Merge branch 'master' into gg/flash-attn
This commit is contained in:
commit
2c41180e88
110 changed files with 11660 additions and 6357 deletions
84
ggml-metal.m
84
ggml-metal.m
|
@ -37,11 +37,15 @@ enum ggml_metal_kernel_type {
|
|||
GGML_METAL_KERNEL_TYPE_DIV_ROW,
|
||||
GGML_METAL_KERNEL_TYPE_SCALE,
|
||||
GGML_METAL_KERNEL_TYPE_SCALE_4,
|
||||
GGML_METAL_KERNEL_TYPE_CLAMP,
|
||||
GGML_METAL_KERNEL_TYPE_TANH,
|
||||
GGML_METAL_KERNEL_TYPE_RELU,
|
||||
GGML_METAL_KERNEL_TYPE_GELU,
|
||||
GGML_METAL_KERNEL_TYPE_GELU_4,
|
||||
GGML_METAL_KERNEL_TYPE_GELU_QUICK,
|
||||
GGML_METAL_KERNEL_TYPE_GELU_QUICK_4,
|
||||
GGML_METAL_KERNEL_TYPE_SILU,
|
||||
GGML_METAL_KERNEL_TYPE_SILU_4,
|
||||
GGML_METAL_KERNEL_TYPE_SOFT_MAX,
|
||||
GGML_METAL_KERNEL_TYPE_SOFT_MAX_4,
|
||||
GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF,
|
||||
|
@ -477,11 +481,15 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW, div_row, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE, scale, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE_4, scale_4, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CLAMP, clamp, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4, gelu_4, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, gelu_quick_4, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU_4, silu_4, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX, soft_max, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_4, soft_max_4, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, diag_mask_inf, true);
|
||||
|
@ -728,6 +736,7 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
|
|||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
case GGML_OP_SCALE:
|
||||
case GGML_OP_CLAMP:
|
||||
case GGML_OP_SQR:
|
||||
case GGML_OP_SUM_ROWS:
|
||||
return true;
|
||||
|
@ -1170,8 +1179,30 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_CLAMP:
|
||||
{
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CLAMP].pipeline;
|
||||
|
||||
float min;
|
||||
float max;
|
||||
memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
|
||||
memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&min length:sizeof(min) atIndex:2];
|
||||
[encoder setBytes:&max length:sizeof(max) atIndex:3];
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_UNARY:
|
||||
switch (ggml_get_unary_op(gf->nodes[i])) {
|
||||
// we are not taking into account the strides, so for now require contiguous tensors
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
case GGML_UNARY_OP_TANH:
|
||||
{
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TANH].pipeline;
|
||||
|
@ -1198,42 +1229,60 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
} break;
|
||||
case GGML_UNARY_OP_GELU:
|
||||
{
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU].pipeline;
|
||||
int64_t n = ggml_nelements(dst);
|
||||
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
if (n % 4 == 0) {
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_4].pipeline;
|
||||
n /= 4;
|
||||
} else {
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU].pipeline;
|
||||
}
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
GGML_ASSERT(n % 4 == 0);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
{
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK].pipeline;
|
||||
int64_t n = ggml_nelements(dst);
|
||||
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
if (n % 4 == 0) {
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK_4].pipeline;
|
||||
n /= 4;
|
||||
} else {
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK].pipeline;
|
||||
}
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
GGML_ASSERT(n % 4 == 0);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
case GGML_UNARY_OP_SILU:
|
||||
{
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU].pipeline;
|
||||
int64_t n = ggml_nelements(dst);
|
||||
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
if (n % 4 == 0) {
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU_4].pipeline;
|
||||
n /= 4;
|
||||
} else {
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU].pipeline;
|
||||
}
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
GGML_ASSERT(n % 4 == 0);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
|
@ -1944,7 +1993,12 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
#if QK_K == 64
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32].pipeline;
|
||||
#else
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32].pipeline;
|
||||
#endif
|
||||
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue