remove added tokens and check newline token to decide spm or bpe

This commit is contained in:
wonjun Jang 2023-11-05 20:22:25 +09:00 committed by GitHub
parent e19b78038a
commit 28f09beb60
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -310,41 +310,22 @@ class VocabLoader:
self.tokenizer = AutoTokenizer.from_pretrained(str(fname_tokenizer))
vocab_set = {encoded_tok for encoded_tok, id in self.tokenizer.vocab.items()}
added_tokens = {
token: tid
for token, tid in self.tokenizer.get_added_vocab().items()
if token not in vocab_set
}
vocab_size: int = self.tokenizer.vocab_size
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
actual_ids = sorted(added_tokens.values())
if expected_ids != actual_ids:
raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}")
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
self.added_tokens_list = [text for (text, idx) in items]
self.vocab_size_base: int = vocab_size
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
self.vocab_size: int = len(self.tokenizer.vocab)
self.fname_tokenizer = fname_tokenizer
def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
tokenizer = self.tokenizer
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(tokenizer.vocab_size):
for i in range(self.vocab_size):
text = reverse_vocab[i].encode("utf-8")
yield text, 0.0, gguf.TokenType.NORMAL
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
score = -1000.0
yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
def has_newline_token(self):
return '<0x0A>' in self.tokenizer.vocab or '\n' in self.tokenizer.vocab
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
yield from self.hf_tokens()
yield from self.added_tokens()
def get_vocab_type(self) -> str:
path_candidates = []
@ -363,6 +344,9 @@ class VocabLoader:
vocab_file = "tokenizer.json"
path_candidate = vocab_check_and_append_path(self.fname_tokenizer, vocab_file)
if path_candidate:
if not self.tokenizer.can_save_slow_tokenizer():
return "gpt2"
else:
return "llama"
path_candidates.append(path_candidate)
@ -371,7 +355,7 @@ class VocabLoader:
"if it's in another directory, pass the directory as --vocab-dir")
def __repr__(self) -> str:
return f"<VocabLoader with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
return f"<VocabLoader with {self.vocab_size} tokens>"
Vocab: TypeAlias = 'VocabLoader'
@ -746,10 +730,10 @@ def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], conc
def check_vocab_size(params: Params, vocab: Vocab) -> None:
if params.n_vocab != vocab.vocab_size:
if params.n_vocab == vocab.vocab_size_base:
if params.n_vocab == vocab.vocab_size:
print("Ignoring added_tokens.json since model matches vocab size without it.")
vocab.added_tokens_list = []
vocab.vocab_size = vocab.vocab_size_base
vocab.vocab_size = vocab.vocab_size
return
msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer}"
msg += f" has {vocab.vocab_size})."