streaming conversion without pytorch
This commit is contained in:
parent
2f700a2738
commit
289637a6a3
1 changed files with 79 additions and 13 deletions
|
@ -17,11 +17,16 @@
|
|||
# and vocabulary.
|
||||
#
|
||||
|
||||
from collections import defaultdict
|
||||
import sys
|
||||
import json
|
||||
import struct
|
||||
import numpy as np
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
import zipfile
|
||||
import pickle
|
||||
import concurrent.futures
|
||||
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
if len(sys.argv) < 3:
|
||||
|
@ -73,19 +78,22 @@ hparams.update({"vocab_size": tokenizer.vocab_size()})
|
|||
|
||||
n_parts = get_n_parts(hparams["dim"])
|
||||
|
||||
print(hparams)
|
||||
print('n_parts = ', n_parts)
|
||||
print(f'Model params.json: {hparams}')
|
||||
print(f'Parts to process: {n_parts}')
|
||||
|
||||
for p in range(n_parts):
|
||||
print('Processing part ', p)
|
||||
|
||||
#fname_model = sys.argv[1] + "/consolidated.00.pth"
|
||||
fname_model = sys.argv[1] + "/consolidated.0" + str(p) + ".pth"
|
||||
def get_fname(p):
|
||||
fname = "/consolidated.0" + str(p) + ".pth"
|
||||
return fname
|
||||
|
||||
def process_part(p):
|
||||
fname = get_fname(p)
|
||||
fname_model = sys.argv[1] + fname
|
||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
|
||||
if (p > 0):
|
||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin" + "." + str(p)
|
||||
|
||||
model = torch.load(fname_model, map_location="cpu")
|
||||
print(f"Processing part {fname}")
|
||||
|
||||
fout = open(fname_out, "wb")
|
||||
|
||||
|
@ -123,7 +131,58 @@ for p in range(n_parts):
|
|||
fout.write(struct.pack("i", len(text)))
|
||||
fout.write(text)
|
||||
|
||||
for k, v in model.items():
|
||||
|
||||
def load_model(fname):
|
||||
class Tensor():
|
||||
def __init__(self, shape, dtype, loadinfo):
|
||||
self.shape = shape
|
||||
self.dtype = dtype
|
||||
self.loadinfo = loadinfo
|
||||
# print(shape, dtype)
|
||||
|
||||
def numpy(self):
|
||||
fname_model, base_name, storage_offset, k, shape, dtype = self.loadinfo
|
||||
with zipfile.ZipFile(fname_model, 'r') as myzip:
|
||||
with myzip.open(f'{base_name}/data/{k}') as myfile:
|
||||
bytes_size = np.dtype(self.dtype).itemsize
|
||||
myfile.seek(storage_offset * bytes_size, 1)
|
||||
ret = np.empty(shape, dtype=dtype)
|
||||
myfile.readinto(ret.data)
|
||||
return ret
|
||||
|
||||
def my_unpickle(datapkl, fname_model, base_name):
|
||||
def my_rebuild_tensor(storage, storage_offset, size, stride, requires_grad, backward_hooks, metadata=None):
|
||||
storage_type = storage[1]
|
||||
obj_key = storage[2]
|
||||
return Tensor(shape=size, dtype=storage_type, loadinfo=(
|
||||
fname_model, base_name, storage_offset,
|
||||
obj_key, size, storage_type
|
||||
))
|
||||
|
||||
class MyUnpickler(pickle.Unpickler):
|
||||
def find_class(self, *p):
|
||||
if p == ('torch', 'HalfStorage'): return np.float16
|
||||
if p == ('torch', 'FloatStorage'): return np.float32
|
||||
if p == ('torch._utils', '_rebuild_tensor_v2'): return my_rebuild_tensor
|
||||
if p == ('collections', 'OrderedDict'): return dict
|
||||
raise ValueError(f'Unrecognized pickle {p}')
|
||||
|
||||
def persistent_load(self, pid):
|
||||
return pid
|
||||
|
||||
return MyUnpickler(datapkl).load()
|
||||
|
||||
with zipfile.ZipFile(fname, 'r') as myzip:
|
||||
base_name = myzip.namelist()[0].split('/', 1)[0]
|
||||
# print(myzip.namelist())
|
||||
with myzip.open(f'{base_name}/data.pkl') as myfile:
|
||||
model = my_unpickle(myfile, fname, base_name)
|
||||
return model
|
||||
|
||||
model = load_model(fname_model)
|
||||
|
||||
for k, v in (t := tqdm(model.items())):
|
||||
t.set_description(f"Processing {k} with shape {tuple(v.shape)} and type {np.dtype(v.dtype)}")
|
||||
name = k
|
||||
shape = v.shape
|
||||
|
||||
|
@ -131,11 +190,11 @@ for p in range(n_parts):
|
|||
if name[-5:] == "freqs":
|
||||
continue
|
||||
|
||||
print("Processing variable: " + name + " with shape: ", shape, " and type: ", v.dtype)
|
||||
# print("Processing variable: " + name + " with shape: ", shape, " and type: ", v.dtype)
|
||||
|
||||
#data = tf.train.load_variable(dir_model, name).squeeze()
|
||||
data = v.numpy().squeeze()
|
||||
n_dims = len(data.shape);
|
||||
n_dims = len(data.shape)
|
||||
|
||||
# for efficiency - transpose some matrices
|
||||
# "model/h.*/attn/c_attn/w"
|
||||
|
@ -154,7 +213,7 @@ for p in range(n_parts):
|
|||
# default type is fp16
|
||||
ftype_cur = 1
|
||||
if ftype == 0 or n_dims == 1:
|
||||
print(" Converting to float32")
|
||||
# print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
|
||||
|
@ -163,7 +222,7 @@ for p in range(n_parts):
|
|||
fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
|
||||
for i in range(n_dims):
|
||||
fout.write(struct.pack("i", dshape[n_dims - 1 - i]))
|
||||
fout.write(sname);
|
||||
fout.write(sname)
|
||||
|
||||
# data
|
||||
data.tofile(fout)
|
||||
|
@ -175,3 +234,10 @@ for p in range(n_parts):
|
|||
|
||||
print("Done. Output file: " + fname_out + ", (part ", p, ")")
|
||||
print("")
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
|
||||
futures = {executor.submit(process_part, p) for p in range(n_parts)}
|
||||
for f in (concurrent.futures.as_completed(futures)):
|
||||
if f.exception() is not None: raise f.exception()
|
||||
|
||||
print("All done.")
|
Loading…
Add table
Add a link
Reference in a new issue