iq1_m: basics
This commit is contained in:
parent
43139cc528
commit
2a2d66de46
8 changed files with 366 additions and 71 deletions
|
@ -26,6 +26,7 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
|||
{ "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", },
|
||||
{ "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
|
||||
{ "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
|
||||
{ "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.81 bpw quantization", },
|
||||
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", },
|
||||
{ "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization", },
|
||||
|
@ -320,10 +321,12 @@ int main(int argc, char ** argv) {
|
|||
|
||||
if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS ||
|
||||
params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_S ||
|
||||
params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) && imatrix_data.empty()) {
|
||||
fprintf(stderr, "\n===============================================================================================\n");
|
||||
fprintf(stderr, "Please do not use IQ1_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
|
||||
fprintf(stderr, "===============================================================================================\n\n\n");
|
||||
params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S ||
|
||||
params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
|
||||
params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) && imatrix_data.empty()) {
|
||||
fprintf(stderr, "\n==========================================================================================================\n");
|
||||
fprintf(stderr, "Please do not use IQ1_S, IQ1_M, IQ2_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
|
||||
fprintf(stderr, "==========================================================================================================\n\n\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
|
|
@ -377,6 +377,15 @@ typedef struct {
|
|||
} block_iq1_s;
|
||||
static_assert(sizeof(block_iq1_s) == sizeof(ggml_half) + QK_K/8 + QK_K/16, "wrong iq1_s block size/padding");
|
||||
|
||||
// 1.8125 bpw
|
||||
typedef struct {
|
||||
ggml_half d;
|
||||
uint8_t qs[QK_K/8]; // grid index, low 8 bits
|
||||
uint8_t qh[QK_K/16]; // grid index, high 3 bits + grid shift bit (for two groups of 8)
|
||||
uint8_t scales[QK_K/32]; // 4-bit block scales
|
||||
} block_iq1_m;
|
||||
static_assert(sizeof(block_iq1_m) == sizeof(ggml_half) + QK_K/8 + QK_K/16 + QK_K/32, "wrong iq1_m block size/padding");
|
||||
|
||||
// Non-linear quants
|
||||
#define QK4_NL 32
|
||||
typedef struct {
|
||||
|
|
353
ggml-quants.c
353
ggml-quants.c
|
@ -3474,6 +3474,51 @@ void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, in
|
|||
}
|
||||
}
|
||||
|
||||
void dequantize_row_iq1_m(const block_iq1_m * restrict x, float * restrict y, int k) {
|
||||
assert(k % QK_K == 0);
|
||||
const int nb = k / QK_K;
|
||||
|
||||
float delta[4];
|
||||
uint16_t idx[4];
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
|
||||
const float d1 = GGML_FP16_TO_FP32(x[i].d);
|
||||
const float d2 = d1 / 16;
|
||||
const uint8_t * qs = x[i].qs;
|
||||
const uint8_t * qh = x[i].qh;
|
||||
|
||||
for (int ib = 0; ib < QK_K/32; ++ib) {
|
||||
const float dl1 = d1 * (2*(x[i].scales[ib] & 0x0f) + 1);
|
||||
const float dl2 = d2 * (2*(x[i].scales[ib] & 0xf0) + 16);
|
||||
idx[0] = qs[0] | ((qh[0] << 8) & 0x700);
|
||||
idx[1] = qs[1] | ((qh[0] << 4) & 0x700);
|
||||
idx[2] = qs[2] | ((qh[1] << 8) & 0x700);
|
||||
idx[3] = qs[3] | ((qh[1] << 4) & 0x700);
|
||||
delta[0] = qh[0] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
|
||||
delta[1] = qh[0] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
|
||||
delta[2] = qh[1] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
|
||||
delta[3] = qh[1] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
|
||||
for (int l = 0; l < 2; ++l) {
|
||||
const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
y[j] = dl1 * (grid[j] + delta[l]);
|
||||
}
|
||||
y += 8;
|
||||
}
|
||||
for (int l = 2; l < 4; ++l) {
|
||||
const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
y[j] = dl2 * (grid[j] + delta[l]);
|
||||
}
|
||||
y += 8;
|
||||
}
|
||||
qs += 4;
|
||||
qh += 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
|
||||
|
||||
void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int k) {
|
||||
|
@ -9695,6 +9740,140 @@ void ggml_vec_dot_iq1_s_q8_K (int n, float * restrict s, size_t bs, const void
|
|||
#endif
|
||||
}
|
||||
|
||||
// TODO
|
||||
void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
|
||||
assert(n % QK_K == 0);
|
||||
assert(nrc == 1);
|
||||
UNUSED(nrc);
|
||||
UNUSED(bx);
|
||||
UNUSED(by);
|
||||
UNUSED(bs);
|
||||
|
||||
const block_iq1_s * restrict x = vx;
|
||||
const block_q8_K * restrict y = vy;
|
||||
|
||||
const int nb = n / QK_K;
|
||||
|
||||
#if defined __ARM_NEON
|
||||
|
||||
ggml_int8x16x4_t q1b;
|
||||
ggml_int8x16x4_t q8b;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * qs = x[i].qs;
|
||||
const uint16_t * qh = x[i].qh;
|
||||
|
||||
int sumi1 = 0, sumi2 = 0, sumi3 = 0;
|
||||
|
||||
for (int ib = 0; ib < QK_K/32; ib += 2) {
|
||||
|
||||
q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[ib+0] << 8) & 0x700)))),
|
||||
vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[ib+0] << 5) & 0x700)))));
|
||||
q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[ib+0] << 2) & 0x700)))),
|
||||
vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[ib+0] >> 1) & 0x700)))));
|
||||
q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[ib+1] << 8) & 0x700)))),
|
||||
vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[ib+1] << 5) & 0x700)))));
|
||||
q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[ib+1] << 2) & 0x700)))),
|
||||
vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[ib+1] >> 1) & 0x700)))));
|
||||
qs += 8;
|
||||
|
||||
q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
|
||||
|
||||
const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[0], q8b.val[0]), q1b.val[1], q8b.val[1]);
|
||||
const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[2], q8b.val[2]), q1b.val[3], q8b.val[3]);
|
||||
|
||||
const int ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
|
||||
const int ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
|
||||
sumi1 += vaddvq_s32(p1) * ls1;
|
||||
sumi2 += vaddvq_s32(p2) * ls2;
|
||||
sumi3 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * ls1 * (qh[ib+0] & 0x8000 ? -1 : 1)
|
||||
+ (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * ls2 * (qh[ib+1] & 0x8000 ? -1 : 1);
|
||||
|
||||
}
|
||||
|
||||
sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * (sumi1 + sumi2 + IQ1S_DELTA * sumi3);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
|
||||
#elif defined __AVX2__
|
||||
|
||||
__m256 accum = _mm256_setzero_ps();
|
||||
float accum1 = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * qs = x[i].qs;
|
||||
const uint16_t * qh = x[i].qh;
|
||||
|
||||
__m256i sumi = _mm256_setzero_si256();
|
||||
int sumi1 = 0;
|
||||
for (int ib = 0; ib < QK_K/32; ib += 2) {
|
||||
const __m256i q1b_1 = _mm256_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)],
|
||||
iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]);
|
||||
const __m256i q1b_2 = _mm256_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)],
|
||||
iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]);
|
||||
qs += 8;
|
||||
const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
|
||||
const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
|
||||
|
||||
const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
|
||||
const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
|
||||
const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
|
||||
const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
|
||||
const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(ls1));
|
||||
const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(ls2));
|
||||
|
||||
sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p1, p2));
|
||||
sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
|
||||
+ (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
|
||||
}
|
||||
|
||||
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
accum = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sumi), accum);
|
||||
accum1 += d * sumi1;
|
||||
|
||||
}
|
||||
|
||||
*s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; i++) {
|
||||
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * qs = x[i].qs;
|
||||
const uint16_t * qh = x[i].qh;
|
||||
|
||||
int sumi = 0, sumi1 = 0;
|
||||
for (int ib = 0; ib < QK_K/32; ++ib) {
|
||||
const int ls = 2*((qh[ib] >> 12) & 7) + 1;
|
||||
const int delta = qh[ib] & 0x8000 ? -1 : 1;
|
||||
int lsum = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
lsum += q8[j] * grid[j];
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
sumi += ls * lsum;
|
||||
sumi1 += ls * delta * (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]);
|
||||
qs += 4;
|
||||
}
|
||||
|
||||
sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
|
||||
assert(nrc == 1);
|
||||
UNUSED(nrc);
|
||||
|
@ -9938,17 +10117,17 @@ static iq2_entry_t iq2_data[4] = {
|
|||
};
|
||||
|
||||
static inline int iq2_data_index(enum ggml_type type) {
|
||||
GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S);
|
||||
GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
|
||||
return type == GGML_TYPE_IQ2_XXS ? 0 :
|
||||
type == GGML_TYPE_IQ2_XS ? 1 :
|
||||
type == GGML_TYPE_IQ1_S ? 2 : 3;
|
||||
type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 2 : 3;
|
||||
}
|
||||
|
||||
static inline int iq2_grid_size(enum ggml_type type) {
|
||||
GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S);
|
||||
GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
|
||||
return type == GGML_TYPE_IQ2_XXS ? 256 :
|
||||
type == GGML_TYPE_IQ2_XS ? 512 :
|
||||
type == GGML_TYPE_IQ1_S ? NGRID_IQ1S : 1024;
|
||||
type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? NGRID_IQ1S : 1024;
|
||||
}
|
||||
|
||||
static int iq2_compare_func(const void * left, const void * right) {
|
||||
|
@ -10214,10 +10393,10 @@ void iq2xs_init_impl(enum ggml_type type) {
|
|||
|
||||
const int kmap_size = 43692;
|
||||
//const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2;
|
||||
const int nwant = type == GGML_TYPE_IQ1_S ? 3 : type == GGML_TYPE_IQ2_S ? 1 : 2;
|
||||
const int nwant = type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 3 : type == GGML_TYPE_IQ2_S ? 1 : 2;
|
||||
const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 :
|
||||
type == GGML_TYPE_IQ2_XS ? kgrid_2bit_512 :
|
||||
type == GGML_TYPE_IQ1_S ? kgrid_1bit_2048 : kgrid_2bit_1024;
|
||||
type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? kgrid_1bit_2048 : kgrid_2bit_1024;
|
||||
uint64_t * kgrid_q2xs;
|
||||
int * kmap_q2xs;
|
||||
uint16_t * kneighbors_q2xs;
|
||||
|
@ -10314,7 +10493,7 @@ void iq2xs_init_impl(enum ggml_type type) {
|
|||
}
|
||||
|
||||
void iq2xs_free_impl(enum ggml_type type) {
|
||||
GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S);
|
||||
GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
|
||||
const int gindex = iq2_data_index(type);
|
||||
if (iq2_data[gindex].grid) {
|
||||
free(iq2_data[gindex].grid); iq2_data[gindex].grid = NULL;
|
||||
|
@ -11520,7 +11699,16 @@ static int iq1_sort_helper(const void * left, const void * right) {
|
|||
}
|
||||
|
||||
#define IQ1S_BLOCK_SIZE 32
|
||||
static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
|
||||
#define IQ1M_BLOCK_SIZE 16
|
||||
static void quantize_row_iq1_impl(enum ggml_type type, const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights,
|
||||
float * scales,
|
||||
float * weight,
|
||||
float * sumx,
|
||||
float * sumw,
|
||||
float * pairs,
|
||||
int8_t * L,
|
||||
uint16_t * index,
|
||||
int8_t * shifts) {
|
||||
|
||||
const int gindex = iq2_data_index(GGML_TYPE_IQ1_S);
|
||||
|
||||
|
@ -11536,26 +11724,28 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
|
|||
|
||||
const int nbl = n/QK_K;
|
||||
|
||||
block_iq1_s * y = vy;
|
||||
const int block_size = type == GGML_TYPE_IQ1_S ? IQ1S_BLOCK_SIZE : IQ1M_BLOCK_SIZE;
|
||||
|
||||
const float x_p[3] = {-1 + IQ1S_DELTA, IQ1S_DELTA, 1 + IQ1S_DELTA};
|
||||
const float x_m[3] = {-1 - IQ1S_DELTA, -IQ1S_DELTA, 1 - IQ1S_DELTA};
|
||||
|
||||
float scales[QK_K/IQ1S_BLOCK_SIZE];
|
||||
float weight[IQ1S_BLOCK_SIZE];
|
||||
int8_t L[IQ1S_BLOCK_SIZE];
|
||||
float sumx[IQ1S_BLOCK_SIZE+1];
|
||||
float sumw[IQ1S_BLOCK_SIZE+1];
|
||||
float pairs[2*IQ1S_BLOCK_SIZE];
|
||||
|
||||
int * idx = (int *)(pairs + 1);
|
||||
uint16_t index[IQ1S_BLOCK_SIZE/8];
|
||||
int8_t shifts[QK_K/IQ1S_BLOCK_SIZE];
|
||||
|
||||
for (int ibl = 0; ibl < nbl; ++ibl) {
|
||||
|
||||
y[ibl].d = GGML_FP32_TO_FP16(0.f);
|
||||
memset(y[ibl].qs, 0, QK_K/8);
|
||||
memset(y[ibl].qh, 0, QK_K/16);
|
||||
if (type == GGML_TYPE_IQ1_S) {
|
||||
block_iq1_s * y = vy;
|
||||
y[ibl].d = GGML_FP32_TO_FP16(0.f);
|
||||
memset(y[ibl].qs, 0, QK_K/8);
|
||||
memset(y[ibl].qh, 0, QK_K/16);
|
||||
} else {
|
||||
block_iq1_m * y = vy;
|
||||
y[ibl].d = GGML_FP32_TO_FP16(0.f);
|
||||
memset(y[ibl].qs, 0, QK_K/8);
|
||||
memset(y[ibl].qh, 0, QK_K/16);
|
||||
memset(y[ibl].scales, 0, QK_K/32);
|
||||
}
|
||||
|
||||
float max_scale = 0;
|
||||
|
||||
|
@ -11564,15 +11754,15 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
|
|||
for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
|
||||
float sigma2 = 2*sumx2/QK_K;
|
||||
|
||||
for (int ib = 0; ib < QK_K/IQ1S_BLOCK_SIZE; ++ib) {
|
||||
const float * xb = xbl + IQ1S_BLOCK_SIZE*ib;
|
||||
const float * qw = quant_weights + QK_K*ibl + IQ1S_BLOCK_SIZE*ib;
|
||||
for (int i = 0; i < IQ1S_BLOCK_SIZE; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
|
||||
for (int ib = 0; ib < QK_K/block_size; ++ib) {
|
||||
const float * xb = xbl + block_size*ib;
|
||||
const float * qw = quant_weights + QK_K*ibl + block_size*ib;
|
||||
for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
|
||||
float max = fabsf(xb[0]);
|
||||
for (int i = 1; i < IQ1S_BLOCK_SIZE; ++i) max = MAX(max, fabsf(xb[i]));
|
||||
for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
|
||||
if (!max) {
|
||||
scales[ib] = 0;
|
||||
memset(L, 1, IQ1S_BLOCK_SIZE);
|
||||
memset(L, 1, block_size);
|
||||
continue;
|
||||
}
|
||||
// Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
|
||||
|
@ -11581,31 +11771,32 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
|
|||
// in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
|
||||
// Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
|
||||
// for each possible and score for each split.
|
||||
for (int j = 0; j < IQ1S_BLOCK_SIZE; ++j) {
|
||||
for (int j = 0; j < block_size; ++j) {
|
||||
pairs[2*j] = xb[j];
|
||||
idx[2*j] = j;
|
||||
}
|
||||
qsort(pairs, IQ1S_BLOCK_SIZE, 2*sizeof(float), iq1_sort_helper);
|
||||
qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
|
||||
{
|
||||
sumx[0] = sumw[0] = 0;
|
||||
for (int j = 0; j < IQ1S_BLOCK_SIZE; ++j) {
|
||||
for (int j = 0; j < block_size; ++j) {
|
||||
int i = idx[2*j];
|
||||
sumx[j+1] = sumx[j] + weight[i]*xb[i];
|
||||
sumw[j+1] = sumw[j] + weight[i];
|
||||
}
|
||||
}
|
||||
float best_score = 0, scale = max;
|
||||
// TODO: we need two shifts per block for IQ1_M.
|
||||
int besti1 = -1, besti2 = -1, best_shift = 0;
|
||||
for (int i1 = 0; i1 <= IQ1S_BLOCK_SIZE; ++i1) {
|
||||
for (int i2 = i1; i2 <= IQ1S_BLOCK_SIZE; ++i2) {
|
||||
float sumqx = (sumx[i1] - sumx[0])*x_p[0] + (sumx[i2] - sumx[i1])*x_p[1] + (sumx[IQ1S_BLOCK_SIZE] - sumx[i2])*x_p[2];
|
||||
float sumq2 = (sumw[i1] - sumw[0])*x_p[0]*x_p[0] + (sumw[i2] - sumw[i1])*x_p[1]*x_p[1] + (sumw[IQ1S_BLOCK_SIZE] - sumw[i2])*x_p[2]*x_p[2];
|
||||
for (int i1 = 0; i1 <= block_size; ++i1) {
|
||||
for (int i2 = i1; i2 <= block_size; ++i2) {
|
||||
float sumqx = (sumx[i1] - sumx[0])*x_p[0] + (sumx[i2] - sumx[i1])*x_p[1] + (sumx[block_size] - sumx[i2])*x_p[2];
|
||||
float sumq2 = (sumw[i1] - sumw[0])*x_p[0]*x_p[0] + (sumw[i2] - sumw[i1])*x_p[1]*x_p[1] + (sumw[block_size] - sumw[i2])*x_p[2]*x_p[2];
|
||||
if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
|
||||
scale = sumqx/sumq2; best_score = scale*sumqx;
|
||||
besti1 = i1; besti2 = i2; best_shift = 1;
|
||||
}
|
||||
sumqx = (sumx[i1] - sumx[0])*x_m[0] + (sumx[i2] - sumx[i1])*x_m[1] + (sumx[IQ1S_BLOCK_SIZE] - sumx[i2])*x_m[2];
|
||||
sumq2 = (sumw[i1] - sumw[0])*x_m[0]*x_m[0] + (sumw[i2] - sumw[i1])*x_m[1]*x_m[1] + (sumw[IQ1S_BLOCK_SIZE] - sumw[i2])*x_m[2]*x_m[2];
|
||||
sumqx = (sumx[i1] - sumx[0])*x_m[0] + (sumx[i2] - sumx[i1])*x_m[1] + (sumx[block_size] - sumx[i2])*x_m[2];
|
||||
sumq2 = (sumw[i1] - sumw[0])*x_m[0]*x_m[0] + (sumw[i2] - sumw[i1])*x_m[1]*x_m[1] + (sumw[block_size] - sumw[i2])*x_m[2]*x_m[2];
|
||||
if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
|
||||
scale = sumqx/sumq2; best_score = scale*sumqx;
|
||||
besti1 = i1; besti2 = i2; best_shift = -1;
|
||||
|
@ -11615,14 +11806,14 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
|
|||
GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_shift != 0);
|
||||
for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
|
||||
for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
|
||||
for (int j = besti2; j < IQ1S_BLOCK_SIZE; ++j) L[idx[2*j]] = 2;
|
||||
for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
|
||||
if (scale < 0) {
|
||||
for (int j = 0; j < IQ1S_BLOCK_SIZE; ++j) L[j] = 2 - L[j];
|
||||
for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
|
||||
scale = -scale; best_shift = -best_shift;
|
||||
}
|
||||
bool all_on_grid = true;
|
||||
const float * xx = best_shift == 1 ? x_p : x_m;
|
||||
for (int k = 0; k < IQ1S_BLOCK_SIZE/8; ++k) {
|
||||
for (int k = 0; k < block_size/8; ++k) {
|
||||
uint16_t u = 0;
|
||||
for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
|
||||
int grid_index = kmap_q2xs[u];
|
||||
|
@ -11636,7 +11827,7 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
|
|||
}
|
||||
if (!all_on_grid) {
|
||||
float sumqx = 0, sumq2 = 0;
|
||||
for (int k = 0; k < IQ1S_BLOCK_SIZE/8; ++k) {
|
||||
for (int k = 0; k < block_size/8; ++k) {
|
||||
const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
float w = weight[8*k + j];
|
||||
|
@ -11647,12 +11838,20 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
|
|||
}
|
||||
if (sumqx > 0 && sumq2 > 0) scale = sumqx/sumq2;
|
||||
}
|
||||
uint16_t h = 0;
|
||||
for (int k = 0; k < IQ1S_BLOCK_SIZE/8; ++k) {
|
||||
y[ibl].qs[(IQ1S_BLOCK_SIZE/8)*ib + k] = index[k] & 255;
|
||||
h |= (index[k] >> 8) << 3*k;
|
||||
if (type == GGML_TYPE_IQ1_S) {
|
||||
block_iq1_s * y = vy;
|
||||
uint16_t h = 0;
|
||||
for (int k = 0; k < block_size/8; ++k) {
|
||||
y[ibl].qs[(block_size/8)*ib + k] = index[k] & 255;
|
||||
h |= (index[k] >> 8) << 3*k;
|
||||
}
|
||||
y[ibl].qh[ib] = h;
|
||||
} else {
|
||||
block_iq1_m * y = vy;
|
||||
y[ibl].qs[2*ib + 0] = index[0] & 255;
|
||||
y[ibl].qs[2*ib + 1] = index[1] & 255;
|
||||
y[ibl].qh[ib] = (index[0] >> 8) | ((index[1] >> 8) << 4);
|
||||
}
|
||||
y[ibl].qh[ib] = h;
|
||||
GGML_ASSERT(scale >= 0);
|
||||
scales[ib] = scale;
|
||||
shifts[ib] = best_shift;
|
||||
|
@ -11660,28 +11859,74 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
|
|||
}
|
||||
|
||||
if (!max_scale) {
|
||||
memset(y[ibl].qs, 0, QK_K/8);
|
||||
continue;
|
||||
}
|
||||
|
||||
float d = max_scale/15;
|
||||
y[ibl].d = GGML_FP32_TO_FP16(d*1.125f); // 1.085f is another fudge factor. Don't ask me why it is needed.
|
||||
float id = 1/d;
|
||||
for (int ib = 0; ib < QK_K/IQ1S_BLOCK_SIZE; ++ib) {
|
||||
int l = nearest_int(0.5f*(id*scales[ib]-1));
|
||||
l = MAX(0, MIN(7, l));
|
||||
if (shifts[ib] == -1) l |= 8;
|
||||
y[ibl].qh[ib] |= (l << 12);
|
||||
if (type == GGML_TYPE_IQ1_S) {
|
||||
float d = max_scale/15;
|
||||
block_iq1_s * y = vy;
|
||||
y[ibl].d = GGML_FP32_TO_FP16(d*1.125f); // 1.125f is another fudge factor. Don't ask me why it is needed.
|
||||
float id = 1/d;
|
||||
for (int ib = 0; ib < QK_K/block_size; ++ib) {
|
||||
int l = nearest_int(0.5f*(id*scales[ib]-1));
|
||||
l = MAX(0, MIN(7, l));
|
||||
if (shifts[ib] == -1) l |= 8;
|
||||
y[ibl].qh[ib] |= (l << 12);
|
||||
}
|
||||
} else {
|
||||
block_iq1_m * y = vy;
|
||||
float d = max_scale/31;
|
||||
y[ibl].d = GGML_FP32_TO_FP16(d*1.125f); // 1.125f is another fudge factor. Don't ask me why it is needed.
|
||||
float id = 1/d;
|
||||
for (int ib = 0; ib < QK_K/block_size; ib += 2) {
|
||||
int l1 = nearest_int(0.5f*(id*scales[ib+0]-1));
|
||||
l1 = MAX(0, MIN(15, l1));
|
||||
int l2 = nearest_int(0.5f*(id*scales[ib+1]-1));
|
||||
l2 = MAX(0, MIN(15, l2));
|
||||
y[ibl].scales[ib/2] = l1 | (l2 << 4);
|
||||
// TODO: we need two shifts per block for IQ1_M.
|
||||
// For now we use the same shift for both groups of 8 in the block, thus wasting 1 pet per 16 weights.
|
||||
if (shifts[ib+0] == -1) y[ibl].qh[ib+0] |= 0x88;
|
||||
if (shifts[ib+1] == -1) y[ibl].qh[ib+1] |= 0x88;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
size_t quantize_iq1_s(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||
GGML_ASSERT(n_per_row%QK_K == 0);
|
||||
float scales[QK_K/IQ1S_BLOCK_SIZE];
|
||||
float weight[IQ1S_BLOCK_SIZE];
|
||||
int8_t L[IQ1S_BLOCK_SIZE];
|
||||
float sumx[IQ1S_BLOCK_SIZE+1];
|
||||
float sumw[IQ1S_BLOCK_SIZE+1];
|
||||
float pairs[2*IQ1S_BLOCK_SIZE];
|
||||
uint16_t index[IQ1S_BLOCK_SIZE/8];
|
||||
int8_t shifts[QK_K/IQ1S_BLOCK_SIZE];
|
||||
int nblock = n_per_row/QK_K;
|
||||
char * qrow = (char *)dst;
|
||||
for (int row = 0; row < nrow; ++row) {
|
||||
quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights);
|
||||
quantize_row_iq1_impl(GGML_TYPE_IQ1_S, src, qrow, n_per_row, quant_weights, scales, weight, sumx, sumw, pairs, L, index, shifts);
|
||||
src += n_per_row;
|
||||
qrow += nblock*sizeof(block_iq1_s);
|
||||
}
|
||||
return nrow * nblock * sizeof(block_iq1_s);
|
||||
}
|
||||
|
||||
size_t quantize_iq1_m(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||
GGML_ASSERT(n_per_row%QK_K == 0);
|
||||
float scales[QK_K/IQ1M_BLOCK_SIZE];
|
||||
float weight[IQ1M_BLOCK_SIZE];
|
||||
int8_t L[IQ1M_BLOCK_SIZE];
|
||||
float sumx[IQ1M_BLOCK_SIZE+1];
|
||||
float sumw[IQ1M_BLOCK_SIZE+1];
|
||||
float pairs[2*IQ1M_BLOCK_SIZE];
|
||||
uint16_t index[IQ1M_BLOCK_SIZE/8];
|
||||
int8_t shifts[QK_K/IQ1M_BLOCK_SIZE];
|
||||
int nblock = n_per_row/QK_K;
|
||||
char * qrow = (char *)dst;
|
||||
for (int row = 0; row < nrow; ++row) {
|
||||
quantize_row_iq1_impl(GGML_TYPE_IQ1_M, src, qrow, n_per_row, quant_weights, scales, weight, sumx, sumw, pairs, L, index, shifts);
|
||||
src += n_per_row;
|
||||
qrow += nblock*sizeof(block_iq1_s);
|
||||
}
|
||||
|
|
|
@ -72,6 +72,7 @@ void dequantize_row_iq2_xs (const block_iq2_xs * GGML_RESTRICT x, float * GGML_
|
|||
void dequantize_row_iq2_s (const block_iq2_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq3_xxs(const block_iq3_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq1_s (const block_iq1_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq1_m (const block_iq1_m * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq4_nl (const block_iq4_nl * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq4_xs (const block_iq4_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq3_s (const block_iq3_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
|
@ -94,6 +95,7 @@ void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const
|
|||
void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_m_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
@ -104,6 +106,7 @@ size_t quantize_iq2_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT ds
|
|||
size_t quantize_iq2_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
size_t quantize_iq3_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
size_t quantize_iq1_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
size_t quantize_iq1_m (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
size_t quantize_iq4_nl (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
size_t quantize_iq4_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
size_t quantize_iq3_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
|
|
30
ggml.c
30
ggml.c
|
@ -783,7 +783,19 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
|||
.nrows = 1,
|
||||
},
|
||||
[GGML_TYPE_IQ1_S] = {
|
||||
.type_name = "iq1_s",
|
||||
.type_name = "iq1_m",
|
||||
.blck_size = QK_K,
|
||||
.type_size = sizeof(block_iq1_m),
|
||||
.is_quantized = true,
|
||||
.to_float = (ggml_to_float_t) dequantize_row_iq1_m,
|
||||
.from_float = NULL,
|
||||
.from_float_reference = NULL,
|
||||
.vec_dot = ggml_vec_dot_iq1_m_q8_K,
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
.nrows = 1,
|
||||
},
|
||||
[GGML_TYPE_IQ1_M] = {
|
||||
.type_name = "iq1_m",
|
||||
.blck_size = QK_K,
|
||||
.type_size = sizeof(block_iq1_s),
|
||||
.is_quantized = true,
|
||||
|
@ -2539,6 +2551,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
|
|||
case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
|
||||
case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
|
||||
case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
|
||||
case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
|
||||
case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
|
||||
case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
|
||||
case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
|
||||
|
@ -8135,6 +8148,7 @@ static void ggml_compute_forward_add(
|
|||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ1_M:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
|
@ -8417,6 +8431,7 @@ static void ggml_compute_forward_add1(
|
|||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ1_M:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
|
@ -8544,6 +8559,7 @@ static void ggml_compute_forward_acc(
|
|||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ1_M:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
|
@ -11447,6 +11463,7 @@ static void ggml_compute_forward_out_prod(
|
|||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ1_M:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
|
@ -11638,6 +11655,7 @@ static void ggml_compute_forward_set(
|
|||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ1_M:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
|
@ -11861,6 +11879,7 @@ static void ggml_compute_forward_get_rows(
|
|||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ1_M:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
|
@ -12564,6 +12583,7 @@ static void ggml_compute_forward_alibi(
|
|||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ1_M:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
|
@ -12652,6 +12672,7 @@ static void ggml_compute_forward_clamp(
|
|||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ1_M:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
|
@ -20306,7 +20327,8 @@ void ggml_quantize_init(enum ggml_type type) {
|
|||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ2_S:
|
||||
case GGML_TYPE_IQ1_S: iq2xs_init_impl(type); break;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
|
||||
case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
|
||||
case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
|
||||
default: // nothing
|
||||
|
@ -20331,7 +20353,8 @@ bool ggml_quantize_requires_imatrix(enum ggml_type type) {
|
|||
return
|
||||
type == GGML_TYPE_IQ2_XXS ||
|
||||
type == GGML_TYPE_IQ2_XS ||
|
||||
type == GGML_TYPE_IQ1_S;
|
||||
type == GGML_TYPE_IQ1_S ||
|
||||
type == GGML_TYPE_IQ1_M;
|
||||
}
|
||||
|
||||
size_t ggml_quantize_chunk(
|
||||
|
@ -20375,6 +20398,7 @@ size_t ggml_quantize_chunk(
|
|||
case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
#if QK_K == 64
|
||||
case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
|
|
12
ggml.h
12
ggml.h
|
@ -364,11 +364,12 @@ extern "C" {
|
|||
GGML_TYPE_IQ3_S = 21,
|
||||
GGML_TYPE_IQ2_S = 22,
|
||||
GGML_TYPE_IQ4_XS = 23,
|
||||
GGML_TYPE_I8 = 24,
|
||||
GGML_TYPE_I16 = 25,
|
||||
GGML_TYPE_I32 = 26,
|
||||
GGML_TYPE_I64 = 27,
|
||||
GGML_TYPE_F64 = 28,
|
||||
GGML_TYPE_IQ1_M = 24,
|
||||
GGML_TYPE_I8 = 25,
|
||||
GGML_TYPE_I16 = 26,
|
||||
GGML_TYPE_I32 = 27,
|
||||
GGML_TYPE_I64 = 28,
|
||||
GGML_TYPE_F64 = 29,
|
||||
GGML_TYPE_COUNT,
|
||||
};
|
||||
|
||||
|
@ -408,6 +409,7 @@ extern "C" {
|
|||
GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
|
||||
};
|
||||
|
||||
// available tensor operations:
|
||||
|
|
18
llama.cpp
18
llama.cpp
|
@ -3018,6 +3018,7 @@ struct llama_model_loader {
|
|||
case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
|
||||
case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
|
||||
case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
|
||||
case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
|
||||
case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
|
||||
case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
|
||||
case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
|
||||
|
@ -3413,6 +3414,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
|
|||
case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.8125 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
|
||||
|
@ -12447,7 +12449,8 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
|||
new_type = GGML_TYPE_Q8_0;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
|
||||
ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
|
||||
ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
|
||||
ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
else if (new_type != GGML_TYPE_Q8_0) {
|
||||
|
@ -12458,7 +12461,8 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
|||
if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
|
||||
new_type = qs.params->token_embedding_type;
|
||||
} else {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
|
||||
ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
|
||||
new_type = GGML_TYPE_Q2_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
|
||||
|
@ -12469,7 +12473,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
|||
}
|
||||
}
|
||||
} else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
|
||||
ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
|
||||
ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
|
||||
if (name.find("attn_v.weight") != std::string::npos) {
|
||||
if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
|
||||
else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
|
||||
|
@ -12488,7 +12492,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
|||
if (qs.model.hparams.n_expert == 8) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
} else {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) new_type = GGML_TYPE_IQ2_XXS;
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
|
||||
}
|
||||
}
|
||||
|
@ -12655,7 +12659,8 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
|||
if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
|
||||
new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
|
||||
new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
|
||||
new_type == GGML_TYPE_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || new_type == GGML_TYPE_IQ3_S) {
|
||||
new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
|
||||
new_type == GGML_TYPE_IQ1_M) {
|
||||
int nx = tensor->ne[0];
|
||||
int ny = tensor->ne[1];
|
||||
if (nx % QK_K != 0) {
|
||||
|
@ -12673,6 +12678,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
|||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ1_M:
|
||||
case GGML_TYPE_Q2_K:
|
||||
case GGML_TYPE_Q3_K:
|
||||
case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
|
||||
|
@ -12754,6 +12760,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||
case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
|
||||
case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
|
||||
case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
|
||||
case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
|
||||
case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
|
||||
|
@ -12944,6 +12951,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||
new_type == GGML_TYPE_IQ2_XS ||
|
||||
new_type == GGML_TYPE_IQ2_S ||
|
||||
new_type == GGML_TYPE_IQ1_S ||
|
||||
new_type == GGML_TYPE_IQ1_M ||
|
||||
(new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
|
||||
LLAMA_LOG_ERROR("\n\n============================================================\n");
|
||||
LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
|
||||
|
|
1
llama.h
1
llama.h
|
@ -117,6 +117,7 @@ extern "C" {
|
|||
LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
|
||||
|
||||
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
|
||||
};
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue