diff --git a/Makefile b/Makefile index 68df7702a..42686ce71 100644 --- a/Makefile +++ b/Makefile @@ -452,6 +452,9 @@ ifdef LLAMA_HIPBLAS LLAMA_CUDA_MMV_Y ?= 1 LLAMA_CUDA_KQUANTS_ITER ?= 2 MK_CPPFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS +ifdef LLAMA_HIP_UMA + MK_CPPFLAGS += -DGGML_HIP_UMA +endif # LLAMA_HIP_UMA MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS)) diff --git a/README.md b/README.md index 8e17d5ba4..377d3928b 100644 --- a/README.md +++ b/README.md @@ -440,7 +440,13 @@ Building the program with BLAS support may lead to some performance improvements && cmake --build build -- -j 16 ``` On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DLLAMA_HIP_UMA=ON"`. - However, this hurts performance for non-integrated GPUs. + However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs). + + - Using `make` (example for target gfx1030, build with 16 CPU threads): + ```bash + make -j16 LLAMA_HIPBLAS=1 LLAMA_HIP_UMA=1 AMDGPU_TARGETS=gxf1030 + ``` + - Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU): ```bash set PATH=%HIP_PATH%\bin;%PATH%