diff --git a/gpttype_adapter.cpp b/gpttype_adapter.cpp index b876f8441..5996911a1 100644 --- a/gpttype_adapter.cpp +++ b/gpttype_adapter.cpp @@ -563,7 +563,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in rwkv_ctx_v3->logits_out = (float *)malloc(logitbufsiz); rwkv_ctx_v3->state_in = nullptr; - bool testeval = rwkv_eval(rwkv_ctx_v3, 0, rwkv_ctx_v3->state_in, rwkv_ctx_v3->state_out, rwkv_ctx_v3->logits_out); + bool testeval = rwkv_eval(rwkv_ctx_v3, params.n_threads, 0, rwkv_ctx_v3->state_in, rwkv_ctx_v3->state_out, rwkv_ctx_v3->logits_out); if (!testeval) { printf("\nError: RWKV Init Eval Failed!\n"); @@ -1162,12 +1162,12 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o { if(embd.size()>1) { - evalres = rwkv_eval_sequence(rwkv_ctx_v3, (uint32_t*)embd.data(), embd.size(), rwkv_ctx_v3->state_in, rwkv_ctx_v3->state_out, rwkv_ctx_v3->logits_out); + evalres = rwkv_eval_sequence(rwkv_ctx_v3, params.n_threads, (uint32_t*)embd.data(), embd.size(), rwkv_ctx_v3->state_in, rwkv_ctx_v3->state_out, rwkv_ctx_v3->logits_out); } else { bool ignoreLogits = (!startedsampling && ((int)embd_inp.size() > input_consumed + 2)); - evalres = rwkv_eval(rwkv_ctx_v3, embd[0], rwkv_ctx_v3->state_in, rwkv_ctx_v3->state_out, ignoreLogits?nullptr:rwkv_ctx_v3->logits_out); + evalres = rwkv_eval(rwkv_ctx_v3, params.n_threads, embd[0], rwkv_ctx_v3->state_in, rwkv_ctx_v3->state_out, ignoreLogits?nullptr:rwkv_ctx_v3->logits_out); } memcpy(logits.data(), rwkv_ctx_v3->logits_out, sizeof(float) * rwkv_vocab.size()); diff --git a/otherarch/gpt2_v3.cpp b/otherarch/gpt2_v3.cpp index b507357c4..2e7806d3d 100644 --- a/otherarch/gpt2_v3.cpp +++ b/otherarch/gpt2_v3.cpp @@ -447,7 +447,6 @@ bool gpt2_eval( struct ggml_context * ctx0 = ggml_init(params); struct ggml_cgraph gf = {}; - gf.n_threads = n_threads; struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); @@ -708,7 +707,7 @@ bool gpt2_eval( // run the computation ggml_build_forward_expand(&gf, inpL); - ggml_graph_compute (ctx0, &gf); + ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); //if (n_past%100 == 0) { // ggml_graph_print (&gf); diff --git a/otherarch/gptj_v3.cpp b/otherarch/gptj_v3.cpp index be4ad60da..aeaa7bbd5 100644 --- a/otherarch/gptj_v3.cpp +++ b/otherarch/gptj_v3.cpp @@ -445,7 +445,6 @@ bool gptj_eval( struct ggml_context * ctx0 = ggml_init(params); struct ggml_cgraph gf = {}; - gf.n_threads = n_threads; struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); @@ -620,7 +619,7 @@ bool gptj_eval( // run the computation ggml_build_forward_expand(&gf, inpL); - ggml_graph_compute (ctx0, &gf); + ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); //if (n_past%100 == 0) { // ggml_graph_print (&gf); diff --git a/otherarch/mpt_v3.cpp b/otherarch/mpt_v3.cpp index e4cf99fd7..35006688d 100644 --- a/otherarch/mpt_v3.cpp +++ b/otherarch/mpt_v3.cpp @@ -383,7 +383,6 @@ bool mpt_eval(const mpt_model & model, const int n_threads, const int n_past, struct ggml_context * ctx0 = ggml_init(params); struct ggml_cgraph gf = {}; - gf.n_threads = n_threads; struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, embd_inp.data(), N * ggml_element_size(embd)); @@ -543,7 +542,7 @@ bool mpt_eval(const mpt_model & model, const int n_threads, const int n_past, // run the computation ggml_build_forward_expand(&gf, inpL); - ggml_graph_compute(ctx0, &gf); + ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); // std::cout << "Qcur" << std::endl; // print_tensor(Qcur); diff --git a/otherarch/neox_v3.cpp b/otherarch/neox_v3.cpp index 29b2d06c8..9c1ab2545 100644 --- a/otherarch/neox_v3.cpp +++ b/otherarch/neox_v3.cpp @@ -461,7 +461,6 @@ bool gpt_neox_eval( struct ggml_context * ctx0 = ggml_init(params); struct ggml_cgraph gf = {}; - gf.n_threads = n_threads; struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); @@ -639,7 +638,7 @@ bool gpt_neox_eval( // run the computation ggml_build_forward_expand(&gf, inpL); - ggml_graph_compute (ctx0, &gf); + ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); //if (n_past%100 == 0) { // ggml_graph_print (&gf); diff --git a/otherarch/rwkv_v3.cpp b/otherarch/rwkv_v3.cpp index 0ccf8d8fa..2ef44dd1b 100644 --- a/otherarch/rwkv_v3.cpp +++ b/otherarch/rwkv_v3.cpp @@ -1511,7 +1511,6 @@ struct rwkv_context * rwkv_new_context_impl(std::shared_ptrn_threads = n_threads; RWKV_ASSERT_NULL(RWKV_ERROR_GRAPH, rwkv_build_serial_graph( serial_graph.ctx.ctx, instance->model, @@ -1609,7 +1608,7 @@ void rwkv_get_outputs(const struct rwkv_context * ctx, float * state_out, float } } -bool rwkv_eval(struct rwkv_context * ctx, const uint32_t token, const float * state_in, float * state_out, float * logits_out) { +bool rwkv_eval(struct rwkv_context * ctx, const int n_threads, const uint32_t token, const float * state_in, float * state_out, float * logits_out) { ctx->last_error = RWKV_ERROR_NONE; const struct rwkv_file_header & header = ctx->instance->model.header; @@ -1628,13 +1627,13 @@ bool rwkv_eval(struct rwkv_context * ctx, const uint32_t token, const float * st ctx->serial_graph.cgraph->n_leafs = ctx->serial_graph.post_logits_leafs; } - ggml_graph_compute(ctx->serial_graph.ctx.ctx, ctx->serial_graph.cgraph.get()); + ggml_graph_compute_with_ctx(ctx->serial_graph.ctx.ctx, ctx->serial_graph.cgraph.get(),n_threads); rwkv_get_outputs(ctx, state_out, logits_out); return true; } -bool rwkv_eval_sequence(struct rwkv_context * ctx, const uint32_t * sequence, const size_t sequence_len, const float * state_in, float * state_out, float * logits_out) { +bool rwkv_eval_sequence(struct rwkv_context * ctx, const int n_threads, const uint32_t * sequence, const size_t sequence_len, const float * state_in, float * state_out, float * logits_out) { ctx->last_error = RWKV_ERROR_NONE; const struct rwkv_file_header & header = ctx->instance->model.header; @@ -1690,7 +1689,6 @@ bool rwkv_eval_sequence(struct rwkv_context * ctx, const uint32_t * sequence, co sequence_graph.tokens = ggml_new_tensor_1d(sequence_graph.ctx.ctx, GGML_TYPE_I32, sequence_len); sequence_graph.cgraph.reset(new(std::nothrow) struct ggml_cgraph()); RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_ALLOC, sequence_graph.cgraph, "Failed to allocate sequence graph"); - sequence_graph.cgraph->n_threads = 1; RWKV_ASSERT_FALSE(RWKV_ERROR_GRAPH, rwkv_build_sequence_graph( sequence_graph.ctx.ctx, ctx->instance->model, @@ -1717,7 +1715,7 @@ bool rwkv_eval_sequence(struct rwkv_context * ctx, const uint32_t * sequence, co ctx->sequence_graph.cgraph->n_leafs = ctx->sequence_graph.post_logits_leafs; } - ggml_graph_compute(ctx->sequence_graph.ctx.ctx, ctx->sequence_graph.cgraph.get()); + ggml_graph_compute_with_ctx(ctx->sequence_graph.ctx.ctx, ctx->sequence_graph.cgraph.get(),n_threads); rwkv_get_outputs(ctx, state_out, logits_out); } diff --git a/otherarch/rwkv_v3.h b/otherarch/rwkv_v3.h index b24812fc2..b9e0d57e2 100644 --- a/otherarch/rwkv_v3.h +++ b/otherarch/rwkv_v3.h @@ -111,7 +111,7 @@ extern "C" { // - state_in: FP32 buffer of size rwkv_get_state_len(); or NULL, if this is a first pass. // - state_out: FP32 buffer of size rwkv_get_state_len(). This buffer will be written to if non-NULL. // - logits_out: FP32 buffer of size rwkv_get_logits_len(). This buffer will be written to if non-NULL. - RWKV_API bool rwkv_eval(struct rwkv_context * ctx, const uint32_t token, const float * state_in, float * state_out, float * logits_out); + RWKV_API bool rwkv_eval(struct rwkv_context *, const int n_threads, const uint32_t token, const float * state_in, float * state_out, float * logits_out); // Evaluates the model for a sequence of tokens. // Uses a faster algorithm than rwkv_eval if you do not need the state and logits for every token. Best used with batch sizes of 64 or so. @@ -125,7 +125,7 @@ extern "C" { // - state_in: FP32 buffer of size rwkv_get_state_len(), or NULL if this is a first pass. // - state_out: FP32 buffer of size rwkv_get_state_len(). This buffer will be written to if non-NULL. // - logits_out: FP32 buffer of size rwkv_get_logits_len(). This buffer will be written to if non-NULL. - RWKV_API bool rwkv_eval_sequence(struct rwkv_context * ctx, const uint32_t * tokens, size_t sequence_len, const float * state_in, float * state_out, float * logits_out); + RWKV_API bool rwkv_eval_sequence(struct rwkv_context * ctx, const int n_threads, const uint32_t * tokens, size_t sequence_len, const float * state_in, float * state_out, float * logits_out); // Returns the number of tokens in the given model's vocabulary. // Useful for telling 20B_tokenizer models (n_vocab = 50277) apart from World models (n_vocab = 65536).