diff --git a/gguf-llama.cpp b/gguf-llama.cpp index f1e775a3f..b4cb86478 100644 --- a/gguf-llama.cpp +++ b/gguf-llama.cpp @@ -56,6 +56,20 @@ #pragma warning(disable: 4244 4267) // possible loss of data #endif +// tensor names +#define TN_TOKEN_EMBD "token_embd.weight" +#define TN_OUTPUT_NORM "output_norm.weight" +#define TN_OUTPUT "output.weight" +#define TN_ATTN_NORM "blk.%d.attn_norm.weight" +#define TN_ATTN_Q "blk.%d.attn_q.weight" +#define TN_ATTN_K "blk.%d.attn_k.weight" +#define TN_ATTN_V "blk.%d.attn_v.weight" +#define TN_ATTN_OUTPUT "blk.%d.attn_output.weight" +#define TN_FFN_NORM "blk.%d.ffn_norm.weight" +#define TN_FFN_GATE "blk.%d.ffn_gate.weight" +#define TN_FFN_DOWN "blk.%d.ffn_down.weight" +#define TN_FFN_UP "blk.%d.ffn_up.weight" + static void llama_log_internal(llama_log_level level, const char* format, ...); static void llama_log_callback_default(llama_log_level level, const char * text, void * user_data); #define LLAMA_LOG_INFO(...) llama_log_internal(LLAMA_LOG_LEVEL_INFO , __VA_ARGS__) @@ -1310,7 +1324,7 @@ static void llama_model_load_internal( ml->ggml_ctx = ctx; - model.tok_embeddings = ml->get_tensor("token_embd.weight", {n_embd, n_vocab}, GGML_BACKEND_CPU); + model.tok_embeddings = ml->get_tensor(TN_TOKEN_EMBD, {n_embd, n_vocab}, GGML_BACKEND_CPU); // "output" tensor { @@ -1331,8 +1345,8 @@ static void llama_model_load_internal( backend_output = GGML_BACKEND_CPU; } - model.norm = ml->get_tensor("output_norm.weight", {n_embd}, backend_norm); - model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output); + model.norm = ml->get_tensor(TN_OUTPUT_NORM, {n_embd}, backend_norm); + model.output = ml->get_tensor(TN_OUTPUT, {n_embd, n_vocab}, backend_output); if (backend_norm == GGML_BACKEND_GPU) { vram_weights += ggml_nbytes(model.norm); } @@ -1349,21 +1363,18 @@ static void llama_model_load_internal( const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT auto & layer = model.layers[i]; + layer.attention_norm = ml->get_tensor(format(TN_ATTN_NORM, i), {n_embd}, backend); - std::string layers_i = "blk." + std::to_string(i); + layer.wq = ml->get_tensor(format(TN_ATTN_Q, i), {n_embd, n_embd}, backend_split); + layer.wk = ml->get_tensor(format(TN_ATTN_K, i), {n_embd, n_embd_gqa}, backend_split); + layer.wv = ml->get_tensor(format(TN_ATTN_V, i), {n_embd, n_embd_gqa}, backend_split); + layer.wo = ml->get_tensor(format(TN_ATTN_OUTPUT, i), {n_embd, n_embd}, backend_split); - layer.attention_norm = ml->get_tensor(layers_i + ".attn_norm.weight", {n_embd}, backend); + layer.ffn_norm = ml->get_tensor(format(TN_FFN_NORM, i), {n_embd}, backend); - layer.wq = ml->get_tensor(layers_i + ".attn_q.weight", {n_embd, n_embd}, backend_split); - layer.wk = ml->get_tensor(layers_i + ".attn_k.weight", {n_embd, n_embd_gqa}, backend_split); - layer.wv = ml->get_tensor(layers_i + ".attn_v.weight", {n_embd, n_embd_gqa}, backend_split); - layer.wo = ml->get_tensor(layers_i + ".attn_output.weight", {n_embd, n_embd}, backend_split); - - layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend); - - layer.w1 = ml->get_tensor(layers_i + ".ffn_gate.weight", {n_embd, n_ff}, backend_split); - layer.w2 = ml->get_tensor(layers_i + ".ffn_down.weight", { n_ff, n_embd}, backend_split); - layer.w3 = ml->get_tensor(layers_i + ".ffn_up.weight", {n_embd, n_ff}, backend_split); + layer.w1 = ml->get_tensor(format(TN_FFN_GATE, i), {n_embd, n_ff}, backend_split); + layer.w2 = ml->get_tensor(format(TN_FFN_DOWN, i), { n_ff, n_embd}, backend_split); + layer.w3 = ml->get_tensor(format(TN_FFN_UP, i), {n_embd, n_ff}, backend_split); if (backend == GGML_BACKEND_GPU) { vram_weights += @@ -3298,7 +3309,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } else { new_type = quantized_type; #ifdef GGML_USE_K_QUANTS - if (tensor.name == "output.weight") { + if (tensor.name == TN_OUTPUT) { int nx = tensor.ne.at(0); int ny = tensor.ne.at(1); if (nx % QK_K == 0 && ny % QK_K == 0) { @@ -3334,10 +3345,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } } if (convert_incompatible_tensor) { - if (tensor.name == "output.weight") { + if (tensor.name == TN_OUTPUT) { new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing. LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n"); - } else if (tensor.name == "token_embd.weight") { + } else if (tensor.name == TN_TOKEN_EMBD) { new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing. LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n"); } else {