cuda : add batched cuBLAS GEMM for faster attention (#3749)

* cmake : add helper for faster CUDA builds

* batched : add NGL arg

* ggml : skip nops in compute_forward

* cuda : minor indentation

* cuda : batched cuBLAS GEMMs for src0 F16 and src1 F32 (attention ops)

* Apply suggestions from code review

These changes plus:

```c++
#define cublasGemmBatchedEx hipblasGemmBatchedEx
```

are needed to compile with ROCM. I haven't done performance testing, but it seems to work.

I couldn't figure out how to propose a change for lines outside what the pull changed, also this is the first time trying to create a multi-part review so please forgive me if I mess something up.

* cuda : add ROCm / hipBLAS cublasGemmBatchedEx define

* cuda : add cublasGemmStridedBatchedEx for non-broadcasted cases

* cuda : reduce mallocs in cublasGemmBatchedEx branch

* cuda : add TODO for calling cublas from kernel + using mem pool

---------

Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
This commit is contained in:
Georgi Gerganov 2023-10-24 16:48:37 +03:00 committed by GitHub
parent daab3d7f45
commit 2b4ea35e56
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 193 additions and 13 deletions

View file

@ -11,7 +11,7 @@ int main(int argc, char ** argv) {
gpt_params params;
if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL] [LEN]\n" , argv[0]);
printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL] [LEN] [NGL]\n" , argv[0]);
return 1 ;
}
@ -21,6 +21,9 @@ int main(int argc, char ** argv) {
// total length of the sequences including the prompt
int n_len = 32;
// number of layers to offload to the GPU
int n_gpu_layers = 0;
if (argc >= 2) {
params.model = argv[1];
}
@ -37,6 +40,10 @@ int main(int argc, char ** argv) {
n_len = std::atoi(argv[4]);
}
if (argc >= 6) {
n_gpu_layers = std::atoi(argv[5]);
}
if (params.prompt.empty()) {
params.prompt = "Hello my name is";
}
@ -49,7 +56,7 @@ int main(int argc, char ** argv) {
llama_model_params model_params = llama_model_default_params();
// model_params.n_gpu_layers = 99; // offload all layers to the GPU
model_params.n_gpu_layers = n_gpu_layers;
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);