpoint.bin";
params.fn_checkpoint_out = "checkpoint.bin"; params.fn_checkpoint_out = "checkpoint-ITERATION.bin";
params.fn_lora_out = "ggml-lora-f32.bin"; params.fn_lora_out = "ggml-lora-ITERATION-f32.bin";
params.pattern_fn_it = "ITERATION";
params.save_every = 10;
params.seed = -1; params.seed = -1;
@ -2228,6 +2247,8 @@ void train_print_usage(int /*argc*/, char ** argv, const struct train_params * p
fprintf(stderr, " --checkpoint-in FNAME path from which to load training checkpoint (default '%s')\n", params->fn_checkpoint_in); fprintf(stderr, " --checkpoint-in FNAME path from which to load training checkpoint (default '%s')\n", params->fn_checkpoint_in);
fprintf(stderr, " --checkpoint-out FNAME path to save training checkpoint (default '%s')\n", params->fn_checkpoint_out); fprintf(stderr, " --checkpoint-out FNAME path to save training checkpoint (default '%s')\n", params->fn_checkpoint_out);
fprintf(stderr, " --lora-out FNAME path to save llama lora (default '%s')\n", params->fn_lora_out); fprintf(stderr, " --lora-out FNAME path to save llama lora (default '%s')\n", params->fn_lora_out);
fprintf(stderr, " --pattern-fn-it STR pattern in output filenames to be replaced by iteration number (default '%s')\n", params->pattern_fn_it);
fprintf(stderr, " --save-every N save checkpoint and lora every N iterations. Disabled when N <= 0. (default '%s')\n", params->save_every);
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for -1)\n"); fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for -1)\n");
fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx); fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx);
fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads); fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads);
@ -2325,6 +2346,18 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) {
break; break;
} }
params->fn_lora_out = argv[i]; params->fn_lora_out = argv[i];
} else if (arg == "--pattern-fn-it") {
if (++i >= argc) {
invalid_param = true;
break;
}
params->pattern_fn_it = argv[i];
} else if (arg == "--save-every") {
if (++i >= argc) {
invalid_param = true;
break;
}
params->save_every = std::stoi(argv[i]);
} else if (arg == "-s" || arg == "--seed") { } else if (arg == "-s" || arg == "--seed") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -2614,6 +2647,9 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) {
struct opt_callback_data { struct opt_callback_data {
struct train_params * params; struct train_params * params;
struct ggml_opt_context * opt; struct ggml_opt_context * opt;
struct my_llama_model * model;
struct my_llama_lora * lora;
int last_save_iter;
llama_token * tokens_data; llama_token * tokens_data;
size_t tokens_size; size_t tokens_size;
int * samples_data; int * samples_data;
@ -2630,6 +2666,17 @@ void opt_callback(void * vdata, float * sched) {
struct ggml_opt_context * opt = data->opt; struct ggml_opt_context * opt = data->opt;
int n_batch = params->n_batch; int n_batch = params->n_batch;
const bool save_now = (params->save_every > 0) && (opt->iter - data->last_save_iter >= params->save_every);
if (save_now) {
if (strlen(params->fn_checkpoint_out) > 0) {
save_checkpoint(data->model, data->lora, opt, params->fn_checkpoint_out, params->pattern_fn_it, opt->iter);
}
if (strlen(params->fn_lora_out) > 0) {
save_as_llama_lora(data->lora, params->fn_lora_out, params->pattern_fn_it, opt->iter);
}
data->last_save_iter = opt->iter;
}
*sched = (opt->iter < params->warmup) *sched = (opt->iter < params->warmup)
? (float) opt->iter / (float) params->warmup ? (float) opt->iter / (float) params->warmup
: cosine_decay_restart( : cosine_decay_restart(
@ -2854,6 +2901,9 @@ int main(int argc, char ** argv) {
struct opt_callback_data opt_cb_data; struct opt_callback_data opt_cb_data;
opt_cb_data.params = &params; opt_cb_data.params = &params;
opt_cb_data.opt = opt; opt_cb_data.opt = opt;
opt_cb_data.model = &model;
opt_cb_data.lora = &lora;
opt_cb_data.last_save_iter = opt->iter;
opt_cb_data.tokens_data = train_tokens.data(); opt_cb_data.tokens_data = train_tokens.data();
opt_cb_data.tokens_size = train_tokens.size(); opt_cb_data.tokens_size = train_tokens.size();
opt_cb_data.samples_data = train_samples.data(); opt_cb_data.samples_data = train_samples.data();
@ -2988,11 +3038,11 @@ int main(int argc, char ** argv) {
printf("%s: total training time=%f seconds\n", __func__, dd); printf("%s: total training time=%f seconds\n", __func__, dd);
if (params.n_examples > 0) { if (params.n_examples > 0) {
save_checkpoint(&model, &lora, opt, params.fn_checkpoint_out); save_checkpoint(&model, &lora, opt, params.fn_checkpoint_out, params.pattern_fn_it, opt->iter);
} }
if (strlen(params.fn_lora_out) > 0) { if (strlen(params.fn_lora_out) > 0) {
save_as_llama_lora(&lora, params.fn_lora_out); save_as_llama_lora(&lora, params.fn_lora_out, params.pattern_fn_it, opt->iter);
} }
{ {