Add basic chipStar support

This commit is contained in:
Quinten Kock 2023-12-16 17:40:56 +01:00
parent 8a5be3bd58
commit 2a86c00ffa
2 changed files with 184 additions and 160 deletions

View file

@ -460,6 +460,27 @@ ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $< $(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
endif # LLAMA_HIPBLAS endif # LLAMA_HIPBLAS
ifdef LLAMA_CHIPSTAR
CUSPVC ?= cuspvc
LLAMA_CUDA_DMMV_X ?= 32
LLAMA_CUDA_MMV_Y ?= 1
LLAMA_CUDA_KQUANTS_ITER ?= 2
MK_CPPFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS -DGGML_USE_CHIPSTAR
MK_CPPFLAGS += -I/opt/H4IBLAS/include
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
# MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas
MK_LDFLAGS += -L/opt/chipstar/lib -lCHIP -L/opt/H4IBLAS/lib -lhipblas -L/opt/H4IMKL/lib -lMKLShim
# HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS))
HIPFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
HIPFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_MMV_Y)
HIPFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER)
HIPFLAGS += -DGGML_CUDA_FORCE_DMMV
OBJS += ggml-cuda.o
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
$(CUSPVC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
endif # LLAMA_HIPBLAS
ifdef LLAMA_METAL ifdef LLAMA_METAL
MK_CPPFLAGS += -DGGML_USE_METAL MK_CPPFLAGS += -DGGML_USE_METAL
MK_LDFLAGS += -framework Foundation -framework Metal -framework MetalKit MK_LDFLAGS += -framework Foundation -framework Metal -framework MetalKit

View file

@ -13,7 +13,7 @@
#if defined(GGML_USE_HIPBLAS) #if defined(GGML_USE_HIPBLAS)
#include <hip/hip_runtime.h> #include <hip/hip_runtime.h>
#include <hipblas/hipblas.h> #include <hipblas.h>
#include <hip/hip_fp16.h> #include <hip/hip_fp16.h>
#ifdef __HIP_PLATFORM_AMD__ #ifdef __HIP_PLATFORM_AMD__
// for rocblas_initialize() // for rocblas_initialize()
@ -106,7 +106,7 @@
// TODO: improve this to be correct for more hardware // TODO: improve this to be correct for more hardware
// for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores // for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores
// probably other such cases, and not sure what happens on AMD hardware // probably other such cases, and not sure what happens on AMD hardware
#if !defined(GGML_CUDA_FORCE_MMQ) #if !defined(GGML_CUDA_FORCE_MMQ) && !defined(GGML_USE_CHIPSTAR)
#define CUDA_USE_TENSOR_CORES #define CUDA_USE_TENSOR_CORES
#endif #endif
@ -5499,23 +5499,23 @@ static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t
static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) { static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
GGML_ASSERT(ncols % WARP_SIZE == 0); GGML_ASSERT(ncols % WARP_SIZE == 0);
if (ncols < 1024) { if (ncols < 256) {
const dim3 block_dims(WARP_SIZE, 1, 1); const dim3 block_dims(WARP_SIZE, 1, 1);
norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps); norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
} else { } else {
const dim3 block_dims(1024, 1, 1); const dim3 block_dims(256, 1, 1);
norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps); norm_f32<256><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
} }
} }
static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) { static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) {
static const float eps = 1e-6f; static const float eps = 1e-6f;
if (group_size < 1024) { if (group_size < 256) {
const dim3 block_dims(WARP_SIZE, 1, 1); const dim3 block_dims(WARP_SIZE, 1, 1);
group_norm_f32<WARP_SIZE><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps); group_norm_f32<WARP_SIZE><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
} else { } else {
const dim3 block_dims(1024, 1, 1); const dim3 block_dims(256, 1, 1);
group_norm_f32<1024><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps); group_norm_f32<256><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
} }
} }
@ -5542,12 +5542,12 @@ static void pad_f32_cuda(const float * x, float * dst,
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) { static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
GGML_ASSERT(ncols % WARP_SIZE == 0); GGML_ASSERT(ncols % WARP_SIZE == 0);
if (ncols < 1024) { if (ncols < 256) {
const dim3 block_dims(WARP_SIZE, 1, 1); const dim3 block_dims(WARP_SIZE, 1, 1);
rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps); rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
} else { } else {
const dim3 block_dims(1024, 1, 1); const dim3 block_dims(256, 1, 1);
rms_norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps); rms_norm_f32<256><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
} }
} }
@ -7376,6 +7376,7 @@ inline void ggml_cuda_op_mul_mat_cublas(
const int compute_capability = g_compute_capabilities[id]; const int compute_capability = g_compute_capabilities[id];
#ifndef GGML_USE_CHIPSTAR
if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1]) { if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1]) {
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32 // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
half * src0_as_f16 = nullptr; half * src0_as_f16 = nullptr;
@ -7428,7 +7429,9 @@ inline void ggml_cuda_op_mul_mat_cublas(
ggml_cuda_pool_free(src1_as_f16, src1_as); ggml_cuda_pool_free(src1_as_f16, src1_as);
} }
} }
else { else
#endif
{
float * src0_ddq_as_f32 = nullptr; float * src0_ddq_as_f32 = nullptr;
size_t src0_as = 0; size_t src0_as = 0;
@ -8323,153 +8326,153 @@ static __global__ void k_compute_batched_ptrs(
ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst_f16 + i12* nb2/2 + i13* nb3/2; ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst_f16 + i12* nb2/2 + i13* nb3/2;
} }
static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { // static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(!ggml_is_transposed(src0)); // GGML_ASSERT(!ggml_is_transposed(src0));
GGML_ASSERT(!ggml_is_transposed(src1)); // GGML_ASSERT(!ggml_is_transposed(src1));
//
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT); // GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(src0->type == GGML_TYPE_F16); // GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32); // GGML_ASSERT(src1->type == GGML_TYPE_F32);
//
const int64_t ne00 = src0->ne[0]; GGML_UNUSED(ne00); // const int64_t ne00 = src0->ne[0]; GGML_UNUSED(ne00);
const int64_t ne01 = src0->ne[1]; // const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2]; // const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3]; // const int64_t ne03 = src0->ne[3];
//
const int64_t nb01 = src0->nb[1]; // const int64_t nb01 = src0->nb[1];
const int64_t nb02 = src0->nb[2]; GGML_UNUSED(nb02); // const int64_t nb02 = src0->nb[2]; GGML_UNUSED(nb02);
const int64_t nb03 = src0->nb[3]; GGML_UNUSED(nb03); // const int64_t nb03 = src0->nb[3]; GGML_UNUSED(nb03);
//
const int64_t ne10 = src1->ne[0]; // const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1]; // const int64_t ne11 = src1->ne[1];
const int64_t ne12 = src1->ne[2]; // const int64_t ne12 = src1->ne[2];
const int64_t ne13 = src1->ne[3]; // const int64_t ne13 = src1->ne[3];
//
const int64_t nb11 = src1->nb[1]; // const int64_t nb11 = src1->nb[1];
const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12); // const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13); // const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
//
const int64_t ne1 = ggml_nelements(src1); // const int64_t ne1 = ggml_nelements(src1);
const int64_t ne = ggml_nelements(dst); // const int64_t ne = ggml_nelements(dst);
//
CUDA_CHECK(ggml_cuda_set_device(g_main_device)); // CUDA_CHECK(ggml_cuda_set_device(g_main_device));
cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; // cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
//
CUBLAS_CHECK(cublasSetStream(g_cublas_handles[g_main_device], main_stream)); // CUBLAS_CHECK(cublasSetStream(g_cublas_handles[g_main_device], main_stream));
//
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; // ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
void * src0_ddq = src0_extra->data_device[g_main_device]; // void * src0_ddq = src0_extra->data_device[g_main_device];
half * src0_as_f16 = (half *) src0_ddq; // half * src0_as_f16 = (half *) src0_ddq;
//
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; // ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
float * src1_ddf = (float *) src1_extra->data_device[g_main_device]; // float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
//
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; // ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
float * dst_ddf = (float *) dst_extra->data_device[g_main_device]; // float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
//
// convert src1 to fp16 // // convert src1 to fp16
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type); // const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
GGML_ASSERT(to_fp16_cuda != nullptr); // GGML_ASSERT(to_fp16_cuda != nullptr);
//
size_t src1_as = 0; // size_t src1_as = 0;
half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as); // half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as);
to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream); // to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream);
//
size_t dst_as = 0; // size_t dst_as = 0;
half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as); // half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as);
//
GGML_ASSERT(ne12 % ne02 == 0); // GGML_ASSERT(ne12 % ne02 == 0);
GGML_ASSERT(ne13 % ne03 == 0); // GGML_ASSERT(ne13 % ne03 == 0);
//
// broadcast factors // // broadcast factors
const int64_t r2 = ne12/ne02; // const int64_t r2 = ne12/ne02;
const int64_t r3 = ne13/ne03; // const int64_t r3 = ne13/ne03;
//
const half alpha_f16 = 1.0f; // const half alpha_f16 = 1.0f;
const half beta_f16 = 0.0f; // const half beta_f16 = 0.0f;
//
#if 0 // #if 0
// use cublasGemmEx // // use cublasGemmEx
{ // {
for (int i13 = 0; i13 < ne13; ++i13) { // for (int i13 = 0; i13 < ne13; ++i13) {
for (int i12 = 0; i12 < ne12; ++i12) { // for (int i12 = 0; i12 < ne12; ++i12) {
int i03 = i13 / r3; // int i03 = i13 / r3;
int i02 = i12 / r2; // int i02 = i12 / r2;
//
CUBLAS_CHECK( // CUBLAS_CHECK(
cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N, // cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10, // ne01, ne11, ne10,
&alpha_f16, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half), // &alpha_f16, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half),
(const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float), // (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float),
&beta_f16, ( char *) dst_f16 + i12* dst->nb[2]/2 + i13* dst->nb[3]/2, CUDA_R_16F, ne01, // &beta_f16, ( char *) dst_f16 + i12* dst->nb[2]/2 + i13* dst->nb[3]/2, CUDA_R_16F, ne01,
CUBLAS_COMPUTE_16F, // CUBLAS_COMPUTE_16F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP)); // CUBLAS_GEMM_DEFAULT_TENSOR_OP));
} // }
} // }
} // }
#else // #else
if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) { // if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
// there is no broadcast and src0, src1 are contiguous across dims 2, 3 // // there is no broadcast and src0, src1 are contiguous across dims 2, 3
// use cublasGemmStridedBatchedEx // // use cublasGemmStridedBatchedEx
CUBLAS_CHECK( // CUBLAS_CHECK(
cublasGemmStridedBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N, // cublasGemmStridedBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10, // ne01, ne11, ne10,
&alpha_f16, (const char *) src0_as_f16, CUDA_R_16F, nb01/sizeof(half), src0->nb[2]/sizeof(half), // strideA // &alpha_f16, (const char *) src0_as_f16, CUDA_R_16F, nb01/sizeof(half), src0->nb[2]/sizeof(half), // strideA
(const char *) src1_as_f16, CUDA_R_16F, nb11/sizeof(float), src1->nb[2]/sizeof(float), // strideB // (const char *) src1_as_f16, CUDA_R_16F, nb11/sizeof(float), src1->nb[2]/sizeof(float), // strideB
&beta_f16, ( char *) dst_f16, CUDA_R_16F, ne01, dst->nb[2]/sizeof(float), // strideC // &beta_f16, ( char *) dst_f16, CUDA_R_16F, ne01, dst->nb[2]/sizeof(float), // strideC
ne12*ne13, // ne12*ne13,
CUBLAS_COMPUTE_16F, // CUBLAS_COMPUTE_16F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP)); // CUBLAS_GEMM_DEFAULT_TENSOR_OP));
} else { // } else {
// use cublasGemmBatchedEx // // use cublasGemmBatchedEx
const int ne23 = ne12*ne13; // const int ne23 = ne12*ne13;
//
const void ** ptrs_src = nullptr; // const void ** ptrs_src = nullptr;
void ** ptrs_dst = nullptr; // void ** ptrs_dst = nullptr;
//
size_t ptrs_src_s = 0; // size_t ptrs_src_s = 0;
size_t ptrs_dst_s = 0; // size_t ptrs_dst_s = 0;
//
ptrs_src = (const void **) ggml_cuda_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s); // ptrs_src = (const void **) ggml_cuda_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s);
ptrs_dst = ( void **) ggml_cuda_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s); // ptrs_dst = ( void **) ggml_cuda_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s);
//
dim3 block_dims(ne13, ne12); // dim3 block_dims(ne13, ne12);
k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>( // k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
src0_as_f16, src1_as_f16, dst_f16, // src0_as_f16, src1_as_f16, dst_f16,
ptrs_src, ptrs_dst, // ptrs_src, ptrs_dst,
ne12, ne13, // ne12, ne13,
ne23, // ne23,
nb02, nb03, // nb02, nb03,
nb12, nb13, // nb12, nb13,
dst->nb[2], dst->nb[3], // dst->nb[2], dst->nb[3],
r2, r3); // r2, r3);
CUDA_CHECK(cudaGetLastError()); // CUDA_CHECK(cudaGetLastError());
//
CUBLAS_CHECK( // CUBLAS_CHECK(
cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N, // cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10, // ne01, ne11, ne10,
&alpha_f16, (const void **) (ptrs_src + 0*ne23), CUDA_R_16F, nb01/sizeof(half), // &alpha_f16, (const void **) (ptrs_src + 0*ne23), CUDA_R_16F, nb01/sizeof(half),
(const void **) (ptrs_src + 1*ne23), CUDA_R_16F, nb11/sizeof(float), // (const void **) (ptrs_src + 1*ne23), CUDA_R_16F, nb11/sizeof(float),
&beta_f16, ( void **) (ptrs_dst + 0*ne23), CUDA_R_16F, ne01, // &beta_f16, ( void **) (ptrs_dst + 0*ne23), CUDA_R_16F, ne01,
ne23, // ne23,
CUBLAS_COMPUTE_16F, // CUBLAS_COMPUTE_16F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP)); // CUBLAS_GEMM_DEFAULT_TENSOR_OP));
//
if (ptrs_src_s != 0) { // if (ptrs_src_s != 0) {
ggml_cuda_pool_free(ptrs_src, ptrs_src_s); // ggml_cuda_pool_free(ptrs_src, ptrs_src_s);
} // }
if (ptrs_dst_s != 0) { // if (ptrs_dst_s != 0) {
ggml_cuda_pool_free(ptrs_dst, ptrs_dst_s); // ggml_cuda_pool_free(ptrs_dst, ptrs_dst_s);
} // }
} // }
#endif // #endif
//
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); // const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream); // to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream);
//
ggml_cuda_pool_free(src1_as_f16, src1_as); // ggml_cuda_pool_free(src1_as_f16, src1_as);
ggml_cuda_pool_free(dst_f16, dst_as); // ggml_cuda_pool_free(dst_f16, dst_as);
} // }
static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool all_on_device = const bool all_on_device =
@ -8508,7 +8511,7 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
ggml_cuda_mul_mat_vec_nc(src0, src1, dst); ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
} else if (!split && all_on_device && use_tensor_cores && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) { } else if (!split && all_on_device && use_tensor_cores && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
// KQ + KQV multi-batch // KQ + KQV multi-batch
ggml_cuda_mul_mat_mat_batched_cublas(src0, src1, dst); // ggml_cuda_mul_mat_mat_batched_cublas(src0, src1, dst);
} else if (src0->type == GGML_TYPE_F32) { } else if (src0->type == GGML_TYPE_F32) {
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false); ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
} else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) { } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {