llama : fix embeddings (#5796)
* llama : fix embeddings ggml-ci * llama : do not use KV cache for non-causal models ggml-ci * embeddings : fix llama_batch_init arg * llama : add pooling switch * llama : distinguish token vs sequence embeddings ggml-ci * llama : assert pooling tensor * llama : simplify causal mask condition ggml-ci * llama : assert input batch with pooling enabled * readme : update API changes list
This commit is contained in:
parent
e0843afe1b
commit
29ae62d2ae
7 changed files with 359 additions and 134 deletions
|
@ -19,11 +19,11 @@ static std::vector<std::string> split_lines(const std::string & s) {
|
|||
|
||||
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) {
|
||||
for (size_t i = 0; i < tokens.size(); i++) {
|
||||
llama_batch_add(batch, tokens[i], i, { seq_id }, false);
|
||||
llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1);
|
||||
}
|
||||
}
|
||||
|
||||
static void normalize(float * vec, float * out, int n) {
|
||||
static void normalize(const float * vec, float * out, int n) {
|
||||
float norm = 0;
|
||||
for (int i = 0; i < n; i++) {
|
||||
norm += vec[i] * vec[i];
|
||||
|
@ -45,10 +45,23 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
|||
}
|
||||
|
||||
// normalize on copy
|
||||
for (int k = 0; k < n_seq; k++) {
|
||||
float * emb = llama_get_embeddings_ith(ctx, k);
|
||||
float * out = output + k * n_embd;
|
||||
normalize(emb, out, n_embd);
|
||||
for (int i = 0; i < batch.n_tokens; i++) {
|
||||
if (!batch.logits[i]) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// try to get sequence embeddings - supported only when pooling_type is not NONE
|
||||
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
|
||||
if (embd == NULL) {
|
||||
embd = llama_get_embeddings_ith(ctx, i);
|
||||
if (embd == NULL) {
|
||||
fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
float * out = output + batch.seq_id[i][0] * n_embd;
|
||||
normalize(embd, out, n_embd);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -132,7 +145,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
// initialize batch
|
||||
const int n_prompts = prompts.size();
|
||||
struct llama_batch batch = llama_batch_init(n_batch, 0, n_prompts);
|
||||
struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
|
||||
|
||||
// allocate output
|
||||
const int n_embd = llama_n_embd(model);
|
||||
|
@ -145,6 +158,7 @@ int main(int argc, char ** argv) {
|
|||
for (int k = 0; k < n_prompts; k++) {
|
||||
// clamp to n_batch tokens
|
||||
auto & inp = inputs[k];
|
||||
|
||||
const uint64_t n_toks = inp.size();
|
||||
|
||||
// encode if at capacity
|
||||
|
|
34
examples/server-embd.py
Normal file
34
examples/server-embd.py
Normal file
|
@ -0,0 +1,34 @@
|
|||
import asyncio
|
||||
import requests
|
||||
import numpy as np
|
||||
|
||||
n = 8
|
||||
|
||||
result = []
|
||||
|
||||
async def requests_post_async(*args, **kwargs):
|
||||
return await asyncio.to_thread(requests.post, *args, **kwargs)
|
||||
|
||||
async def main():
|
||||
model_url = "http://127.0.0.1:6900"
|
||||
responses: list[requests.Response] = await asyncio.gather(*[requests_post_async(
|
||||
url= f"{model_url}/embedding",
|
||||
json= {"content": str(i)*1024}
|
||||
) for i in range(n)])
|
||||
|
||||
for response in responses:
|
||||
embedding = response.json()["embedding"]
|
||||
print(embedding[-8:])
|
||||
result.append(embedding)
|
||||
|
||||
asyncio.run(main())
|
||||
|
||||
# compute cosine similarity
|
||||
|
||||
for i in range(n-1):
|
||||
for j in range(i+1, n):
|
||||
embedding1 = np.array(result[i])
|
||||
embedding2 = np.array(result[j])
|
||||
similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
|
||||
print(f"Similarity between {i} and {j}: {similarity:.2f}")
|
||||
|
|
@ -1210,7 +1210,7 @@ struct llama_server_context
|
|||
queue_results.send(res);
|
||||
}
|
||||
|
||||
void send_embedding(server_slot &slot)
|
||||
void send_embedding(server_slot & slot, const llama_batch & batch)
|
||||
{
|
||||
task_result res;
|
||||
res.id = slot.task_id;
|
||||
|
@ -1219,6 +1219,7 @@ struct llama_server_context
|
|||
res.stop = true;
|
||||
|
||||
const int n_embd = llama_n_embd(model);
|
||||
|
||||
if (!params.embedding)
|
||||
{
|
||||
LOG_WARNING("embedding disabled", {{"params.embedding", params.embedding}});
|
||||
|
@ -1229,12 +1230,29 @@ struct llama_server_context
|
|||
}
|
||||
else
|
||||
{
|
||||
const float *data = llama_get_embeddings(ctx);
|
||||
std::vector<float> embedding(data, data + n_embd);
|
||||
res.result_json = json
|
||||
{
|
||||
{"embedding", embedding},
|
||||
};
|
||||
for (int i = 0; i < batch.n_tokens; ++i) {
|
||||
if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
|
||||
if (embd == NULL) {
|
||||
embd = llama_get_embeddings_ith(ctx, i);
|
||||
if (embd == NULL) {
|
||||
LOG_ERROR("failed to get embeddings for token", {{"token", batch.token[i]}, {"seq_id", batch.seq_id[i][0]}});
|
||||
res.result_json = json
|
||||
{
|
||||
{"embedding", std::vector<float>(n_embd, 0.0f)},
|
||||
};
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
res.result_json = json
|
||||
{
|
||||
{"embedding", std::vector<float>(embd, embd + n_embd)},
|
||||
};
|
||||
}
|
||||
}
|
||||
queue_results.send(res);
|
||||
}
|
||||
|
@ -1845,7 +1863,7 @@ struct llama_server_context
|
|||
ga_i += ga_w/ga_n;
|
||||
}
|
||||
}
|
||||
llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, {slot.id }, false);
|
||||
llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, { slot.id }, false);
|
||||
slot_npast++;
|
||||
}
|
||||
|
||||
|
@ -1881,7 +1899,7 @@ struct llama_server_context
|
|||
|
||||
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
|
||||
{
|
||||
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
|
||||
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
|
||||
|
||||
for (auto & slot : slots)
|
||||
{
|
||||
|
@ -1954,7 +1972,7 @@ struct llama_server_context
|
|||
// prompt evaluated for embedding
|
||||
if (slot.embedding)
|
||||
{
|
||||
send_embedding(slot);
|
||||
send_embedding(slot, batch_view);
|
||||
slot.release();
|
||||
slot.i_batch = -1;
|
||||
continue;
|
||||
|
@ -2036,6 +2054,8 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
|||
printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
|
||||
printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
|
||||
printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
|
||||
printf(" --pooling {none,mean,cls}\n");
|
||||
printf(" pooling type for embeddings, use model default if unspecified\n");
|
||||
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
|
||||
|
@ -2276,6 +2296,18 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
}
|
||||
params.yarn_beta_slow = std::stof(argv[i]);
|
||||
}
|
||||
else if (arg == "--pooling")
|
||||
{
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
std::string value(argv[i]);
|
||||
/**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
|
||||
else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
|
||||
else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
|
||||
else { invalid_param = true; break; }
|
||||
}
|
||||
else if (arg == "--threads" || arg == "-t")
|
||||
{
|
||||
if (++i >= argc)
|
||||
|
@ -2330,7 +2362,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
break;
|
||||
}
|
||||
params.n_batch = std::stoi(argv[i]);
|
||||
params.n_batch = std::min(512, params.n_batch);
|
||||
}
|
||||
else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
|
||||
{
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue