Merge branch 'ggerganov:master' into master
This commit is contained in:
commit
2c96bd2466
174 changed files with 6984 additions and 5254 deletions
161
.clang-format
Normal file
161
.clang-format
Normal file
|
@ -0,0 +1,161 @@
|
|||
---
|
||||
Language: Cpp
|
||||
AlignAfterOpenBracket: Align
|
||||
AlignArrayOfStructures: Left
|
||||
AlignConsecutiveAssignments: AcrossComments
|
||||
AlignConsecutiveBitFields: AcrossComments
|
||||
AlignConsecutiveDeclarations: AcrossComments
|
||||
AlignConsecutiveMacros: AcrossComments
|
||||
# AlignConsecutiveShortCaseStatements: AcrossComments
|
||||
AlignEscapedNewlines: Left # LeftWithLastLine
|
||||
AlignOperands: Align
|
||||
AlignTrailingComments:
|
||||
Kind: Always
|
||||
OverEmptyLines: 1
|
||||
AllowAllArgumentsOnNextLine: true
|
||||
AllowAllParametersOfDeclarationOnNextLine: false
|
||||
# AllowBreakBeforeNoexceptSpecifier: OnlyWithParen
|
||||
AllowShortBlocksOnASingleLine: Never
|
||||
AllowShortCaseLabelsOnASingleLine: false
|
||||
AllowShortFunctionsOnASingleLine: Inline
|
||||
AllowShortIfStatementsOnASingleLine: Never
|
||||
AllowShortLambdasOnASingleLine: Inline
|
||||
AllowShortLoopsOnASingleLine: false
|
||||
AlwaysBreakBeforeMultilineStrings: true
|
||||
BinPackArguments: true
|
||||
BinPackParameters: true # OnePerLine
|
||||
BitFieldColonSpacing: Both
|
||||
BreakBeforeBraces: Custom # Attach
|
||||
BraceWrapping:
|
||||
AfterCaseLabel: true
|
||||
AfterClass: false
|
||||
AfterControlStatement: false
|
||||
AfterEnum: false
|
||||
AfterFunction: false
|
||||
AfterNamespace: false
|
||||
AfterObjCDeclaration: false
|
||||
AfterStruct: false
|
||||
AfterUnion: false
|
||||
AfterExternBlock: false
|
||||
BeforeCatch: false
|
||||
BeforeElse: false
|
||||
BeforeLambdaBody: false
|
||||
BeforeWhile: false
|
||||
IndentBraces: false
|
||||
SplitEmptyFunction: false
|
||||
SplitEmptyRecord: false
|
||||
SplitEmptyNamespace: false
|
||||
# BreakAdjacentStringLiterals: true
|
||||
BreakAfterAttributes: Never
|
||||
BreakBeforeBinaryOperators: None
|
||||
BreakBeforeInlineASMColon: OnlyMultiline
|
||||
BreakBeforeTernaryOperators: false
|
||||
# BreakBinaryOperations: Never
|
||||
BreakConstructorInitializers: AfterColon
|
||||
# BreakFunctionDefinitionParameters: false
|
||||
BreakInheritanceList: AfterComma
|
||||
BreakStringLiterals: true
|
||||
# BreakTemplateDeclarations: Yes
|
||||
ColumnLimit: 120
|
||||
CommentPragmas: '^ IWYU pragma:'
|
||||
CompactNamespaces: false
|
||||
ConstructorInitializerIndentWidth: 4
|
||||
ContinuationIndentWidth: 4
|
||||
Cpp11BracedListStyle: false
|
||||
DerivePointerAlignment: false
|
||||
DisableFormat: false
|
||||
EmptyLineBeforeAccessModifier: Leave
|
||||
EmptyLineAfterAccessModifier: Never
|
||||
ExperimentalAutoDetectBinPacking: false
|
||||
FixNamespaceComments: true
|
||||
IncludeBlocks: Regroup
|
||||
IncludeCategories:
|
||||
- Regex: '^<.*\.h>'
|
||||
Priority: 1
|
||||
SortPriority: 0
|
||||
- Regex: '^<.*'
|
||||
Priority: 2
|
||||
SortPriority: 0
|
||||
- Regex: '.*'
|
||||
Priority: 3
|
||||
SortPriority: 0
|
||||
IncludeIsMainRegex: '([-_](test|unittest))?$'
|
||||
IncludeIsMainSourceRegex: ''
|
||||
IndentAccessModifiers: false
|
||||
IndentCaseBlocks: true
|
||||
IndentCaseLabels: true
|
||||
IndentExternBlock: NoIndent
|
||||
IndentGotoLabels: false
|
||||
IndentPPDirectives: AfterHash
|
||||
IndentWidth: 4
|
||||
IndentWrappedFunctionNames: false
|
||||
InsertBraces: true # NOTE: may lead to incorrect formatting
|
||||
InsertNewlineAtEOF: true
|
||||
JavaScriptQuotes: Leave
|
||||
JavaScriptWrapImports: true
|
||||
KeepEmptyLinesAtTheStartOfBlocks: false
|
||||
LambdaBodyIndentation: Signature
|
||||
LineEnding: LF
|
||||
MacroBlockBegin: ''
|
||||
MacroBlockEnd: ''
|
||||
MaxEmptyLinesToKeep: 1
|
||||
NamespaceIndentation: None
|
||||
ObjCBinPackProtocolList: Auto
|
||||
ObjCBlockIndentWidth: 4
|
||||
ObjCSpaceAfterProperty: true
|
||||
ObjCSpaceBeforeProtocolList: true
|
||||
PPIndentWidth: -1
|
||||
PackConstructorInitializers: CurrentLine
|
||||
PenaltyBreakAssignment: 2
|
||||
PenaltyBreakBeforeFirstCallParameter: 1
|
||||
PenaltyBreakComment: 300
|
||||
PenaltyBreakFirstLessLess: 120
|
||||
PenaltyBreakString: 1000
|
||||
PenaltyBreakTemplateDeclaration: 10
|
||||
PenaltyExcessCharacter: 1000000
|
||||
PenaltyReturnTypeOnItsOwnLine: 200
|
||||
PointerAlignment: Middle
|
||||
QualifierAlignment: Left
|
||||
#QualifierOrder: ['static', 'inline', 'friend', 'constexpr', 'const', 'volatile', 'type', 'restrict']
|
||||
RawStringFormats:
|
||||
- Language: Cpp
|
||||
Delimiters:
|
||||
- cc
|
||||
- CC
|
||||
- cpp
|
||||
- Cpp
|
||||
- CPP
|
||||
- 'c++'
|
||||
- 'C++'
|
||||
CanonicalDelimiter: ''
|
||||
ReferenceAlignment: Middle
|
||||
ReflowComments: false # IndentOnly
|
||||
SeparateDefinitionBlocks: Always
|
||||
SortIncludes: CaseInsensitive
|
||||
SortUsingDeclarations: LexicographicNumeric
|
||||
SpaceAfterCStyleCast: true
|
||||
SpaceAfterLogicalNot: false
|
||||
SpaceAfterTemplateKeyword: true
|
||||
SpaceBeforeAssignmentOperators: true
|
||||
SpaceBeforeCpp11BracedList: false
|
||||
SpaceBeforeCtorInitializerColon: true
|
||||
SpaceBeforeInheritanceColon: true
|
||||
SpaceBeforeParens: ControlStatements
|
||||
SpaceBeforeRangeBasedForLoopColon: true
|
||||
SpaceInEmptyBlock: false
|
||||
SpaceInEmptyParentheses: false
|
||||
SpacesBeforeTrailingComments: 2
|
||||
SpacesInAngles: Never
|
||||
SpacesInContainerLiterals: true
|
||||
SpacesInLineCommentPrefix:
|
||||
Minimum: 1
|
||||
Maximum: -1
|
||||
SpacesInParentheses: false
|
||||
SpacesInSquareBrackets: false
|
||||
SpaceBeforeSquareBrackets: false
|
||||
Standard: c++17
|
||||
TabWidth: 4
|
||||
UseTab: Never
|
||||
WhitespaceSensitiveMacros: ['STRINGIZE']
|
||||
...
|
||||
|
|
@ -6,6 +6,9 @@ ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_V
|
|||
|
||||
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
|
||||
|
||||
# MUSA architecture to build for (defaults to all supported archs)
|
||||
ARG MUSA_DOCKER_ARCH=default
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential cmake python3 python3-pip git libcurl4-openssl-dev libgomp1
|
||||
|
||||
|
@ -19,7 +22,11 @@ WORKDIR /app
|
|||
|
||||
COPY . .
|
||||
|
||||
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
# Use the default MUSA archs if not specified
|
||||
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release -j$(nproc) && \
|
||||
cp build/bin/* .
|
||||
|
||||
|
|
|
@ -8,6 +8,9 @@ ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU
|
|||
|
||||
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
|
||||
|
||||
# MUSA architecture to build for (defaults to all supported archs)
|
||||
ARG MUSA_DOCKER_ARCH=default
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git cmake
|
||||
|
||||
|
@ -15,7 +18,11 @@ WORKDIR /app
|
|||
|
||||
COPY . .
|
||||
|
||||
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
# Use the default MUSA archs if not specified
|
||||
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release --target llama-cli -j$(nproc) && \
|
||||
mkdir -p /app/lib && \
|
||||
find build -name "*.so" -exec cp {} /app/lib \;
|
||||
|
|
|
@ -8,6 +8,9 @@ ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU
|
|||
|
||||
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
|
||||
|
||||
# MUSA architecture to build for (defaults to all supported archs)
|
||||
ARG MUSA_DOCKER_ARCH=default
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git cmake libcurl4-openssl-dev
|
||||
|
||||
|
@ -15,7 +18,11 @@ WORKDIR /app
|
|||
|
||||
COPY . .
|
||||
|
||||
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
# Use the default MUSA archs if not specified
|
||||
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release --target llama-server -j$(nproc) && \
|
||||
mkdir -p /app/lib && \
|
||||
find build -name "*.so" -exec cp {} /app/lib \;
|
||||
|
|
|
@ -34,7 +34,7 @@ let
|
|||
|
||||
# server tests
|
||||
openai
|
||||
behave
|
||||
pytest
|
||||
prometheus-client
|
||||
];
|
||||
in
|
||||
|
|
50
.github/ISSUE_TEMPLATE/01-bug-low.yml
vendored
50
.github/ISSUE_TEMPLATE/01-bug-low.yml
vendored
|
@ -1,50 +0,0 @@
|
|||
name: Low Severity Bugs
|
||||
description: Used to report low severity bugs in llama.cpp (e.g. cosmetic issues, non critical UI glitches)
|
||||
title: "Bug: "
|
||||
labels: ["bug-unconfirmed", "low severity"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
Please include information about your system, the steps to reproduce the bug,
|
||||
and the version of llama.cpp that you are using.
|
||||
If possible, please provide a minimal code example that reproduces the bug.
|
||||
- type: textarea
|
||||
id: what-happened
|
||||
attributes:
|
||||
label: What happened?
|
||||
description: Also tell us, what did you expect to happen?
|
||||
placeholder: Tell us what you see!
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: version
|
||||
attributes:
|
||||
label: Name and Version
|
||||
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
|
||||
placeholder: |
|
||||
$./llama-cli --version
|
||||
version: 2999 (42b4109e)
|
||||
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: What operating system are you seeing the problem on?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
77
.github/ISSUE_TEMPLATE/010-bug-compilation.yml
vendored
Normal file
77
.github/ISSUE_TEMPLATE/010-bug-compilation.yml
vendored
Normal file
|
@ -0,0 +1,77 @@
|
|||
name: Bug (compilation)
|
||||
description: Something goes wrong when trying to compile llama.cpp.
|
||||
title: "Compile bug: "
|
||||
labels: ["bug-unconfirmed", "compilation"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
This issue template is intended for bug reports where the compilation of llama.cpp fails.
|
||||
Before opening an issue, please confirm that the compilation still fails with `-DGGML_CCACHE=OFF`.
|
||||
If the compilation succeeds with ccache disabled you should be able to permanently fix the issue
|
||||
by clearing `~/.cache/ccache` (on Linux).
|
||||
- type: textarea
|
||||
id: commit
|
||||
attributes:
|
||||
label: Git commit
|
||||
description: Which commit are you trying to compile?
|
||||
placeholder: |
|
||||
$git rev-parse HEAD
|
||||
84a07a17b1b08cf2b9747c633a2372782848a27f
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: Operating systems
|
||||
description: Which operating systems do you know to be affected?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: backends
|
||||
attributes:
|
||||
label: GGML backends
|
||||
description: Which GGML backends do you know to be affected?
|
||||
options: [AMX, BLAS, CPU, CUDA, HIP, Kompute, Metal, Musa, RPC, SYCL, Vulkan]
|
||||
multiple: true
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: info
|
||||
attributes:
|
||||
label: Problem description & steps to reproduce
|
||||
description: >
|
||||
Please give us a summary of the problem and tell us how to reproduce it.
|
||||
If you can narrow down the bug to specific compile flags, that information would be very much appreciated by us.
|
||||
placeholder: >
|
||||
I'm trying to compile llama.cpp with CUDA support on a fresh install of Ubuntu and get error XY.
|
||||
Here are the exact commands that I used: ...
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: first_bad_commit
|
||||
attributes:
|
||||
label: First Bad Commit
|
||||
description: >
|
||||
If the bug was not present on an earlier version: when did it start appearing?
|
||||
If possible, please do a git bisect and identify the exact commit that introduced the bug.
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: >
|
||||
Please copy and paste any relevant log output, including the command that you entered and any generated text.
|
||||
This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
||||
validations:
|
||||
required: true
|
101
.github/ISSUE_TEMPLATE/011-bug-results.yml
vendored
Normal file
101
.github/ISSUE_TEMPLATE/011-bug-results.yml
vendored
Normal file
|
@ -0,0 +1,101 @@
|
|||
name: Bug (model use)
|
||||
description: Something goes wrong when using a model (in general, not specific to a single llama.cpp module).
|
||||
title: "Eval bug: "
|
||||
labels: ["bug-unconfirmed", "model evaluation"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
This issue template is intended for bug reports where the model evaluation results
|
||||
(i.e. the generated text) are incorrect or llama.cpp crashes during model evaluation.
|
||||
If you encountered the issue while using an external UI (e.g. ollama),
|
||||
please reproduce your issue using one of the examples/binaries in this repository.
|
||||
The `llama-cli` binary can be used for simple and reproducible model inference.
|
||||
- type: textarea
|
||||
id: version
|
||||
attributes:
|
||||
label: Name and Version
|
||||
description: Which version of our software are you running? (use `--version` to get a version string)
|
||||
placeholder: |
|
||||
$./llama-cli --version
|
||||
version: 2999 (42b4109e)
|
||||
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: Operating systems
|
||||
description: Which operating systems do you know to be affected?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: backends
|
||||
attributes:
|
||||
label: GGML backends
|
||||
description: Which GGML backends do you know to be affected?
|
||||
options: [AMX, BLAS, CPU, CUDA, HIP, Kompute, Metal, Musa, RPC, SYCL, Vulkan]
|
||||
multiple: true
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: hardware
|
||||
attributes:
|
||||
label: Hardware
|
||||
description: Which CPUs/GPUs are you using?
|
||||
placeholder: >
|
||||
e.g. Ryzen 5950X + 2x RTX 4090
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: model
|
||||
attributes:
|
||||
label: Models
|
||||
description: >
|
||||
Which model(s) at which quantization were you using when encountering the bug?
|
||||
If you downloaded a GGUF file off of Huggingface, please provide a link.
|
||||
placeholder: >
|
||||
e.g. Meta LLaMA 3.1 Instruct 8b q4_K_M
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: info
|
||||
attributes:
|
||||
label: Problem description & steps to reproduce
|
||||
description: >
|
||||
Please give us a summary of the problem and tell us how to reproduce it.
|
||||
If you can narrow down the bug to specific hardware, compile flags, or command line arguments,
|
||||
that information would be very much appreciated by us.
|
||||
placeholder: >
|
||||
e.g. when I run llama-cli with -ngl 99 I get garbled outputs.
|
||||
When I use -ngl 0 it works correctly.
|
||||
Here are the exact commands that I used: ...
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: first_bad_commit
|
||||
attributes:
|
||||
label: First Bad Commit
|
||||
description: >
|
||||
If the bug was not present on an earlier version: when did it start appearing?
|
||||
If possible, please do a git bisect and identify the exact commit that introduced the bug.
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: >
|
||||
Please copy and paste any relevant log output, including the command that you entered and any generated text.
|
||||
This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
||||
validations:
|
||||
required: true
|
81
.github/ISSUE_TEMPLATE/019-bug-misc.yml
vendored
Normal file
81
.github/ISSUE_TEMPLATE/019-bug-misc.yml
vendored
Normal file
|
@ -0,0 +1,81 @@
|
|||
name: Bug (misc.)
|
||||
description: Something is not working the way it should (and it's not covered by any of the above cases).
|
||||
title: "Misc. bug: "
|
||||
labels: ["bug-unconfirmed"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
This issue template is intended for miscellaneous bugs that don't fit into any other category.
|
||||
If you encountered the issue while using an external UI (e.g. ollama),
|
||||
please reproduce your issue using one of the examples/binaries in this repository.
|
||||
- type: textarea
|
||||
id: version
|
||||
attributes:
|
||||
label: Name and Version
|
||||
description: Which version of our software is affected? (You can use `--version` to get a version string.)
|
||||
placeholder: |
|
||||
$./llama-cli --version
|
||||
version: 2999 (42b4109e)
|
||||
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: Operating systems
|
||||
description: Which operating systems do you know to be affected?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: false
|
||||
- type: dropdown
|
||||
id: module
|
||||
attributes:
|
||||
label: Which llama.cpp modules do you know to be affected?
|
||||
multiple: true
|
||||
options:
|
||||
- Documentation/Github
|
||||
- libllama (core library)
|
||||
- llama-cli
|
||||
- llama-server
|
||||
- llama-bench
|
||||
- llama-quantize
|
||||
- Python/Bash scripts
|
||||
- Test code
|
||||
- Other (Please specify in the next section)
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: info
|
||||
attributes:
|
||||
label: Problem description & steps to reproduce
|
||||
description: >
|
||||
Please give us a summary of the problem and tell us how to reproduce it (if applicable).
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: first_bad_commit
|
||||
attributes:
|
||||
label: First Bad Commit
|
||||
description: >
|
||||
If the bug was not present on an earlier version and it's not trivial to track down: when did it start appearing?
|
||||
If possible, please do a git bisect and identify the exact commit that introduced the bug.
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: >
|
||||
If applicable, please copy and paste any relevant log output, including the command that you entered and any generated text.
|
||||
This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
||||
validations:
|
||||
required: false
|
50
.github/ISSUE_TEMPLATE/02-bug-medium.yml
vendored
50
.github/ISSUE_TEMPLATE/02-bug-medium.yml
vendored
|
@ -1,50 +0,0 @@
|
|||
name: Medium Severity Bug
|
||||
description: Used to report medium severity bugs in llama.cpp (e.g. Malfunctioning Features but generally still useable)
|
||||
title: "Bug: "
|
||||
labels: ["bug-unconfirmed", "medium severity"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
Please include information about your system, the steps to reproduce the bug,
|
||||
and the version of llama.cpp that you are using.
|
||||
If possible, please provide a minimal code example that reproduces the bug.
|
||||
- type: textarea
|
||||
id: what-happened
|
||||
attributes:
|
||||
label: What happened?
|
||||
description: Also tell us, what did you expect to happen?
|
||||
placeholder: Tell us what you see!
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: version
|
||||
attributes:
|
||||
label: Name and Version
|
||||
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
|
||||
placeholder: |
|
||||
$./llama-cli --version
|
||||
version: 2999 (42b4109e)
|
||||
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: What operating system are you seeing the problem on?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
|
@ -1,5 +1,5 @@
|
|||
name: Enhancement
|
||||
description: Used to request enhancements for llama.cpp
|
||||
description: Used to request enhancements for llama.cpp.
|
||||
title: "Feature Request: "
|
||||
labels: ["enhancement"]
|
||||
body:
|
50
.github/ISSUE_TEMPLATE/03-bug-high.yml
vendored
50
.github/ISSUE_TEMPLATE/03-bug-high.yml
vendored
|
@ -1,50 +0,0 @@
|
|||
name: High Severity Bug
|
||||
description: Used to report high severity bugs in llama.cpp (e.g. Malfunctioning features hindering important common workflow)
|
||||
title: "Bug: "
|
||||
labels: ["bug-unconfirmed", "high severity"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
Please include information about your system, the steps to reproduce the bug,
|
||||
and the version of llama.cpp that you are using.
|
||||
If possible, please provide a minimal code example that reproduces the bug.
|
||||
- type: textarea
|
||||
id: what-happened
|
||||
attributes:
|
||||
label: What happened?
|
||||
description: Also tell us, what did you expect to happen?
|
||||
placeholder: Tell us what you see!
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: version
|
||||
attributes:
|
||||
label: Name and Version
|
||||
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
|
||||
placeholder: |
|
||||
$./llama-cli --version
|
||||
version: 2999 (42b4109e)
|
||||
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: What operating system are you seeing the problem on?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
|
@ -1,5 +1,5 @@
|
|||
name: Research
|
||||
description: Track new technical research area
|
||||
description: Track new technical research area.
|
||||
title: "Research: "
|
||||
labels: ["research 🔬"]
|
||||
body:
|
50
.github/ISSUE_TEMPLATE/04-bug-critical.yml
vendored
50
.github/ISSUE_TEMPLATE/04-bug-critical.yml
vendored
|
@ -1,50 +0,0 @@
|
|||
name: Critical Severity Bug
|
||||
description: Used to report critical severity bugs in llama.cpp (e.g. Crashing, Corrupted, Dataloss)
|
||||
title: "Bug: "
|
||||
labels: ["bug-unconfirmed", "critical severity"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
Please include information about your system, the steps to reproduce the bug,
|
||||
and the version of llama.cpp that you are using.
|
||||
If possible, please provide a minimal code example that reproduces the bug.
|
||||
- type: textarea
|
||||
id: what-happened
|
||||
attributes:
|
||||
label: What happened?
|
||||
description: Also tell us, what did you expect to happen?
|
||||
placeholder: Tell us what you see!
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: version
|
||||
attributes:
|
||||
label: Name and Version
|
||||
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
|
||||
placeholder: |
|
||||
$./llama-cli --version
|
||||
version: 2999 (42b4109e)
|
||||
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: What operating system are you seeing the problem on?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
|
@ -1,5 +1,5 @@
|
|||
name: Refactor (Maintainers)
|
||||
description: Used to track refactoring opportunities
|
||||
description: Used to track refactoring opportunities.
|
||||
title: "Refactor: "
|
||||
labels: ["refactor"]
|
||||
body:
|
15
.github/labeler.yml
vendored
15
.github/labeler.yml
vendored
|
@ -3,19 +3,18 @@ Kompute:
|
|||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml/include/ggml-kompute.h
|
||||
- ggml/src/ggml-kompute.cpp
|
||||
- ggml/src/ggml-kompute/**
|
||||
- README-kompute.md
|
||||
Apple Metal:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml/include/ggml-metal.h
|
||||
- ggml/src/ggml-metal.cpp
|
||||
- ggml/src/ggml-metal/**
|
||||
- README-metal.md
|
||||
SYCL:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml/include/ggml-sycl.h
|
||||
- ggml/src/ggml-sycl.cpp
|
||||
- ggml/src/ggml-sycl/**
|
||||
- docs/backend/SYCL.md
|
||||
- examples/sycl/**
|
||||
|
@ -27,8 +26,8 @@ Nvidia GPU:
|
|||
Vulkan:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml/ggml_vk_generate_shaders.py
|
||||
- ggml/src/ggml-vulkan*
|
||||
- ggml/include/ggml-vulkan.h
|
||||
- ggml/src/ggml-vulkan/**
|
||||
documentation:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
|
@ -75,11 +74,7 @@ server:
|
|||
ggml:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml/include/ggml*.h
|
||||
- ggml/src/ggml*.c
|
||||
- ggml/src/ggml*.cpp
|
||||
- ggml/src/ggml*.h
|
||||
- ggml-cuda/**
|
||||
- ggml/**
|
||||
nix:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
|
|
143
.github/workflows/build.yml
vendored
143
.github/workflows/build.yml
vendored
|
@ -728,7 +728,7 @@ jobs:
|
|||
cmake --build build --config ${{ matrix.build }} -j $(nproc)
|
||||
|
||||
windows-latest-cmake:
|
||||
runs-on: windows-2019
|
||||
runs-on: windows-latest
|
||||
|
||||
env:
|
||||
OPENBLAS_VERSION: 0.3.23
|
||||
|
@ -871,37 +871,115 @@ jobs:
|
|||
path: llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip
|
||||
name: llama-bin-win-${{ matrix.build }}.zip
|
||||
|
||||
windows-latest-cmake-cuda:
|
||||
ubuntu-latest-cmake-cuda:
|
||||
runs-on: ubuntu-latest
|
||||
container: nvidia/cuda:12.6.2-devel-ubuntu24.04
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Install dependencies
|
||||
env:
|
||||
DEBIAN_FRONTEND: noninteractive
|
||||
run: |
|
||||
apt update
|
||||
apt install -y cmake build-essential ninja-build libgomp1 git
|
||||
|
||||
- name: Build with CMake
|
||||
run: |
|
||||
cmake -S . -B build -G Ninja -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES=89-real -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined -DLLAMA_FATAL_WARNINGS=ON
|
||||
cmake --build build
|
||||
|
||||
windows-2019-cmake-cuda:
|
||||
runs-on: windows-2019
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
cuda: ['12.2.0', '11.7.1']
|
||||
cuda: ['12.4', '11.7']
|
||||
build: ['cuda']
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Install CUDA toolkit
|
||||
id: cuda-toolkit
|
||||
uses: Jimver/cuda-toolkit@v0.2.15
|
||||
- name: Install Cuda Toolkit 11.7
|
||||
if: ${{ matrix.cuda == '11.7' }}
|
||||
run: |
|
||||
mkdir -p "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7"
|
||||
choco install unzip -y
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cudart/windows-x86_64/cuda_cudart-windows-x86_64-11.7.99-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvcc/windows-x86_64/cuda_nvcc-windows-x86_64-11.7.99-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvrtc/windows-x86_64/cuda_nvrtc-windows-x86_64-11.7.99-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/libcublas/windows-x86_64/libcublas-windows-x86_64-11.7.4.6-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvtx/windows-x86_64/cuda_nvtx-windows-x86_64-11.7.91-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/visual_studio_integration/windows-x86_64/visual_studio_integration-windows-x86_64-11.7.91-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvprof/windows-x86_64/cuda_nvprof-windows-x86_64-11.7.101-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cccl/windows-x86_64/cuda_cccl-windows-x86_64-11.7.91-archive.zip"
|
||||
unzip '*.zip' -d "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7"
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_cudart-windows-x86_64-11.7.99-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_nvcc-windows-x86_64-11.7.99-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_nvrtc-windows-x86_64-11.7.99-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\libcublas-windows-x86_64-11.7.4.6-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_nvtx-windows-x86_64-11.7.91-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\visual_studio_integration-windows-x86_64-11.7.91-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_nvprof-windows-x86_64-11.7.101-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_cccl-windows-x86_64-11.7.91-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\libnvvp" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
|
||||
echo "CUDA_PATH_V11_7=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
|
||||
|
||||
- name: Install Cuda Toolkit 12.4
|
||||
if: ${{ matrix.cuda == '12.4' }}
|
||||
run: |
|
||||
mkdir -p "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4"
|
||||
choco install unzip -y
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cudart/windows-x86_64/cuda_cudart-windows-x86_64-12.4.127-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvcc/windows-x86_64/cuda_nvcc-windows-x86_64-12.4.131-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvrtc/windows-x86_64/cuda_nvrtc-windows-x86_64-12.4.127-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/libcublas/windows-x86_64/libcublas-windows-x86_64-12.4.5.8-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvtx/windows-x86_64/cuda_nvtx-windows-x86_64-12.4.127-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_profiler_api/windows-x86_64/cuda_profiler_api-windows-x86_64-12.4.127-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/visual_studio_integration/windows-x86_64/visual_studio_integration-windows-x86_64-12.4.127-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvprof/windows-x86_64/cuda_nvprof-windows-x86_64-12.4.127-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cccl/windows-x86_64/cuda_cccl-windows-x86_64-12.4.127-archive.zip"
|
||||
unzip '*.zip' -d "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4"
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_cudart-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_nvcc-windows-x86_64-12.4.131-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_nvrtc-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\libcublas-windows-x86_64-12.4.5.8-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_nvtx-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_profiler_api-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\visual_studio_integration-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_nvprof-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_cccl-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\libnvvp" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
|
||||
echo "CUDA_PATH_V12_4=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
|
||||
|
||||
- name: Install ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2
|
||||
with:
|
||||
cuda: ${{ matrix.cuda }}
|
||||
method: 'network'
|
||||
sub-packages: '["nvcc", "cudart", "cublas", "cublas_dev", "thrust", "visual_studio_integration"]'
|
||||
key: ${{ github.job }}-${{ matrix.cuda }}-${{ matrix.build }}
|
||||
|
||||
- name: Install Ninja
|
||||
id: install_ninja
|
||||
run: |
|
||||
choco install ninja
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
shell: cmd
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_CUDA=ON -DBUILD_SHARED_LIBS=ON -DGGML_RPC=ON
|
||||
cmake --build . --config Release -j $((${env:NUMBER_OF_PROCESSORS} - 1)) -t ggml
|
||||
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
|
||||
cmake -S . -B build -G "Ninja Multi-Config" -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_CUDA=ON -DBUILD_SHARED_LIBS=ON -DGGML_RPC=ON
|
||||
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
|
||||
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
|
||||
cmake --build build --config Release
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
|
@ -930,10 +1008,12 @@ jobs:
|
|||
name: llama-bin-win-cu${{ matrix.cuda }}-x64.zip
|
||||
|
||||
- name: Copy and pack Cuda runtime
|
||||
if: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
|
||||
run: |
|
||||
echo "Cuda install location: ${{steps.cuda-toolkit.outputs.CUDA_PATH}}"
|
||||
echo "Cuda install location: ${{ env.CUDA_PATH }}"
|
||||
$dst='.\build\bin\cudart\'
|
||||
robocopy "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
|
||||
robocopy "${{env.CUDA_PATH}}\bin" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
|
||||
robocopy "${{env.CUDA_PATH}}\lib" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
|
||||
7z a cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip $dst\*
|
||||
|
||||
- name: Upload Cuda runtime
|
||||
|
@ -952,7 +1032,7 @@ jobs:
|
|||
|
||||
env:
|
||||
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/b380d914-366b-4b77-a74a-05e3c38b3514/intel-oneapi-base-toolkit-2025.0.0.882_offline.exe
|
||||
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel
|
||||
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel:intel.oneapi.win.dnnl:intel.oneapi.win.tbb.devel
|
||||
ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI"
|
||||
steps:
|
||||
- name: Clone
|
||||
|
@ -962,7 +1042,8 @@ jobs:
|
|||
fetch-depth: 0
|
||||
|
||||
- name: Install
|
||||
run: scripts/install-oneapi.bat $WINDOWS_BASEKIT_URL $WINDOWS_DPCPP_MKL
|
||||
run: |
|
||||
scripts/install-oneapi.bat $WINDOWS_BASEKIT_URL $WINDOWS_DPCPP_MKL
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
|
@ -981,25 +1062,33 @@ jobs:
|
|||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Pack artifacts
|
||||
- name: Build the release package
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
echo "cp oneAPI running time dll files in ${{ env.ONEAPI_ROOT }} to ./build/bin"
|
||||
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_sycl_blas.4.dll" ./build/bin
|
||||
|
||||
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_sycl_blas.5.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_core.2.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_tbb_thread.2.dll" ./build/bin
|
||||
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/pi_win_proxy_loader.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/pi_level_zero.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/sycl7.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_level_zero.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_opencl.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_loader.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_win_proxy_loader.dll" ./build/bin
|
||||
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/sycl8.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/svml_dispmd.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libmmd.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libiomp5md.dll" ./build/bin
|
||||
|
||||
cp "${{ env.ONEAPI_ROOT }}/dnnl/latest/bin/dnnl.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/tbb/latest/bin/tbb12.dll" ./build/bin
|
||||
|
||||
echo "cp oneAPI running time dll files to ./build/bin done"
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
- name: Upload the release package
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
|
@ -1164,7 +1253,7 @@ jobs:
|
|||
- macOS-latest-make
|
||||
- macOS-latest-cmake
|
||||
- windows-latest-cmake
|
||||
- windows-latest-cmake-cuda
|
||||
- windows-2019-cmake-cuda
|
||||
- windows-latest-cmake-hip-release
|
||||
- macOS-latest-cmake-arm64
|
||||
- macOS-latest-cmake-x64
|
||||
|
|
13
.github/workflows/docker.yml
vendored
13
.github/workflows/docker.yml
vendored
|
@ -10,12 +10,10 @@
|
|||
name: Publish Docker image
|
||||
|
||||
on:
|
||||
#pull_request:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['.github/workflows/docker.yml', '.devops/*.Dockerfile', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal']
|
||||
workflow_dispatch: # allows manual triggering, useful for debugging
|
||||
workflow_dispatch: # allows manual triggering
|
||||
schedule:
|
||||
# Rebuild daily rather than on every push because it is expensive
|
||||
- cron: '12 4 * * *'
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
|
@ -29,7 +27,6 @@ permissions:
|
|||
jobs:
|
||||
push_to_registry:
|
||||
name: Push Docker image to Docker Hub
|
||||
#if: github.event.pull_request.draft == false
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
|
@ -117,7 +114,7 @@ jobs:
|
|||
swap-storage: true
|
||||
|
||||
- name: Build and push Docker image (tagged + versioned)
|
||||
if: github.event_name == 'push'
|
||||
if: ${{ github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch' }}
|
||||
uses: docker/build-push-action@v6
|
||||
with:
|
||||
context: .
|
||||
|
|
72
.github/workflows/nix-ci-aarch64.yml
vendored
72
.github/workflows/nix-ci-aarch64.yml
vendored
|
@ -1,72 +0,0 @@
|
|||
name: Nix aarch64 builds
|
||||
|
||||
on:
|
||||
workflow_dispatch: # allows manual triggering
|
||||
schedule:
|
||||
# Rebuild daily rather than on every push because QEMU is expensive (e.g.
|
||||
# 1.5h instead of minutes with the cold cache).
|
||||
#
|
||||
# randint(0, 59), randint(0, 23)
|
||||
- cron: '26 12 * * *'
|
||||
# But also rebuild if we touched any of the Nix expressions:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['**/*.nix', 'flake.lock']
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['**/*.nix', 'flake.lock']
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
# Fine-grant permission
|
||||
# https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#modifying-the-permissions-for-the-github_token
|
||||
permissions:
|
||||
# https://github.com/DeterminateSystems/nix-installer-action?tab=readme-ov-file#with-flakehub
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
nix-build-aarch64:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
- name: Install QEMU
|
||||
# Copy-paste from https://github.com/orgs/community/discussions/8305#discussioncomment-5888654
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y qemu-user-static qemu-system-aarch64
|
||||
sudo usermod -a -G kvm $USER
|
||||
- name: Install Nix
|
||||
uses: DeterminateSystems/nix-installer-action@v9
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
extra-conf: |
|
||||
extra-platforms = aarch64-linux
|
||||
extra-system-features = nixos-test kvm
|
||||
extra-substituters = https://llama-cpp.cachix.org https://cuda-maintainers.cachix.org
|
||||
extra-trusted-public-keys = llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc= cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
|
||||
- uses: DeterminateSystems/magic-nix-cache-action@v2
|
||||
with:
|
||||
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
|
||||
- name: Set-up cachix to push the results to
|
||||
uses: cachix/cachix-action@v13
|
||||
with:
|
||||
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
|
||||
name: llama-cpp
|
||||
- name: Show all output paths
|
||||
run: >
|
||||
nix run github:nix-community/nix-eval-jobs
|
||||
-- --gc-roots-dir gcroot
|
||||
--flake
|
||||
".#packages.aarch64-linux"
|
||||
- name: Build
|
||||
run: >
|
||||
nix run github:Mic92/nix-fast-build
|
||||
-- --skip-cached --no-nom
|
||||
--systems aarch64-linux
|
||||
--flake
|
||||
".#checks.aarch64-linux"
|
79
.github/workflows/nix-ci.yml
vendored
79
.github/workflows/nix-ci.yml
vendored
|
@ -1,79 +0,0 @@
|
|||
name: Nix CI
|
||||
|
||||
on:
|
||||
workflow_dispatch: # allows manual triggering
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
# Fine-grant permission
|
||||
# https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#modifying-the-permissions-for-the-github_token
|
||||
permissions:
|
||||
# https://github.com/DeterminateSystems/nix-installer-action?tab=readme-ov-file#with-flakehub
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
nix-eval:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
os: [ ubuntu-latest, macos-latest ]
|
||||
runs-on: ${{ matrix.os }}
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
- name: Install Nix
|
||||
uses: DeterminateSystems/nix-installer-action@v9
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
extra-conf: |
|
||||
extra-substituters = https://llama-cpp.cachix.org https://cuda-maintainers.cachix.org
|
||||
extra-trusted-public-keys = llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc= cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
|
||||
- uses: DeterminateSystems/magic-nix-cache-action@v2
|
||||
with:
|
||||
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
|
||||
- name: List all flake outputs
|
||||
run: nix flake show --all-systems
|
||||
- name: Show all output paths
|
||||
run: >
|
||||
nix run github:nix-community/nix-eval-jobs
|
||||
-- --gc-roots-dir gcroot
|
||||
--flake
|
||||
".#packages.$(nix eval --raw --impure --expr builtins.currentSystem)"
|
||||
nix-build:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
os: [ ubuntu-latest, macos-latest ]
|
||||
runs-on: ${{ matrix.os }}
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
- name: Install Nix
|
||||
uses: DeterminateSystems/nix-installer-action@v9
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
extra-conf: |
|
||||
extra-substituters = https://llama-cpp.cachix.org https://cuda-maintainers.cachix.org
|
||||
extra-trusted-public-keys = llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc= cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
|
||||
- uses: DeterminateSystems/magic-nix-cache-action@v2
|
||||
with:
|
||||
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
|
||||
- name: Set-up cachix to push the results to
|
||||
uses: cachix/cachix-action@v13
|
||||
with:
|
||||
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
|
||||
name: llama-cpp
|
||||
- name: Build
|
||||
run: >
|
||||
nix run github:Mic92/nix-fast-build
|
||||
-- --skip-cached --no-nom
|
||||
--flake
|
||||
".#checks.$(nix eval --raw --impure --expr builtins.currentSystem)"
|
22
.github/workflows/nix-flake-update.yml
vendored
22
.github/workflows/nix-flake-update.yml
vendored
|
@ -1,22 +0,0 @@
|
|||
name: update-flake-lock
|
||||
on:
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
- cron: '0 0 * * 0' # runs weekly on Sunday at 00:00
|
||||
|
||||
jobs:
|
||||
lockfile:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
- name: Install Nix
|
||||
uses: DeterminateSystems/nix-installer-action@main
|
||||
- name: Update flake.lock
|
||||
uses: DeterminateSystems/update-flake-lock@main
|
||||
with:
|
||||
pr-title: "nix: update flake.lock"
|
||||
pr-labels: |
|
||||
nix
|
||||
pr-reviewers: philiptaron,SomeoneSerge
|
||||
token: ${{ secrets.FLAKE_TOKEN }}
|
36
.github/workflows/nix-publish-flake.yml
vendored
36
.github/workflows/nix-publish-flake.yml
vendored
|
@ -1,36 +0,0 @@
|
|||
# Make the flake discoverable on https://flakestry.dev and https://flakehub.com/flakes
|
||||
name: "Publish a flake to flakestry & flakehub"
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- "*"
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
tag:
|
||||
description: "The existing tag to publish"
|
||||
type: "string"
|
||||
required: true
|
||||
jobs:
|
||||
flakestry-publish:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
id-token: "write"
|
||||
contents: "read"
|
||||
steps:
|
||||
- uses: flakestry/flakestry-publish@main
|
||||
with:
|
||||
version: "${{ inputs.tag || github.ref_name }}"
|
||||
flakehub-publish:
|
||||
runs-on: "ubuntu-latest"
|
||||
permissions:
|
||||
id-token: "write"
|
||||
contents: "read"
|
||||
steps:
|
||||
- uses: "actions/checkout@v4"
|
||||
with:
|
||||
ref: "${{ (inputs.tag != null) && format('refs/tags/{0}', inputs.tag) || '' }}"
|
||||
- uses: "DeterminateSystems/nix-installer-action@main"
|
||||
- uses: "DeterminateSystems/flakehub-push@main"
|
||||
with:
|
||||
visibility: "public"
|
||||
tag: "${{ inputs.tag }}"
|
9
.github/workflows/python-lint.yml
vendored
9
.github/workflows/python-lint.yml
vendored
|
@ -1,6 +1,13 @@
|
|||
name: flake8 Lint
|
||||
|
||||
on: [push, pull_request]
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['.github/workflows/python-lint.yml', '**/*.py']
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['.github/workflows/python-lint.yml', '**/*.py']
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
|
|
9
.github/workflows/server.yml
vendored
9
.github/workflows/server.yml
vendored
|
@ -122,14 +122,14 @@ jobs:
|
|||
id: server_integration_tests
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
PORT=8888 ./tests.sh
|
||||
./tests.sh
|
||||
|
||||
- name: Slow tests
|
||||
id: server_integration_tests_slow
|
||||
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
PORT=8888 ./tests.sh --stop --no-skipped --no-capture --tags slow
|
||||
SLOW_TESTS=1 ./tests.sh
|
||||
|
||||
|
||||
server-windows:
|
||||
|
@ -180,11 +180,12 @@ jobs:
|
|||
run: |
|
||||
cd examples/server/tests
|
||||
$env:PYTHONIOENCODING = ":replace"
|
||||
behave.exe --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp
|
||||
pytest -v -x
|
||||
|
||||
- name: Slow tests
|
||||
id: server_integration_tests_slow
|
||||
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
behave.exe --stop --no-skipped --no-capture --tags slow
|
||||
$env:SLOW_TESTS = "1"
|
||||
pytest -v -x
|
||||
|
|
|
@ -82,6 +82,7 @@ option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
|
|||
|
||||
# Required for relocatable CMake package
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/common.cmake)
|
||||
|
||||
# override ggml options
|
||||
set(GGML_SANITIZE_THREAD ${LLAMA_SANITIZE_THREAD})
|
||||
|
@ -163,8 +164,11 @@ if (GGML_TARGET_DEFINES)
|
|||
list(APPEND GGML_TRANSIENT_DEFINES ${GGML_TARGET_DEFINES})
|
||||
endif()
|
||||
get_target_property(GGML_LINK_LIBRARIES ggml LINK_LIBRARIES)
|
||||
|
||||
set_target_properties(llama PROPERTIES PUBLIC_HEADER ${CMAKE_CURRENT_SOURCE_DIR}/include/llama.h)
|
||||
# all public headers
|
||||
set(LLAMA_PUBLIC_HEADERS
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/include/llama.h
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/include/llama-cpp.h)
|
||||
set_target_properties(llama PROPERTIES PUBLIC_HEADER "${LLAMA_PUBLIC_HEADERS}")
|
||||
install(TARGETS llama LIBRARY PUBLIC_HEADER)
|
||||
|
||||
configure_package_config_file(
|
||||
|
|
23
Makefile
23
Makefile
|
@ -34,6 +34,7 @@ BUILD_TARGETS = \
|
|||
llama-server \
|
||||
llama-simple \
|
||||
llama-simple-chat \
|
||||
llama-run \
|
||||
llama-speculative \
|
||||
llama-tokenize \
|
||||
llama-vdot \
|
||||
|
@ -251,7 +252,7 @@ endif
|
|||
#
|
||||
|
||||
# keep standard at C11 and C++11
|
||||
MK_CPPFLAGS = -Iggml/include -Iggml/src -Iinclude -Isrc -Icommon
|
||||
MK_CPPFLAGS = -Iggml/include -Iggml/src -Iinclude -Isrc -Icommon -DGGML_USE_CPU
|
||||
MK_CFLAGS = -std=c11 -fPIC
|
||||
MK_CXXFLAGS = -std=c++11 -fPIC
|
||||
MK_NVCCFLAGS = -std=c++11
|
||||
|
@ -290,6 +291,7 @@ endif
|
|||
# some memory allocation are available on Linux through GNU extensions in libc
|
||||
ifeq ($(UNAME_S),Linux)
|
||||
MK_CPPFLAGS += -D_GNU_SOURCE
|
||||
MK_LDFLAGS += -ldl
|
||||
endif
|
||||
|
||||
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
|
||||
|
@ -750,7 +752,7 @@ vulkan-shaders-gen: ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp
|
|||
|
||||
endif # GGML_VULKAN
|
||||
|
||||
ifdef GGML_HIPBLAS
|
||||
ifdef GGML_HIP
|
||||
ifeq ($(wildcard /opt/rocm),)
|
||||
ROCM_PATH ?= /usr
|
||||
AMDGPU_TARGETS ?= $(shell $(shell which amdgpu-arch))
|
||||
|
@ -805,7 +807,7 @@ ggml/src/ggml-cuda/%.o: \
|
|||
ggml/src/ggml-common.h \
|
||||
ggml/src/ggml-cuda/common.cuh
|
||||
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
||||
endif # GGML_HIPBLAS
|
||||
endif # GGML_HIP
|
||||
|
||||
ifdef GGML_MUSA
|
||||
ifeq ($(wildcard /opt/musa),)
|
||||
|
@ -813,7 +815,7 @@ ifdef GGML_MUSA
|
|||
else
|
||||
MUSA_PATH ?= /opt/musa
|
||||
endif
|
||||
MTGPU_TARGETS ?= mp_21 mp_22
|
||||
MUSA_ARCHITECTURES ?= 21;22
|
||||
|
||||
MK_CPPFLAGS += -DGGML_USE_MUSA -DGGML_USE_CUDA
|
||||
MK_LDFLAGS += -L$(MUSA_PATH)/lib -Wl,-rpath=$(MUSA_PATH)/lib
|
||||
|
@ -832,7 +834,8 @@ ifdef GGML_MUSA
|
|||
CXX := $(MUSA_PATH)/bin/clang++
|
||||
MCC := $(CCACHE) $(MUSA_PATH)/bin/mcc
|
||||
|
||||
MUSAFLAGS += $(addprefix --cuda-gpu-arch=, $(MTGPU_TARGETS))
|
||||
MUSAFLAGS = -x musa -mtgpu
|
||||
MUSAFLAGS += $(foreach arch,$(subst ;, ,$(MUSA_ARCHITECTURES)),--cuda-gpu-arch=mp_$(arch))
|
||||
|
||||
ifdef GGML_CUDA_FORCE_MMQ
|
||||
MUSAFLAGS += -DGGML_CUDA_FORCE_MMQ
|
||||
|
@ -876,14 +879,14 @@ ggml/src/ggml-cuda/ggml-cuda.o: \
|
|||
ggml/src/ggml-backend-impl.h \
|
||||
ggml/src/ggml-common.h \
|
||||
$(wildcard ggml/src/ggml-cuda/*.cuh)
|
||||
$(MCC) $(CXXFLAGS) $(MUSAFLAGS) -x musa -mtgpu -c -o $@ $<
|
||||
$(MCC) $(CXXFLAGS) $(MUSAFLAGS) -c -o $@ $<
|
||||
|
||||
ggml/src/ggml-cuda/%.o: \
|
||||
ggml/src/ggml-cuda/%.cu \
|
||||
ggml/include/ggml.h \
|
||||
ggml/src/ggml-common.h \
|
||||
ggml/src/ggml-cuda/common.cuh
|
||||
$(MCC) $(CXXFLAGS) $(MUSAFLAGS) -x musa -mtgpu -c -o $@ $<
|
||||
$(MCC) $(CXXFLAGS) $(MUSAFLAGS) -c -o $@ $<
|
||||
endif # GGML_MUSA
|
||||
|
||||
ifdef GGML_METAL
|
||||
|
@ -966,6 +969,7 @@ OBJ_COMMON = \
|
|||
$(DIR_COMMON)/console.o \
|
||||
$(DIR_COMMON)/ngram-cache.o \
|
||||
$(DIR_COMMON)/sampling.o \
|
||||
$(DIR_COMMON)/speculative.o \
|
||||
$(DIR_COMMON)/build-info.o \
|
||||
$(DIR_COMMON)/json-schema-to-grammar.o
|
||||
|
||||
|
@ -1165,6 +1169,11 @@ llama-infill: examples/infill/infill.cpp \
|
|||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-run: examples/run/run.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-simple: examples/simple/simple.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
|
|
|
@ -43,7 +43,8 @@ linkerSettings.append(.linkedFramework("Accelerate"))
|
|||
cSettings.append(
|
||||
contentsOf: [
|
||||
.define("GGML_USE_ACCELERATE"),
|
||||
.define("GGML_USE_METAL")
|
||||
.define("GGML_USE_METAL"),
|
||||
.define("GGML_USE_CPU")
|
||||
]
|
||||
)
|
||||
#endif
|
||||
|
|
|
@ -79,6 +79,7 @@ Typically finetunes of the base models below are supported as well.
|
|||
- [x] [SEA-LION](https://huggingface.co/models?search=sea-lion)
|
||||
- [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B)
|
||||
- [x] [OLMo](https://allenai.org/olmo)
|
||||
- [x] [OLMo 2](https://allenai.org/olmo)
|
||||
- [x] [OLMoE](https://huggingface.co/allenai/OLMoE-1B-7B-0924)
|
||||
- [x] [Granite models](https://huggingface.co/collections/ibm-granite/granite-code-models-6624c5cec322e4c148c8b330)
|
||||
- [x] [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) + [Pythia](https://github.com/EleutherAI/pythia)
|
||||
|
|
33
cmake/common.cmake
Normal file
33
cmake/common.cmake
Normal file
|
@ -0,0 +1,33 @@
|
|||
function(llama_add_compile_flags)
|
||||
if (LLAMA_FATAL_WARNINGS)
|
||||
if (CMAKE_CXX_COMPILER_ID MATCHES "GNU" OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
|
||||
list(APPEND C_FLAGS -Werror)
|
||||
list(APPEND CXX_FLAGS -Werror)
|
||||
elseif (CMAKE_CXX_COMPILER_ID STREQUAL "MSVC")
|
||||
add_compile_options(/WX)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_ALL_WARNINGS)
|
||||
if (NOT MSVC)
|
||||
list(APPEND C_FLAGS -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes
|
||||
-Werror=implicit-int -Werror=implicit-function-declaration)
|
||||
|
||||
list(APPEND CXX_FLAGS -Wmissing-declarations -Wmissing-noreturn)
|
||||
|
||||
list(APPEND WARNING_FLAGS -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function)
|
||||
|
||||
list(APPEND C_FLAGS ${WARNING_FLAGS})
|
||||
list(APPEND CXX_FLAGS ${WARNING_FLAGS})
|
||||
|
||||
ggml_get_flags(${CMAKE_CXX_COMPILER_ID} ${CMAKE_CXX_COMPILER_VERSION})
|
||||
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:C>:${C_FLAGS};${GF_C_FLAGS}>"
|
||||
"$<$<COMPILE_LANGUAGE:CXX>:${CXX_FLAGS};${GF_CXX_FLAGS}>")
|
||||
else()
|
||||
# todo : msvc
|
||||
set(C_FLAGS "" PARENT_SCOPE)
|
||||
set(CXX_FLAGS "" PARENT_SCOPE)
|
||||
endif()
|
||||
endif()
|
||||
endfunction()
|
|
@ -3,12 +3,60 @@ set(LLAMA_BUILD_COMMIT @LLAMA_BUILD_COMMIT@)
|
|||
set(LLAMA_BUILD_NUMBER @LLAMA_BUILD_NUMBER@)
|
||||
set(LLAMA_SHARED_LIB @BUILD_SHARED_LIBS@)
|
||||
|
||||
set(GGML_STATIC @GGML_STATIC@)
|
||||
set(GGML_NATIVE @GGML_NATIVE@)
|
||||
set(GGML_LTO @GGML_LTO@)
|
||||
set(GGML_CCACHE @GGML_CCACHE@)
|
||||
set(GGML_AVX @GGML_AVX@)
|
||||
set(GGML_AVX2 @GGML_AVX2@)
|
||||
set(GGML_AVX512 @GGML_AVX512@)
|
||||
set(GGML_AVX512_VBMI @GGML_AVX512_VBMI@)
|
||||
set(GGML_AVX512_VNNI @GGML_AVX512_VNNI@)
|
||||
set(GGML_AVX512_BF16 @GGML_AVX512_BF16@)
|
||||
set(GGML_AMX_TILE @GGML_AMX_TILE@)
|
||||
set(GGML_AMX_INT8 @GGML_AMX_INT8@)
|
||||
set(GGML_AMX_BF16 @GGML_AMX_BF16@)
|
||||
set(GGML_FMA @GGML_FMA@)
|
||||
set(GGML_LASX @GGML_LASX@)
|
||||
set(GGML_LSX @GGML_LSX@)
|
||||
set(GGML_RVV @GGML_RVV@)
|
||||
set(GGML_SVE @GGML_SVE@)
|
||||
|
||||
set(GGML_ACCELERATE @GGML_ACCELERATE@)
|
||||
set(GGML_OPENMP @GGML_OPENMP@)
|
||||
set(GGML_CPU_HBM @GGML_CPU_HBM@)
|
||||
set(GGML_BLAS_VENDOR @GGML_BLAS_VENDOR@)
|
||||
|
||||
set(GGML_CUDA_FORCE_MMQ @GGML_CUDA_FORCE_MMQ@)
|
||||
set(GGML_CUDA_FORCE_CUBLAS @GGML_CUDA_FORCE_CUBLAS@)
|
||||
set(GGML_CUDA_F16 @GGML_CUDA_F16@)
|
||||
set(GGML_CUDA_PEER_MAX_BATCH_SIZE @GGML_CUDA_PEER_MAX_BATCH_SIZE@)
|
||||
set(GGML_CUDA_NO_PEER_COPY @GGML_CUDA_NO_PEER_COPY@)
|
||||
set(GGML_CUDA_NO_VMM @GGML_CUDA_NO_VMM@)
|
||||
set(GGML_CUDA_FA_ALL_QUANTS @GGML_CUDA_FA_ALL_QUANTS@)
|
||||
set(GGML_CUDA_GRAPHS @GGML_CUDA_GRAPHS@)
|
||||
|
||||
set(GGML_HIP_UMA @GGML_HIP_UMA@)
|
||||
|
||||
set(GGML_VULKAN_CHECK_RESULTS @GGML_VULKAN_CHECK_RESULTS@)
|
||||
set(GGML_VULKAN_DEBUG @GGML_VULKAN_DEBUG@)
|
||||
set(GGML_VULKAN_MEMORY_DEBUG @GGML_VULKAN_MEMORY_DEBUG@)
|
||||
set(GGML_VULKAN_VALIDATE @GGML_VULKAN_VALIDATE@)
|
||||
set(GGML_OPENMP @GGML_OPENMP@)
|
||||
set(GGML_VULKAN_DEBUG @GGML_VULKAN_DEBUG@)
|
||||
set(GGML_VULKAN_MEMORY_DEBUG @GGML_VULKAN_MEMORY_DEBUG@)
|
||||
set(GGML_VULKAN_SHADER_DEBUG_INFO @GGML_VULKAN_SHADER_DEBUG_INFO@)
|
||||
set(GGML_VULKAN_PERF @GGML_VULKAN_PERF@)
|
||||
set(GGML_VULKAN_VALIDATE @GGML_VULKAN_VALIDATE@)
|
||||
set(GGML_VULKAN_RUN_TESTS @GGML_VULKAN_RUN_TESTS@)
|
||||
|
||||
set(GGML_METAL_USE_BF16 @GGML_METAL_USE_BF16@)
|
||||
set(GGML_METAL_NDEBUG @GGML_METAL_NDEBUG@)
|
||||
set(GGML_METAL_SHADER_DEBUG @GGML_METAL_SHADER_DEBUG@)
|
||||
set(GGML_METAL_EMBED_LIBRARY @GGML_METAL_EMBED_LIBRARY@)
|
||||
set(GGML_METAL_MACOSX_VERSION_MIN @GGML_METAL_MACOSX_VERSION_MIN@)
|
||||
set(GGML_METAL_STD @GGML_METAL_STD@)
|
||||
|
||||
set(GGML_SYCL_F16 @GGML_SYCL_F16@)
|
||||
set(GGML_SYCL_TARGET @GGML_SYCL_TARGET@)
|
||||
set(GGML_SYCL_DEVICE_ARCH @GGML_SYCL_DEVICE_ARCH@)
|
||||
|
||||
|
||||
@PACKAGE_INIT@
|
||||
|
||||
|
@ -20,6 +68,7 @@ find_package(Threads REQUIRED)
|
|||
|
||||
set(_llama_transient_defines "@GGML_TRANSIENT_DEFINES@")
|
||||
set(_llama_link_deps "")
|
||||
set(_llama_link_opts "")
|
||||
foreach(_ggml_lib ggml ggml-base)
|
||||
string(REPLACE "-" "_" _ggml_lib_var "${_ggml_lib}_LIBRARY")
|
||||
find_library(${_ggml_lib_var} ${_ggml_lib}
|
||||
|
@ -49,41 +98,63 @@ foreach(backend amx blas cann cpu cuda hip kompute metal musa rpc sycl vulkan)
|
|||
endif()
|
||||
endforeach()
|
||||
|
||||
if (APPLE AND GGML_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED)
|
||||
endif()
|
||||
if (NOT LLAMA_SHARED_LIB)
|
||||
if (APPLE AND GGML_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED)
|
||||
list(APPEND _llama_link_deps ${ACCELERATE_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (GGML_BLAS)
|
||||
find_package(BLAS REQUIRED)
|
||||
endif()
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP REQUIRED)
|
||||
list(APPEND _llama_link_deps OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA)
|
||||
find_package(CUDAToolkit REQUIRED)
|
||||
endif()
|
||||
if (GGML_CPU_HBM)
|
||||
find_library(memkind memkind REQUIRED)
|
||||
list(APPEND _llama_link_deps memkind)
|
||||
endif()
|
||||
|
||||
if (GGML_METAL)
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
endif()
|
||||
if (GGML_BLAS)
|
||||
find_package(BLAS REQUIRED)
|
||||
list(APPEND _llama_link_deps ${BLAS_LIBRARIES})
|
||||
list(APPEND _llama_link_opts ${BLAS_LINKER_FLAGS})
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN)
|
||||
find_package(Vulkan REQUIRED)
|
||||
endif()
|
||||
if (GGML_CUDA)
|
||||
find_package(CUDAToolkit REQUIRED)
|
||||
endif()
|
||||
|
||||
if (GGML_HIP)
|
||||
find_package(hip REQUIRED)
|
||||
find_package(hipblas REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
endif()
|
||||
if (GGML_METAL)
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
list(APPEND _llama_link_deps ${FOUNDATION_LIBRARY}
|
||||
${METAL_FRAMEWORK} ${METALKIT_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (GGML_SYCL)
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
endif()
|
||||
if (GGML_VULKAN)
|
||||
find_package(Vulkan REQUIRED)
|
||||
list(APPEND _llama_link_deps Vulkan::Vulkan)
|
||||
endif()
|
||||
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP REQUIRED)
|
||||
if (GGML_HIP)
|
||||
find_package(hip REQUIRED)
|
||||
find_package(hipblas REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
list(APPEND _llama_link_deps hip::host roc::rocblas roc::hipblas)
|
||||
endif()
|
||||
|
||||
if (GGML_SYCL)
|
||||
find_package(DNNL)
|
||||
if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
list(APPEND _llama_link_deps DNNL::dnnl)
|
||||
endif()
|
||||
if (WIN32)
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
list(APPEND _llama_link_deps IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
find_library(llama_LIBRARY llama
|
||||
|
@ -97,6 +168,7 @@ set_target_properties(llama
|
|||
PROPERTIES
|
||||
INTERFACE_INCLUDE_DIRECTORIES "${LLAMA_INCLUDE_DIR}"
|
||||
INTERFACE_LINK_LIBRARIES "${_llama_link_deps}"
|
||||
INTERFACE_LINK_OPTIONS "${_llama_link_opts}"
|
||||
INTERFACE_COMPILE_DEFINITIONS "${_llama_transient_defines}"
|
||||
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
|
||||
IMPORTED_LOCATION "${llama_LIBRARY}"
|
||||
|
|
|
@ -2,6 +2,8 @@
|
|||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
llama_add_compile_flags()
|
||||
|
||||
# Build info header
|
||||
#
|
||||
|
||||
|
@ -66,6 +68,8 @@ add_library(${TARGET} STATIC
|
|||
ngram-cache.h
|
||||
sampling.cpp
|
||||
sampling.h
|
||||
speculative.cpp
|
||||
speculative.h
|
||||
)
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
|
|
498
common/arg.cpp
498
common/arg.cpp
|
@ -233,10 +233,11 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
|||
}
|
||||
}
|
||||
|
||||
postprocess_cpu_params(params.cpuparams, nullptr);
|
||||
postprocess_cpu_params(params.cpuparams, nullptr);
|
||||
postprocess_cpu_params(params.cpuparams_batch, ¶ms.cpuparams);
|
||||
postprocess_cpu_params(params.draft_cpuparams, ¶ms.cpuparams);
|
||||
postprocess_cpu_params(params.draft_cpuparams_batch, ¶ms.cpuparams_batch);
|
||||
|
||||
postprocess_cpu_params(params.speculative.cpuparams, ¶ms.cpuparams);
|
||||
postprocess_cpu_params(params.speculative.cpuparams_batch, ¶ms.cpuparams_batch);
|
||||
|
||||
if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
|
||||
throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
|
||||
|
@ -251,7 +252,7 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
|||
for (auto & antiprompt : params.antiprompt) {
|
||||
string_process_escapes(antiprompt);
|
||||
}
|
||||
for (auto & seq_breaker : params.sparams.dry_sequence_breakers) {
|
||||
for (auto & seq_breaker : params.sampling.dry_sequence_breakers) {
|
||||
string_process_escapes(seq_breaker);
|
||||
}
|
||||
}
|
||||
|
@ -297,6 +298,27 @@ static void common_params_print_usage(common_params_context & ctx_arg) {
|
|||
print_options(specific_options);
|
||||
}
|
||||
|
||||
static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & value) {
|
||||
std::vector<ggml_backend_dev_t> devices;
|
||||
auto dev_names = string_split<std::string>(value, ',');
|
||||
if (dev_names.empty()) {
|
||||
throw std::invalid_argument("no devices specified");
|
||||
}
|
||||
if (dev_names.size() == 1 && dev_names[0] == "none") {
|
||||
devices.push_back(nullptr);
|
||||
} else {
|
||||
for (const auto & device : dev_names) {
|
||||
auto * dev = ggml_backend_dev_by_name(device.c_str());
|
||||
if (!dev || ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_GPU) {
|
||||
throw std::invalid_argument(string_format("invalid device: %s", device.c_str()));
|
||||
}
|
||||
devices.push_back(dev);
|
||||
}
|
||||
devices.push_back(nullptr);
|
||||
}
|
||||
return devices;
|
||||
}
|
||||
|
||||
bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
|
||||
auto ctx_arg = common_params_parser_init(params, ex, print_usage);
|
||||
const common_params params_org = ctx_arg.params; // the example can modify the default params
|
||||
|
@ -323,13 +345,16 @@ bool common_params_parse(int argc, char ** argv, common_params & params, llama_e
|
|||
}
|
||||
|
||||
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
|
||||
// load dynamic backends
|
||||
ggml_backend_load_all();
|
||||
|
||||
common_params_context ctx_arg(params);
|
||||
ctx_arg.print_usage = print_usage;
|
||||
ctx_arg.ex = ex;
|
||||
|
||||
std::string sampler_type_chars;
|
||||
std::string sampler_type_names;
|
||||
for (const auto & sampler : params.sparams.samplers) {
|
||||
for (const auto & sampler : params.sampling.samplers) {
|
||||
sampler_type_chars += common_sampler_type_to_chr(sampler);
|
||||
sampler_type_names += common_sampler_type_to_str(sampler) + ";";
|
||||
}
|
||||
|
@ -407,26 +432,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
}
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"-td", "--threads-draft"}, "N",
|
||||
"number of threads to use during generation (default: same as --threads)",
|
||||
[](common_params & params, int value) {
|
||||
params.draft_cpuparams.n_threads = value;
|
||||
if (params.draft_cpuparams.n_threads <= 0) {
|
||||
params.draft_cpuparams.n_threads = std::thread::hardware_concurrency();
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-tbd", "--threads-batch-draft"}, "N",
|
||||
"number of threads to use during batch and prompt processing (default: same as --threads-draft)",
|
||||
[](common_params & params, int value) {
|
||||
params.draft_cpuparams_batch.n_threads = value;
|
||||
if (params.draft_cpuparams_batch.n_threads <= 0) {
|
||||
params.draft_cpuparams_batch.n_threads = std::thread::hardware_concurrency();
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-C", "--cpu-mask"}, "M",
|
||||
"CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")",
|
||||
|
@ -515,108 +520,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
params.cpuparams_batch.poll = value;
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"-Cd", "--cpu-mask-draft"}, "M",
|
||||
"Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
|
||||
[](common_params & params, const std::string & mask) {
|
||||
params.draft_cpuparams.mask_valid = true;
|
||||
if (!parse_cpu_mask(mask, params.draft_cpuparams.cpumask)) {
|
||||
throw std::invalid_argument("invalid cpumask");
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-Crd", "--cpu-range-draft"}, "lo-hi",
|
||||
"Ranges of CPUs for affinity. Complements --cpu-mask-draft",
|
||||
[](common_params & params, const std::string & range) {
|
||||
params.draft_cpuparams.mask_valid = true;
|
||||
if (!parse_cpu_range(range, params.draft_cpuparams.cpumask)) {
|
||||
throw std::invalid_argument("invalid range");
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--cpu-strict-draft"}, "<0|1>",
|
||||
"Use strict CPU placement for draft model (default: same as --cpu-strict)",
|
||||
[](common_params & params, int value) {
|
||||
params.draft_cpuparams.strict_cpu = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--prio-draft"}, "N",
|
||||
string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.draft_cpuparams.priority),
|
||||
[](common_params & params, int prio) {
|
||||
if (prio < 0 || prio > 3) {
|
||||
throw std::invalid_argument("invalid value");
|
||||
}
|
||||
params.draft_cpuparams.priority = (enum ggml_sched_priority) prio;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--poll-draft"}, "<0|1>",
|
||||
"Use polling to wait for draft model work (default: same as --poll])",
|
||||
[](common_params & params, int value) {
|
||||
params.draft_cpuparams.poll = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-Cbd", "--cpu-mask-batch-draft"}, "M",
|
||||
"Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
|
||||
[](common_params & params, const std::string & mask) {
|
||||
params.draft_cpuparams_batch.mask_valid = true;
|
||||
if (!parse_cpu_mask(mask, params.draft_cpuparams_batch.cpumask)) {
|
||||
throw std::invalid_argument("invalid cpumask");
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-Crbd", "--cpu-range-batch-draft"}, "lo-hi",
|
||||
"Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)",
|
||||
[](common_params & params, const std::string & range) {
|
||||
params.draft_cpuparams_batch.mask_valid = true;
|
||||
if (!parse_cpu_range(range, params.draft_cpuparams_batch.cpumask)) {
|
||||
throw std::invalid_argument("invalid cpumask");
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--cpu-strict-batch-draft"}, "<0|1>",
|
||||
"Use strict CPU placement for draft model (default: --cpu-strict-draft)",
|
||||
[](common_params & params, int value) {
|
||||
params.draft_cpuparams_batch.strict_cpu = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--prio-batch-draft"}, "N",
|
||||
string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.draft_cpuparams_batch.priority),
|
||||
[](common_params & params, int prio) {
|
||||
if (prio < 0 || prio > 3) {
|
||||
throw std::invalid_argument("invalid value");
|
||||
}
|
||||
params.draft_cpuparams_batch.priority = (enum ggml_sched_priority) prio;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--poll-batch-draft"}, "<0|1>",
|
||||
"Use polling to wait for draft model work (default: --poll-draft)",
|
||||
[](common_params & params, int value) {
|
||||
params.draft_cpuparams_batch.poll = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--draft"}, "N",
|
||||
string_format("number of tokens to draft for speculative decoding (default: %d)", params.n_draft),
|
||||
[](common_params & params, int value) {
|
||||
params.n_draft = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
|
||||
add_opt(common_arg(
|
||||
{"-ps", "--p-split"}, "N",
|
||||
string_format("speculative decoding split probability (default: %.1f)", (double)params.p_split),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.p_split = std::stof(value);
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-lcs", "--lookup-cache-static"}, "FNAME",
|
||||
"path to static lookup cache to use for lookup decoding (not updated by generation)",
|
||||
|
@ -701,7 +604,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
string_format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
|
||||
[](common_params & params) {
|
||||
params.no_perf = true;
|
||||
params.sparams.no_perf = true;
|
||||
params.sampling.no_perf = true;
|
||||
}
|
||||
).set_env("LLAMA_ARG_NO_PERF"));
|
||||
add_opt(common_arg(
|
||||
|
@ -883,155 +786,155 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
|
||||
[](common_params & params, const std::string & value) {
|
||||
const auto sampler_names = string_split<std::string>(value, ';');
|
||||
params.sparams.samplers = common_sampler_types_from_names(sampler_names, true);
|
||||
params.sampling.samplers = common_sampler_types_from_names(sampler_names, true);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"-s", "--seed"}, "SEED",
|
||||
string_format("RNG seed (default: %d, use random seed for %d)", params.sparams.seed, LLAMA_DEFAULT_SEED),
|
||||
string_format("RNG seed (default: %d, use random seed for %d)", params.sampling.seed, LLAMA_DEFAULT_SEED),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.seed = std::stoul(value);
|
||||
params.sampling.seed = std::stoul(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--sampling-seq"}, "SEQUENCE",
|
||||
string_format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.samplers = common_sampler_types_from_chars(value);
|
||||
params.sampling.samplers = common_sampler_types_from_chars(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--ignore-eos"},
|
||||
"ignore end of stream token and continue generating (implies --logit-bias EOS-inf)",
|
||||
[](common_params & params) {
|
||||
params.sparams.ignore_eos = true;
|
||||
params.sampling.ignore_eos = true;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--penalize-nl"},
|
||||
string_format("penalize newline tokens (default: %s)", params.sparams.penalize_nl ? "true" : "false"),
|
||||
string_format("penalize newline tokens (default: %s)", params.sampling.penalize_nl ? "true" : "false"),
|
||||
[](common_params & params) {
|
||||
params.sparams.penalize_nl = true;
|
||||
params.sampling.penalize_nl = true;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--temp"}, "N",
|
||||
string_format("temperature (default: %.1f)", (double)params.sparams.temp),
|
||||
string_format("temperature (default: %.1f)", (double)params.sampling.temp),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.temp = std::stof(value);
|
||||
params.sparams.temp = std::max(params.sparams.temp, 0.0f);
|
||||
params.sampling.temp = std::stof(value);
|
||||
params.sampling.temp = std::max(params.sampling.temp, 0.0f);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--top-k"}, "N",
|
||||
string_format("top-k sampling (default: %d, 0 = disabled)", params.sparams.top_k),
|
||||
string_format("top-k sampling (default: %d, 0 = disabled)", params.sampling.top_k),
|
||||
[](common_params & params, int value) {
|
||||
params.sparams.top_k = value;
|
||||
params.sampling.top_k = value;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--top-p"}, "N",
|
||||
string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sparams.top_p),
|
||||
string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.top_p = std::stof(value);
|
||||
params.sampling.top_p = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--min-p"}, "N",
|
||||
string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sparams.min_p),
|
||||
string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sampling.min_p),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.min_p = std::stof(value);
|
||||
params.sampling.min_p = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--xtc-probability"}, "N",
|
||||
string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sparams.xtc_probability),
|
||||
string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.xtc_probability = std::stof(value);
|
||||
params.sampling.xtc_probability = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--xtc-threshold"}, "N",
|
||||
string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sparams.xtc_threshold),
|
||||
string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sampling.xtc_threshold),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.xtc_threshold = std::stof(value);
|
||||
params.sampling.xtc_threshold = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--typical"}, "N",
|
||||
string_format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sparams.typ_p),
|
||||
string_format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sampling.typ_p),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.typ_p = std::stof(value);
|
||||
params.sampling.typ_p = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--repeat-last-n"}, "N",
|
||||
string_format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sparams.penalty_last_n),
|
||||
string_format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sampling.penalty_last_n),
|
||||
[](common_params & params, int value) {
|
||||
params.sparams.penalty_last_n = value;
|
||||
params.sparams.n_prev = std::max(params.sparams.n_prev, params.sparams.penalty_last_n);
|
||||
params.sampling.penalty_last_n = value;
|
||||
params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--repeat-penalty"}, "N",
|
||||
string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sparams.penalty_repeat),
|
||||
string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sampling.penalty_repeat),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.penalty_repeat = std::stof(value);
|
||||
params.sampling.penalty_repeat = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--presence-penalty"}, "N",
|
||||
string_format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sparams.penalty_present),
|
||||
string_format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_present),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.penalty_present = std::stof(value);
|
||||
params.sampling.penalty_present = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--frequency-penalty"}, "N",
|
||||
string_format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sparams.penalty_freq),
|
||||
string_format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_freq),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.penalty_freq = std::stof(value);
|
||||
params.sampling.penalty_freq = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--dry-multiplier"}, "N",
|
||||
string_format("set DRY sampling multiplier (default: %.1f, 0.0 = disabled)", (double)params.sparams.dry_multiplier),
|
||||
string_format("set DRY sampling multiplier (default: %.1f, 0.0 = disabled)", (double)params.sampling.dry_multiplier),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.dry_multiplier = std::stof(value);
|
||||
params.sampling.dry_multiplier = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--dry-base"}, "N",
|
||||
string_format("set DRY sampling base value (default: %.2f)", (double)params.sparams.dry_base),
|
||||
string_format("set DRY sampling base value (default: %.2f)", (double)params.sampling.dry_base),
|
||||
[](common_params & params, const std::string & value) {
|
||||
float potential_base = std::stof(value);
|
||||
if (potential_base >= 1.0f)
|
||||
{
|
||||
params.sparams.dry_base = potential_base;
|
||||
params.sampling.dry_base = potential_base;
|
||||
}
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--dry-allowed-length"}, "N",
|
||||
string_format("set allowed length for DRY sampling (default: %d)", params.sparams.dry_allowed_length),
|
||||
string_format("set allowed length for DRY sampling (default: %d)", params.sampling.dry_allowed_length),
|
||||
[](common_params & params, int value) {
|
||||
params.sparams.dry_allowed_length = value;
|
||||
params.sampling.dry_allowed_length = value;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--dry-penalty-last-n"}, "N",
|
||||
string_format("set DRY penalty for the last n tokens (default: %d, 0 = disable, -1 = context size)", params.sparams.dry_penalty_last_n),
|
||||
string_format("set DRY penalty for the last n tokens (default: %d, 0 = disable, -1 = context size)", params.sampling.dry_penalty_last_n),
|
||||
[](common_params & params, int value) {
|
||||
params.sparams.dry_penalty_last_n = value;
|
||||
params.sampling.dry_penalty_last_n = value;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--dry-sequence-breaker"}, "STRING",
|
||||
string_format("add sequence breaker for DRY sampling, clearing out default breakers (%s) in the process; use \"none\" to not use any sequence breakers\n",
|
||||
params.sparams.dry_sequence_breakers.empty() ? "none" :
|
||||
std::accumulate(std::next(params.sparams.dry_sequence_breakers.begin()),
|
||||
params.sparams.dry_sequence_breakers.end(),
|
||||
std::string("'") + (params.sparams.dry_sequence_breakers[0] == "\n" ? "\\n" : params.sparams.dry_sequence_breakers[0]) + "'",
|
||||
params.sampling.dry_sequence_breakers.empty() ? "none" :
|
||||
std::accumulate(std::next(params.sampling.dry_sequence_breakers.begin()),
|
||||
params.sampling.dry_sequence_breakers.end(),
|
||||
std::string("'") + (params.sampling.dry_sequence_breakers[0] == "\n" ? "\\n" : params.sampling.dry_sequence_breakers[0]) + "'",
|
||||
[](const std::string& a, const std::string& b) {
|
||||
std::string formatted_b = (b == "\n") ? "\\n" : b;
|
||||
return a + ", '" + formatted_b + "'";
|
||||
|
@ -1040,51 +943,51 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
static bool defaults_cleared = false;
|
||||
|
||||
if (!defaults_cleared) {
|
||||
params.sparams.dry_sequence_breakers.clear();
|
||||
params.sampling.dry_sequence_breakers.clear();
|
||||
defaults_cleared = true;
|
||||
}
|
||||
|
||||
if (value == "none") {
|
||||
params.sparams.dry_sequence_breakers.clear();
|
||||
params.sampling.dry_sequence_breakers.clear();
|
||||
} else {
|
||||
params.sparams.dry_sequence_breakers.emplace_back(value);
|
||||
params.sampling.dry_sequence_breakers.emplace_back(value);
|
||||
}
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--dynatemp-range"}, "N",
|
||||
string_format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sparams.dynatemp_range),
|
||||
string_format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sampling.dynatemp_range),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.dynatemp_range = std::stof(value);
|
||||
params.sampling.dynatemp_range = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--dynatemp-exp"}, "N",
|
||||
string_format("dynamic temperature exponent (default: %.1f)", (double)params.sparams.dynatemp_exponent),
|
||||
string_format("dynamic temperature exponent (default: %.1f)", (double)params.sampling.dynatemp_exponent),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.dynatemp_exponent = std::stof(value);
|
||||
params.sampling.dynatemp_exponent = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--mirostat"}, "N",
|
||||
string_format("use Mirostat sampling.\nTop K, Nucleus and Locally Typical samplers are ignored if used.\n"
|
||||
"(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sparams.mirostat),
|
||||
"(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sampling.mirostat),
|
||||
[](common_params & params, int value) {
|
||||
params.sparams.mirostat = value;
|
||||
params.sampling.mirostat = value;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--mirostat-lr"}, "N",
|
||||
string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sparams.mirostat_eta),
|
||||
string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sampling.mirostat_eta),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.mirostat_eta = std::stof(value);
|
||||
params.sampling.mirostat_eta = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--mirostat-ent"}, "N",
|
||||
string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sparams.mirostat_tau),
|
||||
string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sampling.mirostat_tau),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.mirostat_tau = std::stof(value);
|
||||
params.sampling.mirostat_tau = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
|
@ -1100,7 +1003,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
try {
|
||||
if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
|
||||
const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
|
||||
params.sparams.logit_bias.push_back({key, bias});
|
||||
params.sampling.logit_bias.push_back({key, bias});
|
||||
} else {
|
||||
throw std::invalid_argument("invalid input format");
|
||||
}
|
||||
|
@ -1111,9 +1014,9 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--grammar"}, "GRAMMAR",
|
||||
string_format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sparams.grammar.c_str()),
|
||||
string_format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sampling.grammar.c_str()),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.grammar = value;
|
||||
params.sampling.grammar = value;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
|
@ -1127,7 +1030,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
std::copy(
|
||||
std::istreambuf_iterator<char>(file),
|
||||
std::istreambuf_iterator<char>(),
|
||||
std::back_inserter(params.sparams.grammar)
|
||||
std::back_inserter(params.sampling.grammar)
|
||||
);
|
||||
}
|
||||
).set_sparam());
|
||||
|
@ -1135,7 +1038,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
{"-j", "--json-schema"}, "SCHEMA",
|
||||
"JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.grammar = json_schema_to_grammar(json::parse(value));
|
||||
params.sampling.grammar = json_schema_to_grammar(json::parse(value));
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
|
@ -1433,6 +1336,30 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
else { throw std::invalid_argument("invalid value"); }
|
||||
}
|
||||
).set_env("LLAMA_ARG_NUMA"));
|
||||
add_opt(common_arg(
|
||||
{"-dev", "--device"}, "<dev1,dev2,..>",
|
||||
"comma-separated list of devices to use for offloading (none = don't offload)\n"
|
||||
"use --list-devices to see a list of available devices",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.devices = parse_device_list(value);
|
||||
}
|
||||
).set_env("LLAMA_ARG_DEVICE"));
|
||||
add_opt(common_arg(
|
||||
{"--list-devices"},
|
||||
"print list of available devices and exit",
|
||||
[](common_params &) {
|
||||
printf("Available devices:\n");
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
|
||||
auto * dev = ggml_backend_dev_get(i);
|
||||
if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_GPU) {
|
||||
size_t free, total;
|
||||
ggml_backend_dev_memory(dev, &free, &total);
|
||||
printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024);
|
||||
}
|
||||
}
|
||||
exit(0);
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
|
||||
"number of layers to store in VRAM",
|
||||
|
@ -1444,17 +1371,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
}
|
||||
}
|
||||
).set_env("LLAMA_ARG_N_GPU_LAYERS"));
|
||||
add_opt(common_arg(
|
||||
{"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N",
|
||||
"number of layers to store in VRAM for the draft model",
|
||||
[](common_params & params, int value) {
|
||||
params.n_gpu_layers_draft = value;
|
||||
if (!llama_supports_gpu_offload()) {
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers-draft option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-sm", "--split-mode"}, "{none,layer,row}",
|
||||
"how to split the model across multiple GPUs, one of:\n"
|
||||
|
@ -1468,10 +1384,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
} else if (arg_next == "layer") {
|
||||
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
|
||||
} else if (arg_next == "row") {
|
||||
#ifdef GGML_USE_SYCL
|
||||
fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
|
||||
exit(1);
|
||||
#endif // GGML_USE_SYCL
|
||||
params.split_mode = LLAMA_SPLIT_MODE_ROW;
|
||||
} else {
|
||||
throw std::invalid_argument("invalid value");
|
||||
|
@ -1593,13 +1505,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
params.model = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL"));
|
||||
add_opt(common_arg(
|
||||
{"-md", "--model-draft"}, "FNAME",
|
||||
"draft model for speculative decoding (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.model_draft = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-mu", "--model-url"}, "MODEL_URL",
|
||||
"model download url (default: unused)",
|
||||
|
@ -2037,5 +1942,176 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
}
|
||||
).set_env("LLAMA_LOG_TIMESTAMPS"));
|
||||
|
||||
// speculative parameters
|
||||
add_opt(common_arg(
|
||||
{"-td", "--threads-draft"}, "N",
|
||||
"number of threads to use during generation (default: same as --threads)",
|
||||
[](common_params & params, int value) {
|
||||
params.speculative.cpuparams.n_threads = value;
|
||||
if (params.speculative.cpuparams.n_threads <= 0) {
|
||||
params.speculative.cpuparams.n_threads = std::thread::hardware_concurrency();
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-tbd", "--threads-batch-draft"}, "N",
|
||||
"number of threads to use during batch and prompt processing (default: same as --threads-draft)",
|
||||
[](common_params & params, int value) {
|
||||
params.speculative.cpuparams_batch.n_threads = value;
|
||||
if (params.speculative.cpuparams_batch.n_threads <= 0) {
|
||||
params.speculative.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-Cd", "--cpu-mask-draft"}, "M",
|
||||
"Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
|
||||
[](common_params & params, const std::string & mask) {
|
||||
params.speculative.cpuparams.mask_valid = true;
|
||||
if (!parse_cpu_mask(mask, params.speculative.cpuparams.cpumask)) {
|
||||
throw std::invalid_argument("invalid cpumask");
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-Crd", "--cpu-range-draft"}, "lo-hi",
|
||||
"Ranges of CPUs for affinity. Complements --cpu-mask-draft",
|
||||
[](common_params & params, const std::string & range) {
|
||||
params.speculative.cpuparams.mask_valid = true;
|
||||
if (!parse_cpu_range(range, params.speculative.cpuparams.cpumask)) {
|
||||
throw std::invalid_argument("invalid range");
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--cpu-strict-draft"}, "<0|1>",
|
||||
"Use strict CPU placement for draft model (default: same as --cpu-strict)",
|
||||
[](common_params & params, int value) {
|
||||
params.speculative.cpuparams.strict_cpu = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--prio-draft"}, "N",
|
||||
string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams.priority),
|
||||
[](common_params & params, int prio) {
|
||||
if (prio < 0 || prio > 3) {
|
||||
throw std::invalid_argument("invalid value");
|
||||
}
|
||||
params.speculative.cpuparams.priority = (enum ggml_sched_priority) prio;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--poll-draft"}, "<0|1>",
|
||||
"Use polling to wait for draft model work (default: same as --poll])",
|
||||
[](common_params & params, int value) {
|
||||
params.speculative.cpuparams.poll = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-Cbd", "--cpu-mask-batch-draft"}, "M",
|
||||
"Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
|
||||
[](common_params & params, const std::string & mask) {
|
||||
params.speculative.cpuparams_batch.mask_valid = true;
|
||||
if (!parse_cpu_mask(mask, params.speculative.cpuparams_batch.cpumask)) {
|
||||
throw std::invalid_argument("invalid cpumask");
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-Crbd", "--cpu-range-batch-draft"}, "lo-hi",
|
||||
"Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)",
|
||||
[](common_params & params, const std::string & range) {
|
||||
params.speculative.cpuparams_batch.mask_valid = true;
|
||||
if (!parse_cpu_range(range, params.speculative.cpuparams_batch.cpumask)) {
|
||||
throw std::invalid_argument("invalid cpumask");
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--cpu-strict-batch-draft"}, "<0|1>",
|
||||
"Use strict CPU placement for draft model (default: --cpu-strict-draft)",
|
||||
[](common_params & params, int value) {
|
||||
params.speculative.cpuparams_batch.strict_cpu = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--prio-batch-draft"}, "N",
|
||||
string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams_batch.priority),
|
||||
[](common_params & params, int prio) {
|
||||
if (prio < 0 || prio > 3) {
|
||||
throw std::invalid_argument("invalid value");
|
||||
}
|
||||
params.speculative.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--poll-batch-draft"}, "<0|1>",
|
||||
"Use polling to wait for draft model work (default: --poll-draft)",
|
||||
[](common_params & params, int value) {
|
||||
params.speculative.cpuparams_batch.poll = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--draft-max", "--draft", "--draft-n"}, "N",
|
||||
string_format("number of tokens to draft for speculative decoding (default: %d)", params.speculative.n_max),
|
||||
[](common_params & params, int value) {
|
||||
params.speculative.n_max = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"--draft-min", "--draft-n-min"}, "N",
|
||||
string_format("minimum number of draft tokens to use for speculative decoding (default: %d)", params.speculative.n_min),
|
||||
[](common_params & params, int value) {
|
||||
params.speculative.n_min = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"--draft-p-split"}, "P",
|
||||
string_format("speculative decoding split probability (default: %.1f)", (double)params.speculative.p_split),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.speculative.p_split = std::stof(value);
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--draft-p-min"}, "P",
|
||||
string_format("minimum speculative decoding probability (greedy) (default: %.1f)", (double)params.speculative.p_min),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.speculative.p_min = std::stof(value);
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"-cd", "--ctx-size-draft"}, "N",
|
||||
string_format("size of the prompt context for the draft model (default: %d, 0 = loaded from model)", params.speculative.n_ctx),
|
||||
[](common_params & params, int value) {
|
||||
params.speculative.n_ctx = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"-devd", "--device-draft"}, "<dev1,dev2,..>",
|
||||
"comma-separated list of devices to use for offloading the draft model (none = don't offload)\n"
|
||||
"use --list-devices to see a list of available devices",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.speculative.devices = parse_device_list(value);
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N",
|
||||
"number of layers to store in VRAM for the draft model",
|
||||
[](common_params & params, int value) {
|
||||
params.speculative.n_gpu_layers = value;
|
||||
if (!llama_supports_gpu_offload()) {
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers-draft option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"-md", "--model-draft"}, "FNAME",
|
||||
"draft model for speculative decoding (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.speculative.model = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
|
||||
|
||||
return ctx_arg;
|
||||
}
|
||||
|
|
|
@ -536,12 +536,12 @@ std::string string_from(const struct llama_context * ctx, const struct llama_bat
|
|||
[](const unsigned char c) { return !std::isprint(c); }),
|
||||
detokenized.end());
|
||||
|
||||
buf << "\n" << std::to_string(i)
|
||||
<< ":token '" << detokenized << "'"
|
||||
<< ":pos " << std::to_string(batch.pos[i])
|
||||
<< ":n_seq_id " << std::to_string(batch.n_seq_id[i])
|
||||
<< ":seq_id " << std::to_string(batch.seq_id[i][0])
|
||||
<< ":logits " << std::to_string(batch.logits[i]);
|
||||
buf << "\n" << std::to_string(i)
|
||||
<< ", token '" << detokenized << "'"
|
||||
<< ", pos " << std::to_string(batch.pos[i])
|
||||
<< ", n_seq_id " << std::to_string(batch.n_seq_id[i])
|
||||
<< ", seq_id " << std::to_string(batch.seq_id[i][0])
|
||||
<< ", logits " << std::to_string(batch.logits[i]);
|
||||
}
|
||||
|
||||
buf << " ]";
|
||||
|
@ -925,9 +925,9 @@ struct common_init_result common_init_from_params(common_params & params) {
|
|||
common_lora_adapters_apply(lctx, iparams.lora_adapters);
|
||||
}
|
||||
|
||||
if (params.sparams.ignore_eos && llama_token_eos(model) == LLAMA_TOKEN_NULL) {
|
||||
if (params.sampling.ignore_eos && llama_token_eos(model) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: model does not have an EOS token, ignoring --ignore-eos\n", __func__);
|
||||
params.sparams.ignore_eos = false;
|
||||
params.sampling.ignore_eos = false;
|
||||
}
|
||||
|
||||
if (params.warmup) {
|
||||
|
@ -979,9 +979,12 @@ void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_l
|
|||
}
|
||||
}
|
||||
|
||||
struct llama_model_params common_model_params_to_llama(const common_params & params) {
|
||||
struct llama_model_params common_model_params_to_llama(common_params & params) {
|
||||
auto mparams = llama_model_default_params();
|
||||
|
||||
if (!params.devices.empty()) {
|
||||
mparams.devices = params.devices.data();
|
||||
}
|
||||
if (params.n_gpu_layers != -1) {
|
||||
mparams.n_gpu_layers = params.n_gpu_layers;
|
||||
}
|
||||
|
@ -1490,6 +1493,66 @@ void common_batch_add(
|
|||
batch.n_tokens++;
|
||||
}
|
||||
|
||||
//
|
||||
// Token utils
|
||||
//
|
||||
|
||||
size_t common_lcp(const llama_tokens & a, const llama_tokens & b) {
|
||||
size_t i;
|
||||
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
|
||||
|
||||
return i;
|
||||
}
|
||||
|
||||
size_t common_lcs(const llama_tokens & a, const llama_tokens & b) {
|
||||
// check for empty sequences
|
||||
if (a.empty() || b.empty()) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// get the lengths of the input sequences
|
||||
size_t a_len = a.size();
|
||||
size_t b_len = b.size();
|
||||
|
||||
// initialize the maximum length of the longest common subsequence (LCS)
|
||||
size_t max_length = 0;
|
||||
|
||||
// use two rows instead of a 2D matrix to optimize space
|
||||
std::vector<size_t> prev_row(b_len + 1, 0);
|
||||
std::vector<size_t> curr_row(b_len + 1, 0);
|
||||
|
||||
// iterate through the elements of a
|
||||
for (size_t i = 1; i <= a_len; i++) {
|
||||
// iterate through the elements of b
|
||||
for (size_t j = 1; j <= b_len; j++) {
|
||||
// if elements at the current positions match
|
||||
if (a[i - 1] == b[j - 1]) {
|
||||
// if it's the first element of either sequences, set LCS length to 1
|
||||
if (i == 1 || j == 1) {
|
||||
curr_row[j] = 1;
|
||||
} else {
|
||||
// increment LCS length by 1 compared to the previous element
|
||||
curr_row[j] = prev_row[j - 1] + 1;
|
||||
}
|
||||
|
||||
// update max_length if necessary
|
||||
if (curr_row[j] > max_length) {
|
||||
max_length = curr_row[j];
|
||||
}
|
||||
} else {
|
||||
// reset LCS length if elements don't match
|
||||
curr_row[j] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// update the previous row for the next iteration
|
||||
prev_row = curr_row;
|
||||
}
|
||||
|
||||
// return the maximum length of the LCS
|
||||
return max_length;
|
||||
}
|
||||
|
||||
//
|
||||
// Vocab utils
|
||||
//
|
||||
|
|
|
@ -33,6 +33,8 @@ struct common_lora_adapter_container : common_lora_adapter_info {
|
|||
struct llama_lora_adapter * adapter;
|
||||
};
|
||||
|
||||
using llama_tokens = std::vector<llama_token>;
|
||||
|
||||
// build info
|
||||
extern int LLAMA_BUILD_NUMBER;
|
||||
extern char const * LLAMA_COMMIT;
|
||||
|
@ -101,8 +103,8 @@ enum dimre_method {
|
|||
DIMRE_METHOD_MEAN,
|
||||
};
|
||||
|
||||
// sampler parameters
|
||||
struct common_sampler_params {
|
||||
// sampling parameters
|
||||
struct common_params_sampling {
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
|
||||
|
||||
int32_t n_prev = 64; // number of previous tokens to remember
|
||||
|
@ -153,21 +155,30 @@ struct common_sampler_params {
|
|||
std::string print() const;
|
||||
};
|
||||
|
||||
struct common_params_speculative {
|
||||
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
|
||||
int32_t n_ctx = 0; // draft context size
|
||||
int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
|
||||
int32_t n_min = 5; // minimum number of draft tokens to use for speculative decoding
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
float p_min = 0.9f; // minimum speculative decoding probability (greedy)
|
||||
|
||||
struct cpu_params cpuparams;
|
||||
struct cpu_params cpuparams_batch;
|
||||
|
||||
std::string model = ""; // draft model for speculative decoding // NOLINT
|
||||
};
|
||||
|
||||
struct common_params {
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 4096; // context size
|
||||
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_draft = 5; // number of tokens to draft during speculative decoding
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
int32_t n_parallel = 1; // number of parallel sequences to decode
|
||||
int32_t n_sequences = 1; // number of sequences to decode
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t grp_attn_n = 1; // group-attention factor
|
||||
int32_t grp_attn_w = 512; // group-attention width
|
||||
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
|
||||
|
@ -180,25 +191,29 @@ struct common_params {
|
|||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||
float defrag_thold = 0.1f; // KV cache defragmentation threshold
|
||||
|
||||
// offload params
|
||||
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
||||
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
|
||||
|
||||
struct cpu_params cpuparams;
|
||||
struct cpu_params cpuparams_batch;
|
||||
struct cpu_params draft_cpuparams;
|
||||
struct cpu_params draft_cpuparams_batch;
|
||||
|
||||
ggml_backend_sched_eval_callback cb_eval = nullptr;
|
||||
void * cb_eval_user_data = nullptr;
|
||||
|
||||
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
|
||||
|
||||
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
|
||||
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
|
||||
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
|
||||
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
|
||||
|
||||
struct common_sampler_params sparams;
|
||||
struct common_params_sampling sampling;
|
||||
struct common_params_speculative speculative;
|
||||
|
||||
std::string model = ""; // model path // NOLINT
|
||||
std::string model_draft = ""; // draft model for speculative decoding // NOLINT
|
||||
std::string model_alias = "unknown"; // model alias // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
std::string hf_token = ""; // HF token // NOLINT
|
||||
|
@ -451,7 +466,7 @@ struct common_init_result {
|
|||
|
||||
struct common_init_result common_init_from_params(common_params & params);
|
||||
|
||||
struct llama_model_params common_model_params_to_llama (const common_params & params);
|
||||
struct llama_model_params common_model_params_to_llama ( common_params & params);
|
||||
struct llama_context_params common_context_params_to_llama(const common_params & params);
|
||||
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
|
||||
|
||||
|
@ -461,7 +476,9 @@ struct llama_model * common_load_model_from_hf(const char * repo, const char * f
|
|||
// clear LoRA adapters from context, then apply new list of adapters
|
||||
void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_container> & lora_adapters);
|
||||
|
||||
//
|
||||
// Batch utils
|
||||
//
|
||||
|
||||
void common_batch_clear(struct llama_batch & batch);
|
||||
|
||||
|
@ -472,6 +489,16 @@ void common_batch_add(
|
|||
const std::vector<llama_seq_id> & seq_ids,
|
||||
bool logits);
|
||||
|
||||
//
|
||||
// Token utils
|
||||
//
|
||||
|
||||
// longest common prefix
|
||||
size_t common_lcp(const llama_tokens & a, const llama_tokens & b);
|
||||
|
||||
// longet common subsequence
|
||||
size_t common_lcs(const llama_tokens & a, const llama_tokens & b);
|
||||
|
||||
//
|
||||
// Vocab utils
|
||||
//
|
||||
|
|
|
@ -99,7 +99,7 @@ struct ring_buffer {
|
|||
};
|
||||
|
||||
struct common_sampler {
|
||||
common_sampler_params params;
|
||||
common_params_sampling params;
|
||||
|
||||
struct llama_sampler * grmr;
|
||||
struct llama_sampler * chain;
|
||||
|
@ -125,7 +125,7 @@ struct common_sampler {
|
|||
}
|
||||
};
|
||||
|
||||
std::string common_sampler_params::print() const {
|
||||
std::string common_params_sampling::print() const {
|
||||
char result[1024];
|
||||
|
||||
snprintf(result, sizeof(result),
|
||||
|
@ -141,7 +141,7 @@ std::string common_sampler_params::print() const {
|
|||
return std::string(result);
|
||||
}
|
||||
|
||||
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_sampler_params & params) {
|
||||
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params) {
|
||||
llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
|
||||
|
||||
lparams.no_perf = params.no_perf;
|
||||
|
@ -320,6 +320,45 @@ llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_co
|
|||
return cur_p.data[cur_p.selected].id;
|
||||
}
|
||||
|
||||
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first) {
|
||||
GGML_ASSERT(idxs.size() == draft.size() + 1 && "idxs.size() must be draft.size() + 1");
|
||||
|
||||
std::vector<llama_token> result;
|
||||
result.reserve(idxs.size());
|
||||
|
||||
size_t i = 0;
|
||||
for (; i < draft.size(); i++) {
|
||||
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
|
||||
|
||||
common_sampler_accept(gsmpl, id, true);
|
||||
|
||||
result.push_back(id);
|
||||
|
||||
if (draft[i] != id) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (i == draft.size()) {
|
||||
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
|
||||
|
||||
common_sampler_accept(gsmpl, id, true);
|
||||
|
||||
result.push_back(id);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first) {
|
||||
std::vector<int> idxs(draft.size() + 1);
|
||||
for (size_t i = 0; i < idxs.size(); ++i) {
|
||||
idxs[i] = i;
|
||||
}
|
||||
|
||||
return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft, grammar_first);
|
||||
}
|
||||
|
||||
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
|
||||
return llama_sampler_get_seed(gsmpl->chain);
|
||||
}
|
||||
|
|
|
@ -36,7 +36,7 @@ struct common_sampler;
|
|||
|
||||
// llama_sampler API overloads
|
||||
|
||||
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_sampler_params & params);
|
||||
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params);
|
||||
|
||||
void common_sampler_free(struct common_sampler * gsmpl);
|
||||
|
||||
|
@ -60,6 +60,27 @@ void common_perf_print(const struct llama_context * ctx, const struct common_sam
|
|||
//
|
||||
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
|
||||
|
||||
// generalized version of common_sampler_sample
|
||||
//
|
||||
// will cross-reference the sampled tokens with a batch of draft tokens and accept those that match
|
||||
// if the sampler disagrees at some point, we stop and return the accepted tokens up to now
|
||||
//
|
||||
// common_sampler_sample_n(gsmpl, ctx, { idx }, {});
|
||||
//
|
||||
// is equivalent to
|
||||
//
|
||||
// common_sampler_sample(gsmpl, ctx, idx);
|
||||
// common_sampler_accept(gsmpl, token, true);
|
||||
//
|
||||
// requires: idxs.size() == draft.size() + 1
|
||||
//
|
||||
// returns at least 1 token, up to idxs.size()
|
||||
//
|
||||
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first = false);
|
||||
|
||||
// assume idxs == [ 0, 1, 2, ..., draft.size() ]
|
||||
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first = false);
|
||||
|
||||
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl);
|
||||
|
||||
// helpers
|
||||
|
|
270
common/speculative.cpp
Normal file
270
common/speculative.cpp
Normal file
|
@ -0,0 +1,270 @@
|
|||
#include "speculative.h"
|
||||
|
||||
#include "log.h"
|
||||
#include "common.h"
|
||||
#include "sampling.h"
|
||||
|
||||
#include <cstring>
|
||||
|
||||
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
|
||||
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
|
||||
|
||||
struct common_speculative {
|
||||
struct llama_context * ctx;
|
||||
struct common_sampler * smpl;
|
||||
|
||||
llama_batch batch;
|
||||
llama_tokens prompt;
|
||||
};
|
||||
|
||||
struct common_speculative * common_speculative_init(
|
||||
struct llama_context * ctx_dft) {
|
||||
auto * result = new common_speculative {
|
||||
/* .ctx = */ ctx_dft,
|
||||
/* .smpl = */ nullptr,
|
||||
/* .batch = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1),
|
||||
/* .prompt = */ {},
|
||||
};
|
||||
|
||||
// TODO: optimize or pass from outside?
|
||||
#if 0
|
||||
{
|
||||
common_params_sampling params;
|
||||
params.no_perf = false;
|
||||
|
||||
params.top_k = 40;
|
||||
params.top_p = 0.9;
|
||||
|
||||
params.samplers = {
|
||||
COMMON_SAMPLER_TYPE_TOP_K,
|
||||
COMMON_SAMPLER_TYPE_TOP_P,
|
||||
COMMON_SAMPLER_TYPE_INFILL,
|
||||
};
|
||||
|
||||
result->smpl = common_sampler_init(llama_get_model(ctx_dft), params);
|
||||
}
|
||||
#else
|
||||
{
|
||||
common_params_sampling params;
|
||||
params.no_perf = false;
|
||||
|
||||
params.top_k = 10;
|
||||
|
||||
params.samplers = {
|
||||
COMMON_SAMPLER_TYPE_TOP_K,
|
||||
};
|
||||
|
||||
result->smpl = common_sampler_init(llama_get_model(ctx_dft), params);
|
||||
}
|
||||
#endif
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void common_speculative_free(struct common_speculative * spec) {
|
||||
common_sampler_free(spec->smpl);
|
||||
|
||||
llama_batch_free(spec->batch);
|
||||
|
||||
delete spec;
|
||||
}
|
||||
|
||||
bool common_speculative_are_compatible(
|
||||
const struct llama_context * ctx_tgt,
|
||||
const struct llama_context * ctx_dft) {
|
||||
const struct llama_model * model_tgt = llama_get_model(ctx_tgt);
|
||||
const struct llama_model * model_dft = llama_get_model(ctx_dft);
|
||||
|
||||
const bool vocab_type_tgt = llama_vocab_type(model_tgt);
|
||||
LOG_DBG("%s: vocab_type tgt: %d\n", __func__, vocab_type_tgt);
|
||||
|
||||
const bool vocab_type_dft = llama_vocab_type(model_dft);
|
||||
LOG_DBG("%s: vocab_type dft: %d\n", __func__, vocab_type_dft);
|
||||
|
||||
if (vocab_type_tgt != vocab_type_dft) {
|
||||
LOG_ERR("%s: draft model vocab type must match target model to use speculation but "
|
||||
"vocab_type_dft = %d while vocab_type_tgt = %d\n", __func__, vocab_type_dft, vocab_type_tgt);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) ||
|
||||
llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) ||
|
||||
llama_token_bos(model_tgt) != llama_token_bos(model_dft) ||
|
||||
llama_token_eos(model_tgt) != llama_token_eos(model_dft)) {
|
||||
LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__);
|
||||
LOG_ERR("%s: tgt: bos = %d (%d), eos = %d (%d)\n", __func__, llama_token_bos(model_tgt), llama_add_bos_token(model_tgt), llama_token_eos(model_tgt), llama_add_eos_token(model_tgt));
|
||||
LOG_ERR("%s: dft: bos = %d (%d), eos = %d (%d)\n", __func__, llama_token_bos(model_dft), llama_add_bos_token(model_dft), llama_token_eos(model_dft), llama_add_eos_token(model_dft));
|
||||
return false;
|
||||
}
|
||||
|
||||
{
|
||||
const int n_vocab_tgt = llama_n_vocab(model_tgt);
|
||||
const int n_vocab_dft = llama_n_vocab(model_dft);
|
||||
|
||||
const int vocab_diff = std::abs(n_vocab_tgt - n_vocab_dft);
|
||||
|
||||
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
|
||||
LOG_ERR("%s: draft model vocab must closely match target model to use speculation but "
|
||||
"target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
|
||||
__func__, n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
|
||||
return false;
|
||||
}
|
||||
|
||||
for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
|
||||
const char * token_text_tgt = llama_token_get_text(model_tgt, i);
|
||||
const char * token_text_dft = llama_token_get_text(model_dft, i);
|
||||
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
|
||||
LOG_ERR("%s: draft model vocab must match target model to use speculation but "
|
||||
"token %d content differs - target '%s', draft '%s'\n", __func__, i,
|
||||
common_token_to_piece(ctx_tgt, i).c_str(),
|
||||
common_token_to_piece(ctx_dft, i).c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
llama_tokens common_speculative_gen_draft(
|
||||
struct common_speculative * spec,
|
||||
struct common_speculative_params params,
|
||||
const llama_tokens & prompt_tgt,
|
||||
llama_token id_last) {
|
||||
auto & batch = spec->batch;
|
||||
auto & ctx = spec->ctx;
|
||||
auto & smpl = spec->smpl;
|
||||
auto & prompt = spec->prompt;
|
||||
|
||||
int reuse_i = 0;
|
||||
int reuse_n = 0;
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx) - params.n_draft;
|
||||
|
||||
const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx);
|
||||
|
||||
// reuse as much as possible from the old draft context
|
||||
// ideally, the draft context should be as big as the target context and we will always reuse the entire prompt
|
||||
for (int i = 0; i < (int) prompt.size(); ++i) {
|
||||
int cur = 0;
|
||||
while (i_start + cur < (int) prompt_tgt.size() &&
|
||||
i + cur < (int) prompt.size() &&
|
||||
prompt_tgt[i_start + cur] == prompt[i + cur]) {
|
||||
cur++;
|
||||
}
|
||||
|
||||
if ((cur >= params.n_reuse || n_ctx >= (int) prompt_tgt.size()) && cur > reuse_n) {
|
||||
reuse_i = i;
|
||||
reuse_n = cur;
|
||||
}
|
||||
}
|
||||
|
||||
LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt.size());
|
||||
|
||||
llama_tokens result;
|
||||
result.reserve(params.n_draft);
|
||||
|
||||
if (reuse_n == 0) {
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
prompt.clear();
|
||||
} else {
|
||||
// this happens when a previous draft has been discarded (for example, due to being too small), but the
|
||||
// target model agreed with it. in this case, we simply pass back the previous results to save compute
|
||||
if (reuse_i + reuse_n < (int) prompt.size() && prompt[reuse_i + reuse_n] == id_last) {
|
||||
for (int i = reuse_i + reuse_n + 1; i < (int) prompt.size(); ++i) {
|
||||
result.push_back(prompt[i]);
|
||||
|
||||
if (params.n_draft <= (int) result.size()) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
if (reuse_i > 0) {
|
||||
llama_kv_cache_seq_rm (ctx, 0, 0, reuse_i);
|
||||
llama_kv_cache_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
|
||||
|
||||
prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
|
||||
}
|
||||
|
||||
if (reuse_n < (int) prompt.size()) {
|
||||
llama_kv_cache_seq_rm (ctx, 0, reuse_n, -1);
|
||||
|
||||
prompt.erase(prompt.begin() + reuse_n, prompt.end());
|
||||
}
|
||||
}
|
||||
|
||||
// prepare a batch to evaluate any new tokens in the prompt
|
||||
common_batch_clear(batch);
|
||||
|
||||
for (size_t i = i_start + reuse_n; i < prompt_tgt.size(); ++i) {
|
||||
//LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]);
|
||||
common_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false);
|
||||
|
||||
prompt.push_back(prompt_tgt[i]);
|
||||
}
|
||||
|
||||
// we should rarely end-up here during normal decoding
|
||||
if (batch.n_tokens > 0) {
|
||||
//LOG_DBG("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str());
|
||||
|
||||
llama_decode(ctx, batch);
|
||||
}
|
||||
|
||||
const llama_pos n_past = prompt.size();
|
||||
|
||||
LOG_DBG("%s: n_past = %d\n", __func__, n_past);
|
||||
|
||||
common_batch_clear(batch);
|
||||
common_batch_add (batch, id_last, n_past, { 0 }, true);
|
||||
|
||||
prompt.push_back(id_last);
|
||||
|
||||
//LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx, prompt).c_str());
|
||||
|
||||
llama_decode(ctx, batch);
|
||||
|
||||
common_sampler_reset(smpl);
|
||||
|
||||
// sample n_draft tokens from the draft model
|
||||
for (int i = 0; i < params.n_draft; ++i) {
|
||||
common_batch_clear(batch);
|
||||
|
||||
common_sampler_sample(smpl, ctx, 0, true);
|
||||
|
||||
const auto * cur_p = common_sampler_get_candidates(smpl);
|
||||
|
||||
for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) {
|
||||
LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n",
|
||||
k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx, cur_p->data[k].id).c_str());
|
||||
}
|
||||
|
||||
// add drafted token for each sequence
|
||||
const llama_token id = cur_p->data[0].id;
|
||||
|
||||
// only collect very high-confidence draft tokens
|
||||
if (cur_p->data[0].p < params.p_min) {
|
||||
break;
|
||||
}
|
||||
|
||||
common_sampler_accept(smpl, id, true);
|
||||
|
||||
result.push_back(id);
|
||||
|
||||
if (params.n_draft <= (int) result.size()) {
|
||||
break;
|
||||
}
|
||||
|
||||
common_batch_add(batch, id, n_past + i + 1, { 0 }, true);
|
||||
|
||||
// evaluate the drafted tokens on the draft model
|
||||
llama_decode(ctx, batch);
|
||||
|
||||
prompt.push_back(id);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
28
common/speculative.h
Normal file
28
common/speculative.h
Normal file
|
@ -0,0 +1,28 @@
|
|||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
|
||||
struct common_speculative;
|
||||
|
||||
struct common_speculative_params {
|
||||
int n_draft = 16; // max drafted tokens
|
||||
int n_reuse = 256;
|
||||
|
||||
float p_min = 0.9f; // min probabiliy required to accept a token in the draft
|
||||
};
|
||||
|
||||
struct common_speculative * common_speculative_init(struct llama_context * ctx_dft);
|
||||
|
||||
void common_speculative_free(struct common_speculative * spec);
|
||||
|
||||
bool common_speculative_are_compatible(
|
||||
const struct llama_context * ctx_tgt,
|
||||
const struct llama_context * ctx_dft);
|
||||
|
||||
// sample up to n_draft tokens and add them to the batch using the draft model
|
||||
llama_tokens common_speculative_gen_draft(
|
||||
struct common_speculative * spec,
|
||||
struct common_speculative_params params,
|
||||
const llama_tokens & prompt,
|
||||
llama_token id_last);
|
|
@ -2707,7 +2707,7 @@ class XLMRobertaModel(BertModel):
|
|||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
self.gguf_writer.add_add_space_prefix(add_prefix)
|
||||
self.gguf_writer.add_token_type_count(1)
|
||||
self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
|
||||
self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
|
||||
if precompiled_charsmap:
|
||||
self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
|
||||
|
@ -3040,9 +3040,9 @@ class OlmoModel(Model):
|
|||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@Model.register("Olmo1124ForCausalLM")
|
||||
class Olmo1124Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.OLMO_1124
|
||||
@Model.register("Olmo2ForCausalLM")
|
||||
class Olmo2Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.OLMO2
|
||||
|
||||
|
||||
@Model.register("OlmoeForCausalLM")
|
||||
|
|
|
@ -221,7 +221,7 @@ You can download it from your Linux distro's package manager or from here: [ROCm
|
|||
|
||||
- Using `make`:
|
||||
```bash
|
||||
make GGML_HIPBLAS=1
|
||||
make GGML_HIP=1
|
||||
```
|
||||
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
|
||||
```bash
|
||||
|
@ -249,7 +249,7 @@ You can download it from your Linux distro's package manager or from here: [ROCm
|
|||
|
||||
- Using `make` (example for target gfx1030, build with 16 CPU threads):
|
||||
```bash
|
||||
make -j16 GGML_HIPBLAS=1 GGML_HIP_UMA=1 AMDGPU_TARGETS=gfx1030
|
||||
make -j16 GGML_HIP=1 GGML_HIP_UMA=1 AMDGPU_TARGETS=gfx1030
|
||||
```
|
||||
|
||||
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
|
||||
|
|
|
@ -6,19 +6,20 @@ find_package(Threads REQUIRED)
|
|||
|
||||
# ...
|
||||
|
||||
# flags
|
||||
|
||||
llama_add_compile_flags()
|
||||
|
||||
# examples
|
||||
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
else()
|
||||
add_subdirectory(cvector-generator)
|
||||
add_subdirectory(batched-bench)
|
||||
add_subdirectory(batched)
|
||||
add_subdirectory(convert-llama2c-to-ggml)
|
||||
add_subdirectory(embedding)
|
||||
add_subdirectory(eval-callback)
|
||||
add_subdirectory(export-lora)
|
||||
add_subdirectory(gbnf-validator)
|
||||
add_subdirectory(gguf-hash)
|
||||
add_subdirectory(gguf-split)
|
||||
|
@ -27,28 +28,36 @@ else()
|
|||
add_subdirectory(imatrix)
|
||||
add_subdirectory(infill)
|
||||
add_subdirectory(llama-bench)
|
||||
add_subdirectory(llava)
|
||||
add_subdirectory(lookahead)
|
||||
add_subdirectory(lookup)
|
||||
add_subdirectory(main)
|
||||
add_subdirectory(parallel)
|
||||
add_subdirectory(passkey)
|
||||
add_subdirectory(perplexity)
|
||||
add_subdirectory(quantize-stats)
|
||||
add_subdirectory(quantize)
|
||||
add_subdirectory(retrieval)
|
||||
if (GGML_RPC)
|
||||
add_subdirectory(rpc)
|
||||
endif()
|
||||
if (LLAMA_BUILD_SERVER)
|
||||
add_subdirectory(server)
|
||||
endif()
|
||||
if (GGML_SYCL)
|
||||
add_subdirectory(sycl)
|
||||
add_subdirectory(server)
|
||||
endif()
|
||||
add_subdirectory(save-load-state)
|
||||
add_subdirectory(run)
|
||||
add_subdirectory(simple)
|
||||
add_subdirectory(simple-chat)
|
||||
add_subdirectory(speculative)
|
||||
add_subdirectory(speculative-simple)
|
||||
add_subdirectory(tokenize)
|
||||
if (NOT GGML_BACKEND_DL)
|
||||
# these examples use the backends directly and cannot be built with dynamic loading
|
||||
add_subdirectory(convert-llama2c-to-ggml)
|
||||
add_subdirectory(cvector-generator)
|
||||
add_subdirectory(export-lora)
|
||||
add_subdirectory(quantize-stats)
|
||||
add_subdirectory(llava)
|
||||
if (GGML_RPC)
|
||||
add_subdirectory(rpc)
|
||||
endif()
|
||||
if (GGML_SYCL)
|
||||
add_subdirectory(sycl)
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
|
|
@ -68,10 +68,10 @@ int main(int argc, char ** argv) {
|
|||
|
||||
llama_sampler * smpl = llama_sampler_chain_init(sparams);
|
||||
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(params.sparams.top_k));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(params.sparams.top_p, params.sparams.min_keep));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_temp (params.sparams.temp));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_dist (params.sparams.seed));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(params.sampling.top_k));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(params.sampling.top_p, params.sampling.min_keep));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_temp (params.sampling.temp));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_dist (params.sampling.seed));
|
||||
|
||||
if (ctx == NULL) {
|
||||
LOG_ERR("%s: error: failed to create the llama_context\n" , __func__);
|
||||
|
|
|
@ -5,5 +5,6 @@ target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
|||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
||||
set(TEST_TARGET test-eval-callback)
|
||||
add_test(NAME ${TEST_TARGET} COMMAND llama-eval-callback --hf-repo ggml-org/models --hf-file tinyllamas/stories260K.gguf --model stories260K.gguf --prompt hello --seed 42 -ngl 0)
|
||||
add_test(NAME ${TEST_TARGET}
|
||||
COMMAND llama-eval-callback --hf-repo ggml-org/models --hf-file tinyllamas/stories260K.gguf --model stories260K.gguf --prompt hello --seed 42 -ngl 0)
|
||||
set_property(TEST ${TEST_TARGET} PROPERTY LABELS eval-callback curl)
|
||||
|
|
|
@ -4,10 +4,17 @@ install(TARGETS ${TARGET} RUNTIME)
|
|||
|
||||
# clibs dependencies
|
||||
include_directories(deps/)
|
||||
|
||||
add_library(xxhash OBJECT deps/xxhash/xxhash.c deps/xxhash/xxhash.h)
|
||||
target_link_libraries(${TARGET} PRIVATE xxhash)
|
||||
|
||||
add_library(sha1 OBJECT deps/sha1/sha1.c deps/sha1/sha1.h)
|
||||
target_link_libraries(${TARGET} PRIVATE sha1)
|
||||
if (NOT MSVC)
|
||||
# disable warnings in 3rd party code
|
||||
target_compile_options(sha1 PRIVATE -w)
|
||||
endif()
|
||||
|
||||
add_library(sha256 OBJECT deps/sha256/sha256.c deps/sha256/sha256.h)
|
||||
target_link_libraries(${TARGET} PRIVATE sha256)
|
||||
|
||||
|
|
|
@ -73,7 +73,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
common_init();
|
||||
|
||||
auto & sparams = params.sparams;
|
||||
auto & sparams = params.sampling;
|
||||
|
||||
console::init(params.simple_io, params.use_color);
|
||||
atexit([]() { console::cleanup(); });
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -191,7 +191,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
|||
|
||||
LOG("\n");
|
||||
|
||||
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sparams);
|
||||
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sampling);
|
||||
if (!smpl) {
|
||||
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
|
||||
exit(1);
|
||||
|
|
|
@ -237,7 +237,7 @@ static struct common_sampler * llama_init(struct llava_context * ctx_llava, comm
|
|||
|
||||
LOG_INF("\n");
|
||||
|
||||
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sparams);
|
||||
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sampling);
|
||||
return smpl;
|
||||
}
|
||||
|
||||
|
|
|
@ -115,7 +115,7 @@ int main(int argc, char ** argv) {
|
|||
llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
|
||||
|
||||
// target model sampling context
|
||||
struct common_sampler * smpl = common_sampler_init(model, params.sparams);
|
||||
struct common_sampler * smpl = common_sampler_init(model, params.sampling);
|
||||
|
||||
// verification n-grams
|
||||
std::vector<ngram_data> ngrams_cur(G);
|
||||
|
|
|
@ -21,7 +21,7 @@ int main(int argc, char ** argv){
|
|||
|
||||
common_init();
|
||||
|
||||
const int n_draft = params.n_draft;
|
||||
const int n_draft = params.speculative.n_max;
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
|
@ -40,6 +40,7 @@ int main(int argc, char ** argv){
|
|||
common_ngram_cache ngram_cache_context;
|
||||
common_ngram_cache ngram_cache_dynamic;
|
||||
common_ngram_cache ngram_cache_static;
|
||||
|
||||
int64_t t_draft_flat_us = 0;
|
||||
int64_t t_draft_us = 0;
|
||||
|
||||
|
|
|
@ -22,7 +22,7 @@ int main(int argc, char ** argv){
|
|||
common_init();
|
||||
|
||||
// max. number of additional tokens to draft if match is found
|
||||
const int n_draft = params.n_draft;
|
||||
const int n_draft = params.speculative.n_max;
|
||||
|
||||
const bool dump_kv_cache = params.dump_kv_cache;
|
||||
|
||||
|
@ -102,7 +102,7 @@ int main(int argc, char ** argv){
|
|||
|
||||
bool has_eos = false;
|
||||
|
||||
struct common_sampler * smpl = common_sampler_init(model, params.sparams);
|
||||
struct common_sampler * smpl = common_sampler_init(model, params.sampling);
|
||||
|
||||
std::vector<llama_token> draft;
|
||||
|
||||
|
|
|
@ -100,7 +100,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
common_init();
|
||||
|
||||
auto & sparams = params.sparams;
|
||||
auto & sparams = params.sampling;
|
||||
|
||||
// save choice to use color for later
|
||||
// (note for later: this is a slightly awkward choice)
|
||||
|
@ -165,6 +165,10 @@ int main(int argc, char ** argv) {
|
|||
|
||||
LOG_INF("%s: llama threadpool init, n_threads = %d\n", __func__, (int) params.cpuparams.n_threads);
|
||||
|
||||
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
|
||||
auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(reg, "ggml_threadpool_new");
|
||||
auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(reg, "ggml_threadpool_free");
|
||||
|
||||
struct ggml_threadpool_params tpp_batch =
|
||||
ggml_threadpool_params_from_cpu_params(params.cpuparams_batch);
|
||||
struct ggml_threadpool_params tpp =
|
||||
|
@ -174,7 +178,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
struct ggml_threadpool * threadpool_batch = NULL;
|
||||
if (!ggml_threadpool_params_match(&tpp, &tpp_batch)) {
|
||||
threadpool_batch = ggml_threadpool_new(&tpp_batch);
|
||||
threadpool_batch = ggml_threadpool_new_fn(&tpp_batch);
|
||||
if (!threadpool_batch) {
|
||||
LOG_ERR("%s: batch threadpool create failed : n_threads %d\n", __func__, tpp_batch.n_threads);
|
||||
return 1;
|
||||
|
@ -184,7 +188,7 @@ int main(int argc, char ** argv) {
|
|||
tpp.paused = true;
|
||||
}
|
||||
|
||||
struct ggml_threadpool * threadpool = ggml_threadpool_new(&tpp);
|
||||
struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp);
|
||||
if (!threadpool) {
|
||||
LOG_ERR("%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
|
||||
return 1;
|
||||
|
@ -890,8 +894,8 @@ int main(int argc, char ** argv) {
|
|||
|
||||
llama_backend_free();
|
||||
|
||||
ggml_threadpool_free(threadpool);
|
||||
ggml_threadpool_free(threadpool_batch);
|
||||
ggml_threadpool_free_fn(threadpool);
|
||||
ggml_threadpool_free_fn(threadpool_batch);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -160,7 +160,7 @@ int main(int argc, char ** argv) {
|
|||
for (size_t i = 0; i < clients.size(); ++i) {
|
||||
auto & client = clients[i];
|
||||
client.id = i;
|
||||
client.smpl = common_sampler_init(model, params.sparams);
|
||||
client.smpl = common_sampler_init(model, params.sampling);
|
||||
}
|
||||
|
||||
std::vector<llama_token> tokens_system;
|
||||
|
|
|
@ -282,8 +282,8 @@ int main(int argc, char ** argv) {
|
|||
return a.second > b.second;
|
||||
});
|
||||
|
||||
LOG("Top %d similar chunks:\n", params.sparams.top_k);
|
||||
for (int i = 0; i < std::min(params.sparams.top_k, (int) chunks.size()); i++) {
|
||||
LOG("Top %d similar chunks:\n", params.sampling.top_k);
|
||||
for (int i = 0; i < std::min(params.sampling.top_k, (int) chunks.size()); i++) {
|
||||
LOG("filename: %s\n", chunks[similarities[i].first].filename.c_str());
|
||||
LOG("filepos: %lld\n", (long long int) chunks[similarities[i].first].filepos);
|
||||
LOG("similarity: %f\n", similarities[i].second);
|
||||
|
|
5
examples/run/CMakeLists.txt
Normal file
5
examples/run/CMakeLists.txt
Normal file
|
@ -0,0 +1,5 @@
|
|||
set(TARGET llama-run)
|
||||
add_executable(${TARGET} run.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
7
examples/run/README.md
Normal file
7
examples/run/README.md
Normal file
|
@ -0,0 +1,7 @@
|
|||
# llama.cpp/example/run
|
||||
|
||||
The purpose of this example is to demonstrate a minimal usage of llama.cpp for running models.
|
||||
|
||||
```bash
|
||||
./llama-run Meta-Llama-3.1-8B-Instruct.gguf
|
||||
...
|
409
examples/run/run.cpp
Normal file
409
examples/run/run.cpp
Normal file
|
@ -0,0 +1,409 @@
|
|||
#if defined(_WIN32)
|
||||
#include <windows.h>
|
||||
#else
|
||||
#include <unistd.h>
|
||||
#endif
|
||||
|
||||
#include <climits>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
#include "llama-cpp.h"
|
||||
|
||||
typedef std::unique_ptr<char[]> char_array_ptr;
|
||||
|
||||
struct Argument {
|
||||
std::string flag;
|
||||
std::string help_text;
|
||||
};
|
||||
|
||||
struct Options {
|
||||
std::string model_path, prompt_non_interactive;
|
||||
int ngl = 99;
|
||||
int n_ctx = 2048;
|
||||
};
|
||||
|
||||
class ArgumentParser {
|
||||
public:
|
||||
ArgumentParser(const char * program_name) : program_name(program_name) {}
|
||||
|
||||
void add_argument(const std::string & flag, std::string & var, const std::string & help_text = "") {
|
||||
string_args[flag] = &var;
|
||||
arguments.push_back({flag, help_text});
|
||||
}
|
||||
|
||||
void add_argument(const std::string & flag, int & var, const std::string & help_text = "") {
|
||||
int_args[flag] = &var;
|
||||
arguments.push_back({flag, help_text});
|
||||
}
|
||||
|
||||
int parse(int argc, const char ** argv) {
|
||||
for (int i = 1; i < argc; ++i) {
|
||||
std::string arg = argv[i];
|
||||
if (string_args.count(arg)) {
|
||||
if (i + 1 < argc) {
|
||||
*string_args[arg] = argv[++i];
|
||||
} else {
|
||||
fprintf(stderr, "error: missing value for %s\n", arg.c_str());
|
||||
print_usage();
|
||||
return 1;
|
||||
}
|
||||
} else if (int_args.count(arg)) {
|
||||
if (i + 1 < argc) {
|
||||
if (parse_int_arg(argv[++i], *int_args[arg]) != 0) {
|
||||
fprintf(stderr, "error: invalid value for %s: %s\n", arg.c_str(), argv[i]);
|
||||
print_usage();
|
||||
return 1;
|
||||
}
|
||||
} else {
|
||||
fprintf(stderr, "error: missing value for %s\n", arg.c_str());
|
||||
print_usage();
|
||||
return 1;
|
||||
}
|
||||
} else {
|
||||
fprintf(stderr, "error: unrecognized argument %s\n", arg.c_str());
|
||||
print_usage();
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
if (string_args["-m"]->empty()) {
|
||||
fprintf(stderr, "error: -m is required\n");
|
||||
print_usage();
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
private:
|
||||
const char * program_name;
|
||||
std::unordered_map<std::string, std::string *> string_args;
|
||||
std::unordered_map<std::string, int *> int_args;
|
||||
std::vector<Argument> arguments;
|
||||
|
||||
int parse_int_arg(const char * arg, int & value) {
|
||||
char * end;
|
||||
const long val = std::strtol(arg, &end, 10);
|
||||
if (*end == '\0' && val >= INT_MIN && val <= INT_MAX) {
|
||||
value = static_cast<int>(val);
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
void print_usage() const {
|
||||
printf("\nUsage:\n");
|
||||
printf(" %s [OPTIONS]\n\n", program_name);
|
||||
printf("Options:\n");
|
||||
for (const auto & arg : arguments) {
|
||||
printf(" %-10s %s\n", arg.flag.c_str(), arg.help_text.c_str());
|
||||
}
|
||||
|
||||
printf("\n");
|
||||
}
|
||||
};
|
||||
|
||||
class LlamaData {
|
||||
public:
|
||||
llama_model_ptr model;
|
||||
llama_sampler_ptr sampler;
|
||||
llama_context_ptr context;
|
||||
std::vector<llama_chat_message> messages;
|
||||
|
||||
int init(const Options & opt) {
|
||||
model = initialize_model(opt.model_path, opt.ngl);
|
||||
if (!model) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
context = initialize_context(model, opt.n_ctx);
|
||||
if (!context) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
sampler = initialize_sampler();
|
||||
return 0;
|
||||
}
|
||||
|
||||
private:
|
||||
// Initializes the model and returns a unique pointer to it
|
||||
llama_model_ptr initialize_model(const std::string & model_path, const int ngl) {
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
model_params.n_gpu_layers = ngl;
|
||||
|
||||
llama_model_ptr model(llama_load_model_from_file(model_path.c_str(), model_params));
|
||||
if (!model) {
|
||||
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
||||
}
|
||||
|
||||
return model;
|
||||
}
|
||||
|
||||
// Initializes the context with the specified parameters
|
||||
llama_context_ptr initialize_context(const llama_model_ptr & model, const int n_ctx) {
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
ctx_params.n_ctx = n_ctx;
|
||||
ctx_params.n_batch = n_ctx;
|
||||
|
||||
llama_context_ptr context(llama_new_context_with_model(model.get(), ctx_params));
|
||||
if (!context) {
|
||||
fprintf(stderr, "%s: error: failed to create the llama_context\n", __func__);
|
||||
}
|
||||
|
||||
return context;
|
||||
}
|
||||
|
||||
// Initializes and configures the sampler
|
||||
llama_sampler_ptr initialize_sampler() {
|
||||
llama_sampler_ptr sampler(llama_sampler_chain_init(llama_sampler_chain_default_params()));
|
||||
llama_sampler_chain_add(sampler.get(), llama_sampler_init_min_p(0.05f, 1));
|
||||
llama_sampler_chain_add(sampler.get(), llama_sampler_init_temp(0.8f));
|
||||
llama_sampler_chain_add(sampler.get(), llama_sampler_init_dist(LLAMA_DEFAULT_SEED));
|
||||
|
||||
return sampler;
|
||||
}
|
||||
};
|
||||
|
||||
// Add a message to `messages` and store its content in `owned_content`
|
||||
static void add_message(const char * role, const std::string & text, LlamaData & llama_data,
|
||||
std::vector<char_array_ptr> & owned_content) {
|
||||
char_array_ptr content(new char[text.size() + 1]);
|
||||
std::strcpy(content.get(), text.c_str());
|
||||
llama_data.messages.push_back({role, content.get()});
|
||||
owned_content.push_back(std::move(content));
|
||||
}
|
||||
|
||||
// Function to apply the chat template and resize `formatted` if needed
|
||||
static int apply_chat_template(const LlamaData & llama_data, std::vector<char> & formatted, const bool append) {
|
||||
int result = llama_chat_apply_template(llama_data.model.get(), nullptr, llama_data.messages.data(),
|
||||
llama_data.messages.size(), append, formatted.data(), formatted.size());
|
||||
if (result > static_cast<int>(formatted.size())) {
|
||||
formatted.resize(result);
|
||||
result = llama_chat_apply_template(llama_data.model.get(), nullptr, llama_data.messages.data(),
|
||||
llama_data.messages.size(), append, formatted.data(), formatted.size());
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Function to tokenize the prompt
|
||||
static int tokenize_prompt(const llama_model_ptr & model, const std::string & prompt,
|
||||
std::vector<llama_token> & prompt_tokens) {
|
||||
const int n_prompt_tokens = -llama_tokenize(model.get(), prompt.c_str(), prompt.size(), NULL, 0, true, true);
|
||||
prompt_tokens.resize(n_prompt_tokens);
|
||||
if (llama_tokenize(model.get(), prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true,
|
||||
true) < 0) {
|
||||
GGML_ABORT("failed to tokenize the prompt\n");
|
||||
}
|
||||
|
||||
return n_prompt_tokens;
|
||||
}
|
||||
|
||||
// Check if we have enough space in the context to evaluate this batch
|
||||
static int check_context_size(const llama_context_ptr & ctx, const llama_batch & batch) {
|
||||
const int n_ctx = llama_n_ctx(ctx.get());
|
||||
const int n_ctx_used = llama_get_kv_cache_used_cells(ctx.get());
|
||||
if (n_ctx_used + batch.n_tokens > n_ctx) {
|
||||
printf("\033[0m\n");
|
||||
fprintf(stderr, "context size exceeded\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// convert the token to a string
|
||||
static int convert_token_to_string(const llama_model_ptr & model, const llama_token token_id, std::string & piece) {
|
||||
char buf[256];
|
||||
int n = llama_token_to_piece(model.get(), token_id, buf, sizeof(buf), 0, true);
|
||||
if (n < 0) {
|
||||
GGML_ABORT("failed to convert token to piece\n");
|
||||
}
|
||||
|
||||
piece = std::string(buf, n);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void print_word_and_concatenate_to_response(const std::string & piece, std::string & response) {
|
||||
printf("%s", piece.c_str());
|
||||
fflush(stdout);
|
||||
response += piece;
|
||||
}
|
||||
|
||||
// helper function to evaluate a prompt and generate a response
|
||||
static int generate(LlamaData & llama_data, const std::string & prompt, std::string & response) {
|
||||
std::vector<llama_token> prompt_tokens;
|
||||
const int n_prompt_tokens = tokenize_prompt(llama_data.model, prompt, prompt_tokens);
|
||||
if (n_prompt_tokens < 0) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
// prepare a batch for the prompt
|
||||
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
|
||||
llama_token new_token_id;
|
||||
while (true) {
|
||||
check_context_size(llama_data.context, batch);
|
||||
if (llama_decode(llama_data.context.get(), batch)) {
|
||||
GGML_ABORT("failed to decode\n");
|
||||
}
|
||||
|
||||
// sample the next token, check is it an end of generation?
|
||||
new_token_id = llama_sampler_sample(llama_data.sampler.get(), llama_data.context.get(), -1);
|
||||
if (llama_token_is_eog(llama_data.model.get(), new_token_id)) {
|
||||
break;
|
||||
}
|
||||
|
||||
std::string piece;
|
||||
if (convert_token_to_string(llama_data.model, new_token_id, piece)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
print_word_and_concatenate_to_response(piece, response);
|
||||
|
||||
// prepare the next batch with the sampled token
|
||||
batch = llama_batch_get_one(&new_token_id, 1);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int parse_arguments(const int argc, const char ** argv, Options & opt) {
|
||||
ArgumentParser parser(argv[0]);
|
||||
parser.add_argument("-m", opt.model_path, "model");
|
||||
parser.add_argument("-p", opt.prompt_non_interactive, "prompt");
|
||||
parser.add_argument("-c", opt.n_ctx, "context_size");
|
||||
parser.add_argument("-ngl", opt.ngl, "n_gpu_layers");
|
||||
if (parser.parse(argc, argv)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int read_user_input(std::string & user) {
|
||||
std::getline(std::cin, user);
|
||||
return user.empty(); // Indicate an error or empty input
|
||||
}
|
||||
|
||||
// Function to generate a response based on the prompt
|
||||
static int generate_response(LlamaData & llama_data, const std::string & prompt, std::string & response) {
|
||||
// Set response color
|
||||
printf("\033[33m");
|
||||
if (generate(llama_data, prompt, response)) {
|
||||
fprintf(stderr, "failed to generate response\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
// End response with color reset and newline
|
||||
printf("\n\033[0m");
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Helper function to apply the chat template and handle errors
|
||||
static int apply_chat_template_with_error_handling(const LlamaData & llama_data, std::vector<char> & formatted,
|
||||
const bool is_user_input, int & output_length) {
|
||||
const int new_len = apply_chat_template(llama_data, formatted, is_user_input);
|
||||
if (new_len < 0) {
|
||||
fprintf(stderr, "failed to apply the chat template\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
output_length = new_len;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Helper function to handle user input
|
||||
static bool handle_user_input(std::string & user_input, const std::string & prompt_non_interactive) {
|
||||
if (!prompt_non_interactive.empty()) {
|
||||
user_input = prompt_non_interactive;
|
||||
return true; // No need for interactive input
|
||||
}
|
||||
|
||||
printf("\033[32m> \033[0m");
|
||||
return !read_user_input(user_input); // Returns false if input ends the loop
|
||||
}
|
||||
|
||||
// Function to tokenize the prompt
|
||||
static int chat_loop(LlamaData & llama_data, std::string & prompt_non_interactive) {
|
||||
std::vector<char_array_ptr> owned_content;
|
||||
std::vector<char> fmtted(llama_n_ctx(llama_data.context.get()));
|
||||
int prev_len = 0;
|
||||
|
||||
while (true) {
|
||||
// Get user input
|
||||
std::string user_input;
|
||||
if (!handle_user_input(user_input, prompt_non_interactive)) {
|
||||
break;
|
||||
}
|
||||
|
||||
add_message("user", prompt_non_interactive.empty() ? user_input : prompt_non_interactive, llama_data,
|
||||
owned_content);
|
||||
|
||||
int new_len;
|
||||
if (apply_chat_template_with_error_handling(llama_data, fmtted, true, new_len) < 0) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::string prompt(fmtted.begin() + prev_len, fmtted.begin() + new_len);
|
||||
std::string response;
|
||||
if (generate_response(llama_data, prompt, response)) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void log_callback(const enum ggml_log_level level, const char * text, void *) {
|
||||
if (level == GGML_LOG_LEVEL_ERROR) {
|
||||
fprintf(stderr, "%s", text);
|
||||
}
|
||||
}
|
||||
|
||||
static bool is_stdin_a_terminal() {
|
||||
#if defined(_WIN32)
|
||||
HANDLE hStdin = GetStdHandle(STD_INPUT_HANDLE);
|
||||
DWORD mode;
|
||||
return GetConsoleMode(hStdin, &mode);
|
||||
#else
|
||||
return isatty(STDIN_FILENO);
|
||||
#endif
|
||||
}
|
||||
|
||||
static std::string read_pipe_data() {
|
||||
std::ostringstream result;
|
||||
result << std::cin.rdbuf(); // Read all data from std::cin
|
||||
return result.str();
|
||||
}
|
||||
|
||||
int main(int argc, const char ** argv) {
|
||||
Options opt;
|
||||
if (parse_arguments(argc, argv, opt)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (!is_stdin_a_terminal()) {
|
||||
if (!opt.prompt_non_interactive.empty()) {
|
||||
opt.prompt_non_interactive += "\n\n";
|
||||
}
|
||||
|
||||
opt.prompt_non_interactive += read_pipe_data();
|
||||
}
|
||||
|
||||
llama_log_set(log_callback, nullptr);
|
||||
LlamaData llama_data;
|
||||
if (llama_data.init(opt)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (chat_loop(llama_data, opt.prompt_non_interactive)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -9,7 +9,7 @@ int main(int argc, char ** argv) {
|
|||
common_params params;
|
||||
|
||||
params.prompt = "The quick brown fox";
|
||||
params.sparams.seed = 1234;
|
||||
params.sampling.seed = 1234;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
return 1;
|
||||
|
@ -42,7 +42,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
llama_sampler * smpl = llama_sampler_chain_init(sparams);
|
||||
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_dist(params.sparams.seed));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_dist(params.sampling.seed));
|
||||
|
||||
// tokenize prompt
|
||||
auto tokens = common_tokenize(ctx, params.prompt, true);
|
||||
|
@ -106,7 +106,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
llama_sampler * smpl2 = llama_sampler_chain_init(sparams);
|
||||
|
||||
llama_sampler_chain_add(smpl2, llama_sampler_init_dist(params.sparams.seed));
|
||||
llama_sampler_chain_add(smpl2, llama_sampler_init_dist(params.sampling.seed));
|
||||
|
||||
printf("\nsecond run: %s", params.prompt.c_str());
|
||||
|
||||
|
@ -169,7 +169,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
llama_sampler * smpl3 = llama_sampler_chain_init(sparams);
|
||||
|
||||
llama_sampler_chain_add(smpl3, llama_sampler_init_dist(params.sparams.seed));
|
||||
llama_sampler_chain_add(smpl3, llama_sampler_init_dist(params.sampling.seed));
|
||||
|
||||
printf("\nsingle seq run: %s", params.prompt.c_str());
|
||||
|
||||
|
|
|
@ -412,7 +412,7 @@ node index.js
|
|||
|
||||
`id_slot`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot. Default: `-1`
|
||||
|
||||
`cache_prompt`: Re-use KV cache from a previous request if possible. This way the common prefix does not have to be re-processed, only the suffix that differs between the requests. Because (depending on the backend) the logits are **not** guaranteed to be bit-for-bit identical for different batch sizes (prompt processing vs. token generation) enabling this option can cause nondeterministic results. Default: `false`
|
||||
`cache_prompt`: Re-use KV cache from a previous request if possible. This way the common prefix does not have to be re-processed, only the suffix that differs between the requests. Because (depending on the backend) the logits are **not** guaranteed to be bit-for-bit identical for different batch sizes (prompt processing vs. token generation) enabling this option can cause nondeterministic results. Default: `true`
|
||||
|
||||
`samplers`: The order the samplers should be applied in. An array of strings representing sampler type names. If a sampler is not set, it will not be used. If a sampler is specified more than once, it will be applied multiple times. Default: `["dry", "top_k", "typ_p", "top_p", "min_p", "xtc", "temperature"]` - these are all the available values.
|
||||
|
||||
|
|
|
@ -81,7 +81,13 @@
|
|||
<path d="M14.5 3a1 1 0 0 1-1 1H13v9a2 2 0 0 1-2 2H5a2 2 0 0 1-2-2V4h-.5a1 1 0 0 1-1-1V2a1 1 0 0 1 1-1H6a1 1 0 0 1 1-1h2a1 1 0 0 1 1 1h3.5a1 1 0 0 1 1 1zM4.118 4 4 4.059V13a1 1 0 0 0 1 1h6a1 1 0 0 0 1-1V4.059L11.882 4zM2.5 3h11V2h-11z"/>
|
||||
</svg>
|
||||
</button>
|
||||
|
||||
<button v-if="messages.length > 0" class="btn mr-1" @click="downloadConv(viewingConvId)" :disabled="isGenerating">
|
||||
<!-- download conversation button -->
|
||||
<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-download" viewBox="0 0 16 16">
|
||||
<path d="M.5 9.9a.5.5 0 0 1 .5.5v2.5a1 1 0 0 0 1 1h12a1 1 0 0 0 1-1v-2.5a.5.5 0 0 1 1 0v2.5a2 2 0 0 1-2 2H2a2 2 0 0 1-2-2v-2.5a.5.5 0 0 1 .5-.5"/>
|
||||
<path d="M7.646 11.854a.5.5 0 0 0 .708 0l3-3a.5.5 0 0 0-.708-.708L8.5 10.293V1.5a.5.5 0 0 0-1 0v8.793L5.354 8.146a.5.5 0 1 0-.708.708z"/>
|
||||
</svg>
|
||||
</button>
|
||||
<button class="btn" @click="showConfigDialog = true" :disabled="isGenerating">
|
||||
<!-- edit config button -->
|
||||
<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-gear" viewBox="0 0 16 16">
|
||||
|
@ -526,6 +532,23 @@
|
|||
this.fetchMessages();
|
||||
}
|
||||
},
|
||||
downloadConv(convId) {
|
||||
const conversation = StorageUtils.getOneConversation(convId);
|
||||
if (!conversation) {
|
||||
alert('Conversation not found.');
|
||||
return;
|
||||
}
|
||||
const conversationJson = JSON.stringify(conversation, null, 2);
|
||||
const blob = new Blob([conversationJson], { type: 'application/json' });
|
||||
const url = URL.createObjectURL(blob);
|
||||
const a = document.createElement('a');
|
||||
a.href = url;
|
||||
a.download = `conversation_${convId}.json`;
|
||||
document.body.appendChild(a);
|
||||
a.click();
|
||||
document.body.removeChild(a);
|
||||
URL.revokeObjectURL(url);
|
||||
},
|
||||
async sendMessage() {
|
||||
if (!this.inputMsg) return;
|
||||
const currConvId = this.viewingConvId;
|
||||
|
|
|
@ -2,10 +2,11 @@
|
|||
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "sampling.h"
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "llama.h"
|
||||
#include "log.h"
|
||||
#include "sampling.h"
|
||||
#include "speculative.h"
|
||||
|
||||
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
|
@ -110,7 +111,7 @@ struct server_static_file {
|
|||
|
||||
struct slot_params {
|
||||
bool stream = true;
|
||||
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
|
||||
bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
|
||||
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
|
||||
|
@ -121,12 +122,21 @@ struct slot_params {
|
|||
int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
|
||||
|
||||
std::vector<std::string> antiprompt;
|
||||
|
||||
struct common_params_sampling sampling;
|
||||
struct common_params_speculative speculative;
|
||||
};
|
||||
|
||||
struct server_slot {
|
||||
int id;
|
||||
int id_task = -1;
|
||||
|
||||
llama_batch batch_spec;
|
||||
|
||||
llama_context * ctx_dft = nullptr;
|
||||
|
||||
common_speculative * spec = nullptr;
|
||||
|
||||
// the index relative to completion multi-task request
|
||||
size_t index = 0;
|
||||
|
||||
|
@ -175,7 +185,6 @@ struct server_slot {
|
|||
// sampling
|
||||
json json_schema;
|
||||
|
||||
struct common_sampler_params sparams;
|
||||
struct common_sampler * smpl = nullptr;
|
||||
|
||||
llama_token sampled;
|
||||
|
@ -212,7 +221,7 @@ struct server_slot {
|
|||
generated_token_probs.clear();
|
||||
}
|
||||
|
||||
bool has_budget(common_params &global_params) {
|
||||
bool has_budget(const common_params & global_params) {
|
||||
if (params.n_predict == -1 && global_params.n_predict == -1) {
|
||||
return true; // limitless
|
||||
}
|
||||
|
@ -232,6 +241,10 @@ struct server_slot {
|
|||
return state != SLOT_STATE_IDLE;
|
||||
}
|
||||
|
||||
bool can_speculate() const {
|
||||
return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
|
||||
}
|
||||
|
||||
void add_token(const completion_token_output & token) {
|
||||
if (!is_processing()) {
|
||||
SLT_WRN(*this, "%s", "slot is not processing\n");
|
||||
|
@ -591,11 +604,14 @@ struct server_response {
|
|||
};
|
||||
|
||||
struct server_context {
|
||||
common_params params_base;
|
||||
|
||||
llama_model * model = nullptr;
|
||||
llama_context * ctx = nullptr;
|
||||
std::vector<common_lora_adapter_container> loras;
|
||||
|
||||
common_params params;
|
||||
llama_model * model_dft = nullptr;
|
||||
llama_context_params cparams_dft;
|
||||
|
||||
llama_batch batch = {};
|
||||
|
||||
|
@ -628,27 +644,41 @@ struct server_context {
|
|||
model = nullptr;
|
||||
}
|
||||
|
||||
if (model_dft) {
|
||||
llama_free_model(model_dft);
|
||||
model_dft = nullptr;
|
||||
}
|
||||
|
||||
// Clear any sampling context
|
||||
for (server_slot & slot : slots) {
|
||||
if (slot.smpl != nullptr) {
|
||||
common_sampler_free(slot.smpl);
|
||||
}
|
||||
common_sampler_free(slot.smpl);
|
||||
slot.smpl = nullptr;
|
||||
|
||||
llama_free(slot.ctx_dft);
|
||||
slot.ctx_dft = nullptr;
|
||||
|
||||
common_speculative_free(slot.spec);
|
||||
slot.spec = nullptr;
|
||||
|
||||
llama_batch_free(slot.batch_spec);
|
||||
}
|
||||
|
||||
llama_batch_free(batch);
|
||||
}
|
||||
|
||||
bool load_model(const common_params & params_) {
|
||||
params = params_;
|
||||
bool load_model(const common_params & params) {
|
||||
SRV_INF("loading model '%s'\n", params.model.c_str());
|
||||
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
params_base = params;
|
||||
|
||||
common_init_result llama_init = common_init_from_params(params_base);
|
||||
|
||||
model = llama_init.model;
|
||||
ctx = llama_init.context;
|
||||
loras = llama_init.lora_adapters;
|
||||
|
||||
if (model == nullptr) {
|
||||
SRV_ERR("failed to load model, '%s'\n", params.model.c_str());
|
||||
SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -657,6 +687,41 @@ struct server_context {
|
|||
add_bos_token = llama_add_bos_token(model);
|
||||
has_eos_token = !llama_add_eos_token(model);
|
||||
|
||||
if (!params_base.speculative.model.empty()) {
|
||||
SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
|
||||
|
||||
auto params_dft = params_base;
|
||||
|
||||
params_dft.devices = params_base.speculative.devices;
|
||||
params_dft.model = params_base.speculative.model;
|
||||
params_dft.n_ctx = params_base.speculative.n_ctx;
|
||||
params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
|
||||
|
||||
common_init_result llama_init_dft = common_init_from_params(params_dft);
|
||||
|
||||
model_dft = llama_init_dft.model;
|
||||
|
||||
if (model_dft == nullptr) {
|
||||
SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!common_speculative_are_compatible(ctx, llama_init_dft.context)) {
|
||||
SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
|
||||
|
||||
llama_free (llama_init_dft.context);
|
||||
llama_free_model(llama_init_dft.model);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
cparams_dft = common_context_params_to_llama(params_base);
|
||||
cparams_dft.n_batch = llama_n_ctx(llama_init_dft.context);
|
||||
|
||||
// the context is not needed - we will create one for each slot
|
||||
llama_free(llama_init_dft.context);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -674,20 +739,36 @@ struct server_context {
|
|||
}
|
||||
|
||||
void init() {
|
||||
const int32_t n_ctx_slot = n_ctx / params.n_parallel;
|
||||
const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
|
||||
|
||||
SRV_INF("initializing slots, n_slots = %d\n", params.n_parallel);
|
||||
SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
|
||||
|
||||
for (int i = 0; i < params.n_parallel; i++) {
|
||||
for (int i = 0; i < params_base.n_parallel; i++) {
|
||||
server_slot slot;
|
||||
|
||||
slot.id = i;
|
||||
slot.n_ctx = n_ctx_slot;
|
||||
slot.n_predict = params.n_predict;
|
||||
slot.n_predict = params_base.n_predict;
|
||||
|
||||
if (model_dft) {
|
||||
slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
|
||||
|
||||
slot.ctx_dft = llama_new_context_with_model(model_dft, cparams_dft);
|
||||
if (slot.ctx_dft == nullptr) {
|
||||
SRV_ERR("%s", "failed to create draft context\n");
|
||||
return;
|
||||
}
|
||||
|
||||
slot.spec = common_speculative_init(slot.ctx_dft);
|
||||
if (slot.spec == nullptr) {
|
||||
SRV_ERR("%s", "failed to create speculator\n");
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
|
||||
|
||||
slot.sparams = params.sparams;
|
||||
slot.params.sampling = params_base.sampling;
|
||||
|
||||
slot.callback_on_release = [this](int) {
|
||||
queue_tasks.pop_deferred_task();
|
||||
|
@ -707,7 +788,7 @@ struct server_context {
|
|||
const int32_t n_batch = llama_n_batch(ctx);
|
||||
|
||||
// only a single seq_id per token is needed
|
||||
batch = llama_batch_init(std::max(n_batch, params.n_parallel), 0, 1);
|
||||
batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
|
||||
}
|
||||
|
||||
metrics.init();
|
||||
|
@ -743,7 +824,7 @@ struct server_context {
|
|||
}
|
||||
|
||||
// length of the Longest Common Subsequence between the current slot's prompt and the input prompt
|
||||
int cur_lcs_len = longest_common_subsequence(slot.cache_tokens, task.prompt_tokens);
|
||||
int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
|
||||
|
||||
// fraction of the common subsequence length compared to the current slot's prompt length
|
||||
float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
|
||||
|
@ -786,9 +867,11 @@ struct server_context {
|
|||
}
|
||||
|
||||
bool launch_slot_with_task(server_slot & slot, const server_task & task) {
|
||||
slot_params default_params;
|
||||
// Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
|
||||
auto default_sparams = params.sparams;
|
||||
slot_params defaults;
|
||||
defaults.sampling = params_base.sampling;
|
||||
defaults.speculative = params_base.speculative;
|
||||
|
||||
const auto & data = task.data;
|
||||
|
||||
if (data.count("__oaicompat") != 0) {
|
||||
|
@ -799,42 +882,48 @@ struct server_context {
|
|||
slot.oaicompat_model = "";
|
||||
}
|
||||
|
||||
slot.params.stream = json_value(data, "stream", false);
|
||||
slot.params.cache_prompt = json_value(data, "cache_prompt", false);
|
||||
slot.params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", default_params.n_predict));
|
||||
slot.params.n_indent = json_value(data, "n_indent", default_params.n_indent);
|
||||
slot.sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
|
||||
slot.sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
|
||||
slot.sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
|
||||
slot.sparams.xtc_probability = json_value(data, "xtc_probability", default_sparams.xtc_probability);
|
||||
slot.sparams.xtc_threshold = json_value(data, "xtc_threshold", default_sparams.xtc_threshold);
|
||||
slot.sparams.typ_p = json_value(data, "typical_p", default_sparams.typ_p);
|
||||
slot.sparams.temp = json_value(data, "temperature", default_sparams.temp);
|
||||
slot.sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
|
||||
slot.sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
|
||||
slot.sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
|
||||
slot.sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
|
||||
slot.sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
|
||||
slot.sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
|
||||
slot.sparams.dry_multiplier = json_value(data, "dry_multiplier", default_sparams.dry_multiplier);
|
||||
slot.sparams.dry_base = json_value(data, "dry_base", default_sparams.dry_base);
|
||||
slot.sparams.dry_allowed_length = json_value(data, "dry_allowed_length", default_sparams.dry_allowed_length);
|
||||
slot.sparams.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", default_sparams.dry_penalty_last_n);
|
||||
slot.sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
|
||||
slot.sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
|
||||
slot.sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
|
||||
slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
|
||||
slot.params.n_keep = json_value(data, "n_keep", default_params.n_keep);
|
||||
slot.params.n_discard = json_value(data, "n_discard", default_params.n_discard);
|
||||
slot.sparams.seed = json_value(data, "seed", default_sparams.seed);
|
||||
slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
|
||||
slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
|
||||
//slot.params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", default_params.t_max_prompt_ms); // TODO: implement
|
||||
slot.params.t_max_predict_ms = json_value(data, "t_max_predict_ms", default_params.t_max_predict_ms);
|
||||
slot.params.stream = json_value(data, "stream", false);
|
||||
slot.params.cache_prompt = json_value(data, "cache_prompt", true);
|
||||
slot.params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
|
||||
slot.params.n_indent = json_value(data, "n_indent", defaults.n_indent);
|
||||
slot.params.n_keep = json_value(data, "n_keep", defaults.n_keep);
|
||||
slot.params.n_discard = json_value(data, "n_discard", defaults.n_discard);
|
||||
//slot.params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
|
||||
slot.params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
|
||||
|
||||
if (slot.sparams.dry_base < 1.0f)
|
||||
{
|
||||
slot.sparams.dry_base = default_sparams.dry_base;
|
||||
slot.params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
|
||||
slot.params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
|
||||
slot.params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
|
||||
slot.params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
|
||||
slot.params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
|
||||
slot.params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
|
||||
slot.params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
|
||||
slot.params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
|
||||
slot.params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
|
||||
slot.params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
|
||||
slot.params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
|
||||
slot.params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
|
||||
slot.params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
|
||||
slot.params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
|
||||
slot.params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
|
||||
slot.params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
|
||||
slot.params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
|
||||
slot.params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
|
||||
slot.params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
|
||||
slot.params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
|
||||
slot.params.sampling.penalize_nl = json_value(data, "penalize_nl", defaults.sampling.penalize_nl);
|
||||
slot.params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
|
||||
slot.params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
|
||||
slot.params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
|
||||
|
||||
slot.params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
|
||||
slot.params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
|
||||
slot.params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
|
||||
|
||||
slot.params.speculative.n_min = std::min(slot.params.speculative.n_max, slot.params.speculative.n_min);
|
||||
|
||||
if (slot.params.sampling.dry_base < 1.0f) {
|
||||
slot.params.sampling.dry_base = defaults.sampling.dry_base;
|
||||
}
|
||||
|
||||
// sequence breakers for DRY
|
||||
|
@ -843,8 +932,8 @@ struct server_context {
|
|||
// Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
|
||||
|
||||
if (data.contains("dry_sequence_breakers")) {
|
||||
slot.sparams.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
|
||||
if (slot.sparams.dry_sequence_breakers.empty()) {
|
||||
slot.params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
|
||||
if (slot.params.sampling.dry_sequence_breakers.empty()) {
|
||||
send_error(task, "Error: dry_sequence_breakers must be a non-empty array of strings", ERROR_TYPE_INVALID_REQUEST);
|
||||
return false;
|
||||
}
|
||||
|
@ -858,14 +947,14 @@ struct server_context {
|
|||
}
|
||||
if (data.contains("json_schema") && !data.contains("grammar")) {
|
||||
try {
|
||||
auto schema = json_value(data, "json_schema", json::object());
|
||||
slot.sparams.grammar = json_schema_to_grammar(schema);
|
||||
auto schema = json_value(data, "json_schema", json::object());
|
||||
slot.params.sampling.grammar = json_schema_to_grammar(schema);
|
||||
} catch (const std::exception & e) {
|
||||
send_error(task, std::string("\"json_schema\": ") + e.what(), ERROR_TYPE_INVALID_REQUEST);
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
slot.sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
|
||||
slot.params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
|
||||
}
|
||||
|
||||
if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
|
||||
|
@ -875,10 +964,10 @@ struct server_context {
|
|||
}
|
||||
|
||||
{
|
||||
slot.sparams.logit_bias.clear();
|
||||
slot.params.sampling.logit_bias.clear();
|
||||
|
||||
if (json_value(data, "ignore_eos", false) && has_eos_token) {
|
||||
slot.sparams.logit_bias.push_back({llama_token_eos(model), -INFINITY});
|
||||
slot.params.sampling.logit_bias.push_back({llama_token_eos(model), -INFINITY});
|
||||
}
|
||||
|
||||
const auto & logit_bias = data.find("logit_bias");
|
||||
|
@ -899,12 +988,12 @@ struct server_context {
|
|||
if (el[0].is_number_integer()) {
|
||||
llama_token tok = el[0].get<llama_token>();
|
||||
if (tok >= 0 && tok < n_vocab) {
|
||||
slot.sparams.logit_bias.push_back({tok, bias});
|
||||
slot.params.sampling.logit_bias.push_back({tok, bias});
|
||||
}
|
||||
} else if (el[0].is_string()) {
|
||||
auto toks = common_tokenize(model, el[0].get<std::string>(), false);
|
||||
for (auto tok : toks) {
|
||||
slot.sparams.logit_bias.push_back({tok, bias});
|
||||
slot.params.sampling.logit_bias.push_back({tok, bias});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -935,16 +1024,16 @@ struct server_context {
|
|||
sampler_names.emplace_back(name);
|
||||
}
|
||||
}
|
||||
slot.sparams.samplers = common_sampler_types_from_names(sampler_names, false);
|
||||
slot.params.sampling.samplers = common_sampler_types_from_names(sampler_names, false);
|
||||
} else if (samplers->is_string()){
|
||||
std::string sampler_string;
|
||||
for (const auto & name : *samplers) {
|
||||
sampler_string += name;
|
||||
}
|
||||
slot.sparams.samplers = common_sampler_types_from_chars(sampler_string);
|
||||
slot.params.sampling.samplers = common_sampler_types_from_chars(sampler_string);
|
||||
}
|
||||
} else {
|
||||
slot.sparams.samplers = default_sparams.samplers;
|
||||
slot.params.sampling.samplers = defaults.sampling.samplers;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -953,7 +1042,7 @@ struct server_context {
|
|||
common_sampler_free(slot.smpl);
|
||||
}
|
||||
|
||||
slot.smpl = common_sampler_init(model, slot.sparams);
|
||||
slot.smpl = common_sampler_init(model, slot.params.sampling);
|
||||
if (slot.smpl == nullptr) {
|
||||
// for now, the only error that may happen here is invalid grammar
|
||||
send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
|
||||
|
@ -961,6 +1050,12 @@ struct server_context {
|
|||
}
|
||||
}
|
||||
|
||||
if (slot.ctx_dft) {
|
||||
llama_batch_free(slot.batch_spec);
|
||||
|
||||
slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
|
||||
}
|
||||
|
||||
slot.state = SLOT_STATE_STARTED;
|
||||
|
||||
SLT_INF(slot, "%s", "processing task\n");
|
||||
|
@ -978,7 +1073,7 @@ struct server_context {
|
|||
|
||||
bool process_token(completion_token_output & result, server_slot & slot) {
|
||||
// remember which tokens were sampled - used for repetition penalties during sampling
|
||||
const std::string token_str = common_token_to_piece(ctx, result.tok, params.special);
|
||||
const std::string token_str = common_token_to_piece(ctx, result.tok, params_base.special);
|
||||
slot.sampled = result.tok;
|
||||
|
||||
// search stop word and delete it
|
||||
|
@ -1043,7 +1138,7 @@ struct server_context {
|
|||
}
|
||||
|
||||
// check the limits
|
||||
if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params)) {
|
||||
if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
|
||||
slot.stopped_limit = true;
|
||||
slot.has_next_token = false;
|
||||
|
||||
|
@ -1136,50 +1231,54 @@ struct server_context {
|
|||
|
||||
json get_formated_generation(const server_slot & slot) const {
|
||||
std::vector<std::string> samplers;
|
||||
samplers.reserve(slot.sparams.samplers.size());
|
||||
for (const auto & sampler : slot.sparams.samplers) {
|
||||
samplers.reserve(slot.params.sampling.samplers.size());
|
||||
for (const auto & sampler : slot.params.sampling.samplers) {
|
||||
samplers.emplace_back(common_sampler_type_to_str(sampler));
|
||||
}
|
||||
|
||||
return json {
|
||||
{"n_ctx", slot.n_ctx},
|
||||
{"n_predict", slot.n_predict}, // Server configured n_predict
|
||||
{"model", params.model_alias},
|
||||
{"seed", slot.sparams.seed},
|
||||
{"model", params_base.model_alias},
|
||||
{"seed", slot.params.sampling.seed},
|
||||
{"seed_cur", slot.smpl ? common_sampler_get_seed(slot.smpl) : 0},
|
||||
{"temperature", slot.sparams.temp},
|
||||
{"dynatemp_range", slot.sparams.dynatemp_range},
|
||||
{"dynatemp_exponent", slot.sparams.dynatemp_exponent},
|
||||
{"top_k", slot.sparams.top_k},
|
||||
{"top_p", slot.sparams.top_p},
|
||||
{"min_p", slot.sparams.min_p},
|
||||
{"xtc_probability", slot.sparams.xtc_probability},
|
||||
{"xtc_threshold", slot.sparams.xtc_threshold},
|
||||
{"typical_p", slot.sparams.typ_p},
|
||||
{"repeat_last_n", slot.sparams.penalty_last_n},
|
||||
{"repeat_penalty", slot.sparams.penalty_repeat},
|
||||
{"presence_penalty", slot.sparams.penalty_present},
|
||||
{"frequency_penalty", slot.sparams.penalty_freq},
|
||||
{"dry_multiplier", slot.sparams.dry_multiplier},
|
||||
{"dry_base", slot.sparams.dry_base},
|
||||
{"dry_allowed_length", slot.sparams.dry_allowed_length},
|
||||
{"dry_penalty_last_n", slot.sparams.dry_penalty_last_n},
|
||||
{"dry_sequence_breakers", slot.sparams.dry_sequence_breakers},
|
||||
{"mirostat", slot.sparams.mirostat},
|
||||
{"mirostat_tau", slot.sparams.mirostat_tau},
|
||||
{"mirostat_eta", slot.sparams.mirostat_eta},
|
||||
{"penalize_nl", slot.sparams.penalize_nl},
|
||||
{"temperature", slot.params.sampling.temp},
|
||||
{"dynatemp_range", slot.params.sampling.dynatemp_range},
|
||||
{"dynatemp_exponent", slot.params.sampling.dynatemp_exponent},
|
||||
{"top_k", slot.params.sampling.top_k},
|
||||
{"top_p", slot.params.sampling.top_p},
|
||||
{"min_p", slot.params.sampling.min_p},
|
||||
{"xtc_probability", slot.params.sampling.xtc_probability},
|
||||
{"xtc_threshold", slot.params.sampling.xtc_threshold},
|
||||
{"typical_p", slot.params.sampling.typ_p},
|
||||
{"repeat_last_n", slot.params.sampling.penalty_last_n},
|
||||
{"repeat_penalty", slot.params.sampling.penalty_repeat},
|
||||
{"presence_penalty", slot.params.sampling.penalty_present},
|
||||
{"frequency_penalty", slot.params.sampling.penalty_freq},
|
||||
{"dry_multiplier", slot.params.sampling.dry_multiplier},
|
||||
{"dry_base", slot.params.sampling.dry_base},
|
||||
{"dry_allowed_length", slot.params.sampling.dry_allowed_length},
|
||||
{"dry_penalty_last_n", slot.params.sampling.dry_penalty_last_n},
|
||||
{"dry_sequence_breakers", slot.params.sampling.dry_sequence_breakers},
|
||||
{"mirostat", slot.params.sampling.mirostat},
|
||||
{"mirostat_tau", slot.params.sampling.mirostat_tau},
|
||||
{"mirostat_eta", slot.params.sampling.mirostat_eta},
|
||||
{"penalize_nl", slot.params.sampling.penalize_nl},
|
||||
{"stop", slot.params.antiprompt},
|
||||
{"max_tokens", slot.params.n_predict}, // User configured n_predict
|
||||
{"n_keep", slot.params.n_keep},
|
||||
{"n_discard", slot.params.n_discard},
|
||||
{"ignore_eos", slot.sparams.ignore_eos},
|
||||
{"ignore_eos", slot.params.sampling.ignore_eos},
|
||||
{"stream", slot.params.stream},
|
||||
//{"logit_bias", slot.sparams.logit_bias},
|
||||
{"n_probs", slot.sparams.n_probs},
|
||||
{"min_keep", slot.sparams.min_keep},
|
||||
{"grammar", slot.sparams.grammar},
|
||||
//{"logit_bias", slot.params.sampling.logit_bias},
|
||||
{"n_probs", slot.params.sampling.n_probs},
|
||||
{"min_keep", slot.params.sampling.min_keep},
|
||||
{"grammar", slot.params.sampling.grammar},
|
||||
{"samplers", samplers},
|
||||
{"speculative", slot.can_speculate()},
|
||||
{"speculative.n_max", slot.params.speculative.n_max},
|
||||
{"speculative.n_min", slot.params.speculative.n_min},
|
||||
{"speculative.p_min", slot.params.speculative.p_min},
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -1216,7 +1315,7 @@ struct server_context {
|
|||
{"index", slot.index},
|
||||
};
|
||||
|
||||
if (slot.sparams.n_probs > 0) {
|
||||
if (slot.params.sampling.n_probs > 0) {
|
||||
const llama_tokens to_send_toks = common_tokenize(ctx, tkn.text_to_send, false);
|
||||
const size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size());
|
||||
const size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());
|
||||
|
@ -1249,7 +1348,7 @@ struct server_context {
|
|||
{"content", !slot.params.stream ? slot.generated_text : ""},
|
||||
{"id_slot", slot.id},
|
||||
{"stop", true},
|
||||
{"model", params.model_alias},
|
||||
{"model", params_base.model_alias},
|
||||
{"tokens_predicted", slot.n_decoded},
|
||||
{"tokens_evaluated", slot.n_prompt_tokens},
|
||||
{"generation_settings", get_formated_generation(slot)},
|
||||
|
@ -1265,7 +1364,7 @@ struct server_context {
|
|||
{"index", slot.index},
|
||||
};
|
||||
|
||||
if (slot.sparams.n_probs > 0) {
|
||||
if (slot.params.sampling.n_probs > 0) {
|
||||
std::vector<completion_token_output> probs;
|
||||
if (!slot.params.stream && slot.stopped_word) {
|
||||
const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
|
||||
|
@ -1422,10 +1521,10 @@ struct server_context {
|
|||
data.at("input_prefix"),
|
||||
data.at("input_suffix"),
|
||||
data.at("input_extra"),
|
||||
params.n_batch,
|
||||
params.n_predict,
|
||||
params_base.n_batch,
|
||||
params_base.n_predict,
|
||||
slots[0].n_ctx, // TODO: there should be a better way
|
||||
params.spm_infill,
|
||||
params_base.spm_infill,
|
||||
tokenized_prompts[i]
|
||||
);
|
||||
create_task(data, tokens);
|
||||
|
@ -1798,7 +1897,7 @@ struct server_context {
|
|||
// TODO: simplify and improve
|
||||
for (server_slot & slot : slots) {
|
||||
if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
|
||||
if (!params.ctx_shift) {
|
||||
if (!params_base.ctx_shift) {
|
||||
// this check is redundant (for good)
|
||||
// we should never get here, because generation should already stopped in process_token()
|
||||
slot.release();
|
||||
|
@ -1864,7 +1963,7 @@ struct server_context {
|
|||
int32_t batch_type = batch.n_tokens > 0 ? 0 : -1;
|
||||
|
||||
// next, batch any pending prompts without exceeding n_batch
|
||||
if (params.cont_batching || batch.n_tokens == 0) {
|
||||
if (params_base.cont_batching || batch.n_tokens == 0) {
|
||||
for (auto & slot : slots) {
|
||||
// this slot still has a prompt to be processed
|
||||
if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
|
||||
|
@ -1917,7 +2016,7 @@ struct server_context {
|
|||
continue;
|
||||
}
|
||||
} else {
|
||||
if (!params.ctx_shift) {
|
||||
if (!params_base.ctx_shift) {
|
||||
// if context shift is disabled, we make sure prompt size is smaller than KV size
|
||||
// TODO: there should be a separate parameter that control prompt truncation
|
||||
// context shift should be applied only during the generation phase
|
||||
|
@ -1960,14 +2059,14 @@ struct server_context {
|
|||
|
||||
if (slot.params.cache_prompt) {
|
||||
// reuse any previously computed tokens that are common with the new prompt
|
||||
slot.n_past = longest_common_prefix(slot.cache_tokens, prompt_tokens);
|
||||
slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
|
||||
|
||||
// reuse chunks from the cached prompt by shifting their KV cache in the new position
|
||||
if (params.n_cache_reuse > 0) {
|
||||
if (params_base.n_cache_reuse > 0) {
|
||||
size_t head_c = slot.n_past; // cache
|
||||
size_t head_p = slot.n_past; // current prompt
|
||||
|
||||
SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params.n_cache_reuse, slot.n_past);
|
||||
SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
|
||||
|
||||
while (head_c < slot.cache_tokens.size() &&
|
||||
head_p < prompt_tokens.size()) {
|
||||
|
@ -1980,7 +2079,7 @@ struct server_context {
|
|||
n_match++;
|
||||
}
|
||||
|
||||
if (n_match >= (size_t) params.n_cache_reuse) {
|
||||
if (n_match >= (size_t) params_base.n_cache_reuse) {
|
||||
SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
|
||||
//for (size_t i = head_p; i < head_p + n_match; i++) {
|
||||
// SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
|
||||
|
@ -2168,8 +2267,9 @@ struct server_context {
|
|||
continue; // continue loop of slots
|
||||
}
|
||||
|
||||
completion_token_output result;
|
||||
const llama_token id = common_sampler_sample(slot.smpl, ctx, slot.i_batch - i);
|
||||
llama_token id = common_sampler_sample(slot.smpl, ctx, slot.i_batch - i);
|
||||
|
||||
slot.i_batch = -1;
|
||||
|
||||
common_sampler_accept(slot.smpl, id, true);
|
||||
|
||||
|
@ -2180,14 +2280,15 @@ struct server_context {
|
|||
metrics.on_prompt_eval(slot);
|
||||
}
|
||||
|
||||
completion_token_output result;
|
||||
result.tok = id;
|
||||
|
||||
const auto * cur_p = common_sampler_get_candidates(slot.smpl);
|
||||
|
||||
for (size_t i = 0; i < (size_t) slot.sparams.n_probs; ++i) {
|
||||
for (size_t i = 0; i < (size_t) slot.params.sampling.n_probs; ++i) {
|
||||
result.probs.push_back({
|
||||
cur_p->data[i].id,
|
||||
i >= cur_p->size ? 0.0f : cur_p->data[i].p,
|
||||
i >= cur_p->size ? 0.0f : cur_p->data[i].p,
|
||||
});
|
||||
}
|
||||
|
||||
|
@ -2197,9 +2298,67 @@ struct server_context {
|
|||
slot.print_timings();
|
||||
send_final_response(slot);
|
||||
metrics.on_prediction(slot);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// do speculative decoding
|
||||
for (auto & slot : slots) {
|
||||
if (!slot.is_processing() || !slot.can_speculate()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
slot.i_batch = -1;
|
||||
llama_token id = slot.sampled;
|
||||
|
||||
struct common_speculative_params params_spec;
|
||||
params_spec.n_draft = slot.params.speculative.n_max;
|
||||
params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
|
||||
params_spec.p_min = slot.params.speculative.p_min;
|
||||
|
||||
llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
|
||||
|
||||
// ignore small drafts
|
||||
if (slot.params.speculative.n_min > (int) draft.size()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// construct the speculation batch
|
||||
common_batch_clear(slot.batch_spec);
|
||||
common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
|
||||
|
||||
for (size_t i = 0; i < draft.size(); ++i) {
|
||||
common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
|
||||
}
|
||||
|
||||
llama_decode(ctx, slot.batch_spec);
|
||||
|
||||
// the accepted tokens from the speculation
|
||||
const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
|
||||
|
||||
slot.n_past += ids.size();
|
||||
slot.n_decoded += ids.size();
|
||||
|
||||
slot.cache_tokens.push_back(id);
|
||||
slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
|
||||
|
||||
llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
|
||||
|
||||
for (size_t i = 0; i < ids.size(); ++i) {
|
||||
completion_token_output result;
|
||||
|
||||
result.tok = ids[i];
|
||||
|
||||
if (!process_token(result, slot)) {
|
||||
// release slot because of stop condition
|
||||
slot.release();
|
||||
slot.print_timings();
|
||||
send_final_response(slot);
|
||||
metrics.on_prediction(slot);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
SRV_DBG("accepted %d/%d draft tokens\n", (int) ids.size() - 1, (int) draft.size());
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -2697,7 +2856,7 @@ int main(int argc, char ** argv) {
|
|||
const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
|
||||
json data = {
|
||||
{ "default_generation_settings", ctx_server.default_generation_settings_for_props },
|
||||
{ "total_slots", ctx_server.params.n_parallel },
|
||||
{ "total_slots", ctx_server.params_base.n_parallel },
|
||||
{ "chat_template", llama_get_chat_template(ctx_server.model) },
|
||||
};
|
||||
|
||||
|
@ -2705,7 +2864,7 @@ int main(int argc, char ** argv) {
|
|||
};
|
||||
|
||||
const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
|
||||
if (!ctx_server.params.endpoint_props) {
|
||||
if (!ctx_server.params_base.endpoint_props) {
|
||||
res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
|
||||
return;
|
||||
}
|
||||
|
@ -2718,7 +2877,7 @@ int main(int argc, char ** argv) {
|
|||
};
|
||||
|
||||
const auto handle_completions_generic = [&ctx_server, &res_error, &res_ok](server_task_inf_type inf_type, json & data, httplib::Response & res) {
|
||||
if (ctx_server.params.embedding) {
|
||||
if (ctx_server.params_base.embedding) {
|
||||
res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
|
||||
return;
|
||||
}
|
||||
|
@ -2824,7 +2983,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
// TODO: maybe merge this function with "handle_completions_generic"
|
||||
const auto handle_chat_completions = [&ctx_server, ¶ms, &res_error, &res_ok, verbose](const httplib::Request & req, httplib::Response & res) {
|
||||
if (ctx_server.params.embedding) {
|
||||
if (ctx_server.params_base.embedding) {
|
||||
res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
|
||||
return;
|
||||
}
|
||||
|
@ -3001,7 +3160,7 @@ int main(int argc, char ** argv) {
|
|||
};
|
||||
|
||||
const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
|
||||
if (!ctx_server.params.reranking || ctx_server.params.embedding) {
|
||||
if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
|
||||
res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
|
||||
return;
|
||||
}
|
||||
|
|
1
examples/server/tests/.gitignore
vendored
1
examples/server/tests/.gitignore
vendored
|
@ -1 +1,2 @@
|
|||
.venv
|
||||
tmp
|
||||
|
|
|
@ -1,19 +1,9 @@
|
|||
# Server tests
|
||||
|
||||
Python based server tests scenario using [BDD](https://en.wikipedia.org/wiki/Behavior-driven_development)
|
||||
and [behave](https://behave.readthedocs.io/en/latest/):
|
||||
|
||||
* [issues.feature](./features/issues.feature) Pending issues scenario
|
||||
* [parallel.feature](./features/parallel.feature) Scenario involving multi slots and concurrent requests
|
||||
* [security.feature](./features/security.feature) Security, CORS and API Key
|
||||
* [server.feature](./features/server.feature) Server base scenario: completion, embedding, tokenization, etc...
|
||||
Python based server tests scenario using [pytest](https://docs.pytest.org/en/stable/).
|
||||
|
||||
Tests target GitHub workflows job runners with 4 vCPU.
|
||||
|
||||
Requests are
|
||||
using [aiohttp](https://docs.aiohttp.org/en/stable/client_reference.html), [asyncio](https://docs.python.org/fr/3/library/asyncio.html)
|
||||
based http client.
|
||||
|
||||
Note: If the host architecture inference speed is faster than GitHub runners one, parallel scenario may randomly fail.
|
||||
To mitigate it, you can increase values in `n_predict`, `kv_size`.
|
||||
|
||||
|
@ -39,26 +29,19 @@ It's possible to override some scenario steps values with environment variables:
|
|||
|--------------------------|------------------------------------------------------------------------------------------------|
|
||||
| `PORT` | `context.server_port` to set the listening port of the server during scenario, default: `8080` |
|
||||
| `LLAMA_SERVER_BIN_PATH` | to change the server binary path, default: `../../../build/bin/llama-server` |
|
||||
| `DEBUG` | "ON" to enable steps and server verbose mode `--verbose` |
|
||||
| `DEBUG` | to enable steps and server verbose mode `--verbose` |
|
||||
| `N_GPU_LAYERS` | number of model layers to offload to VRAM `-ngl --n-gpu-layers` |
|
||||
|
||||
### Run @bug, @wip or @wrong_usage annotated scenario
|
||||
|
||||
Feature or Scenario must be annotated with `@llama.cpp` to be included in the default scope.
|
||||
|
||||
- `@bug` annotation aims to link a scenario with a GitHub issue.
|
||||
- `@wrong_usage` are meant to show user issue that are actually an expected behavior
|
||||
- `@wip` to focus on a scenario working in progress
|
||||
- `@slow` heavy test, disabled by default
|
||||
|
||||
To run a scenario annotated with `@bug`, start:
|
||||
To run slow tests:
|
||||
|
||||
```shell
|
||||
DEBUG=ON ./tests.sh --no-skipped --tags bug --stop
|
||||
SLOW_TESTS=1 ./tests.sh
|
||||
```
|
||||
|
||||
After changing logic in `steps.py`, ensure that `@bug` and `@wrong_usage` scenario are updated.
|
||||
To run with stdout/stderr display in real time (verbose output, but useful for debugging):
|
||||
|
||||
```shell
|
||||
./tests.sh --no-skipped --tags bug,wrong_usage || echo "should failed but compile"
|
||||
DEBUG=1 ./tests.sh -s -v -x
|
||||
```
|
||||
|
||||
To see all available arguments, please refer to [pytest documentation](https://docs.pytest.org/en/stable/how-to/usage.html)
|
||||
|
|
15
examples/server/tests/conftest.py
Normal file
15
examples/server/tests/conftest.py
Normal file
|
@ -0,0 +1,15 @@
|
|||
import pytest
|
||||
from utils import *
|
||||
|
||||
|
||||
# ref: https://stackoverflow.com/questions/22627659/run-code-before-and-after-each-test-in-py-test
|
||||
@pytest.fixture(autouse=True)
|
||||
def stop_server_after_each_test():
|
||||
# do nothing before each test
|
||||
yield
|
||||
# stop all servers after each test
|
||||
instances = set(
|
||||
server_instances
|
||||
) # copy the set to prevent 'Set changed size during iteration'
|
||||
for server in instances:
|
||||
server.stop()
|
|
@ -1,66 +0,0 @@
|
|||
@llama.cpp
|
||||
@ctx_shift
|
||||
Feature: llama.cpp server
|
||||
|
||||
Background: Server startup
|
||||
Given a server listening on localhost:8080
|
||||
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
|
||||
And a model file test-model.gguf
|
||||
And a model alias tinyllama-2
|
||||
And BOS token is 1
|
||||
And 42 as server seed
|
||||
And 256 KV cache size
|
||||
And 32 as batch size
|
||||
And 2 slots
|
||||
|
||||
# the prompt is 301 tokens
|
||||
# the slot context is 256/2 = 128 tokens
|
||||
# the prompt is truncated to keep the last 109 tokens
|
||||
# 64 tokens are generated thanks to shifting the context when it gets full
|
||||
Scenario: Inference with context shift
|
||||
And 64 server max tokens to predict
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
Given a prompt:
|
||||
"""
|
||||
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
|
||||
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
|
||||
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
|
||||
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
|
||||
"""
|
||||
And a completion request with no api error
|
||||
Then 64 tokens are predicted matching fun|Annaks|popcorns|pictry|bowl
|
||||
And the completion is truncated
|
||||
And 109 prompt tokens are processed
|
||||
|
||||
Scenario Outline: Inference without context shift
|
||||
And <n_predict> server max tokens to predict
|
||||
And disable context shifting
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
Given a prompt:
|
||||
"""
|
||||
Hi how are you
|
||||
"""
|
||||
And a completion request with no api error
|
||||
Then <n_token_output> tokens are predicted matching twind|Anna
|
||||
And the completion is <truncated> truncated
|
||||
And 8 prompt tokens are processed
|
||||
Examples:
|
||||
| n_predict | n_token_output | truncated |
|
||||
| 64 | 64 | not |
|
||||
| -1 | 120 | |
|
||||
|
||||
Scenario: Inference without context shift (expected error: prompt too long)
|
||||
And disable context shifting
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
Given a prompt:
|
||||
"""
|
||||
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
|
||||
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
|
||||
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
|
||||
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
|
||||
"""
|
||||
And a completion request with 400 api error
|
||||
|
|
@ -1,113 +0,0 @@
|
|||
@llama.cpp
|
||||
@embeddings
|
||||
Feature: llama.cpp server
|
||||
|
||||
Background: Server startup
|
||||
Given a server listening on localhost:8080
|
||||
And a model url https://huggingface.co/ggml-org/models/resolve/main/bert-bge-small/ggml-model-f16.gguf
|
||||
And a model file bert-bge-small.gguf
|
||||
And a model alias bert-bge-small
|
||||
And 42 as server seed
|
||||
And 2 slots
|
||||
# the bert-bge-small model has context size of 512
|
||||
# since the generated prompts are as big as the batch size, we need to set the batch size to <= 512
|
||||
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5/blob/5c38ec7c405ec4b44b94cc5a9bb96e735b38267a/config.json#L20
|
||||
And 128 as batch size
|
||||
And 128 as ubatch size
|
||||
And 512 KV cache size
|
||||
And enable embeddings endpoint
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
Scenario: Embedding
|
||||
When embeddings are computed for:
|
||||
"""
|
||||
What is the capital of Bulgaria ?
|
||||
"""
|
||||
Then embeddings are generated
|
||||
|
||||
Scenario: Embedding (error: prompt too long)
|
||||
When embeddings are computed for:
|
||||
"""
|
||||
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
|
||||
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
|
||||
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
|
||||
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
|
||||
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
|
||||
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
|
||||
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
|
||||
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
|
||||
"""
|
||||
And embeddings request with 500 api error
|
||||
|
||||
Scenario: OAI Embeddings compatibility
|
||||
Given a model bert-bge-small
|
||||
When an OAI compatible embeddings computation request for:
|
||||
"""
|
||||
What is the capital of Spain ?
|
||||
"""
|
||||
Then embeddings are generated
|
||||
|
||||
Scenario: OAI Embeddings compatibility with multiple inputs
|
||||
Given a model bert-bge-small
|
||||
Given a prompt:
|
||||
"""
|
||||
In which country Paris is located ?
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Is Madrid the capital of Spain ?
|
||||
"""
|
||||
When an OAI compatible embeddings computation request for multiple inputs
|
||||
Then embeddings are generated
|
||||
|
||||
Scenario: Multi users embeddings
|
||||
Given a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write another very long music lyrics.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long poem.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long joke.
|
||||
"""
|
||||
Given concurrent embedding requests
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
Then all embeddings are generated
|
||||
|
||||
Scenario: Multi users OAI compatibility embeddings
|
||||
Given a prompt:
|
||||
"""
|
||||
In which country Paris is located ?
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Is Madrid the capital of Spain ?
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
What is the biggest US city ?
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
What is the capital of Bulgaria ?
|
||||
"""
|
||||
And a model bert-bge-small
|
||||
Given concurrent OAI embedding requests
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
Then all embeddings are generated
|
||||
|
||||
Scenario: All embeddings should be the same
|
||||
Given 10 fixed prompts
|
||||
And a model bert-bge-small
|
||||
Given concurrent OAI embedding requests
|
||||
Then all embeddings are the same
|
|
@ -1,71 +0,0 @@
|
|||
import os
|
||||
import signal
|
||||
import socket
|
||||
import sys
|
||||
import time
|
||||
import traceback
|
||||
from contextlib import closing
|
||||
from subprocess import TimeoutExpired
|
||||
|
||||
|
||||
def before_scenario(context, scenario):
|
||||
context.debug = 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON'
|
||||
if context.debug:
|
||||
print("DEBUG=ON")
|
||||
print(f"\x1b[33;42mStarting new scenario: {scenario.name}!\x1b[0m")
|
||||
port = 8080
|
||||
if 'PORT' in os.environ:
|
||||
port = int(os.environ['PORT'])
|
||||
if is_server_listening("localhost", port):
|
||||
assert False, "Server already started"
|
||||
|
||||
|
||||
def after_scenario(context, scenario):
|
||||
try:
|
||||
if 'server_process' not in context or context.server_process is None:
|
||||
return
|
||||
if scenario.status == "failed":
|
||||
if 'GITHUB_ACTIONS' in os.environ:
|
||||
print(f"\x1b[33;101mSCENARIO FAILED: {scenario.name} server logs:\x1b[0m\n")
|
||||
if os.path.isfile('llama.log'):
|
||||
with closing(open('llama.log', 'r')) as f:
|
||||
for line in f:
|
||||
print(line)
|
||||
if not is_server_listening(context.server_fqdn, context.server_port):
|
||||
print("\x1b[33;101mERROR: Server stopped listening\x1b[0m")
|
||||
|
||||
if context.server_process.poll() is not None:
|
||||
assert False, f"Server not running pid={context.server_process.pid} ..."
|
||||
|
||||
server_graceful_shutdown(context) # SIGINT
|
||||
|
||||
try:
|
||||
context.server_process.wait(0.5)
|
||||
except TimeoutExpired:
|
||||
print(f"server still alive after 500ms, force-killing pid={context.server_process.pid} ...")
|
||||
context.server_process.kill() # SIGKILL
|
||||
context.server_process.wait()
|
||||
|
||||
while is_server_listening(context.server_fqdn, context.server_port):
|
||||
time.sleep(0.1)
|
||||
except Exception:
|
||||
print("ignoring error in after_scenario:")
|
||||
traceback.print_exc(file=sys.stdout)
|
||||
|
||||
|
||||
def server_graceful_shutdown(context):
|
||||
print(f"shutting down server pid={context.server_process.pid} ...")
|
||||
if os.name == 'nt':
|
||||
interrupt = signal.CTRL_C_EVENT
|
||||
else:
|
||||
interrupt = signal.SIGINT
|
||||
context.server_process.send_signal(interrupt)
|
||||
|
||||
|
||||
def is_server_listening(server_fqdn, server_port):
|
||||
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
|
||||
result = sock.connect_ex((server_fqdn, server_port))
|
||||
_is_server_listening = result == 0
|
||||
if _is_server_listening:
|
||||
print(f"server is listening on {server_fqdn}:{server_port}...")
|
||||
return _is_server_listening
|
|
@ -1,36 +0,0 @@
|
|||
@llama.cpp
|
||||
@infill
|
||||
Feature: llama.cpp server
|
||||
|
||||
# The current model is made by adding FIM tokens to the existing stories260K
|
||||
# We may want to use a better model in the future, maybe something like SmolLM 360M
|
||||
|
||||
Background: Server startup
|
||||
Given a server listening on localhost:8080
|
||||
And a model file tinyllamas/stories260K-infill.gguf from HF repo ggml-org/models
|
||||
And a model file test-model-infill.gguf
|
||||
And a model alias tinyllama-infill
|
||||
And 42 as server seed
|
||||
And 1024 as batch size
|
||||
And 1024 as ubatch size
|
||||
And 2048 KV cache size
|
||||
And 64 max tokens to predict
|
||||
And 0.0 temperature
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
Scenario: Infill without input_extra
|
||||
Given a prompt "Complete this"
|
||||
And an infill input extra none none
|
||||
And an infill input prefix "#include <cstdio>\n#include \"llama.h\"\n\nint main() {\n int n_threads = llama_"
|
||||
And an infill input suffix "}\n"
|
||||
And an infill request with no api error
|
||||
Then 64 tokens are predicted matching One|day|she|saw|big|scary|bird
|
||||
|
||||
Scenario: Infill with input_extra
|
||||
Given a prompt "Complete this"
|
||||
And an infill input extra "llama.h" "LLAMA_API int32_t llama_n_threads();\n"
|
||||
And an infill input prefix "#include <cstdio>\n#include \"llama.h\"\n\nint main() {\n int n_threads = llama_"
|
||||
And an infill input suffix "}\n"
|
||||
And an infill request with no api error
|
||||
Then 64 tokens are predicted matching cuts|Jimmy|mom|came|into|the|room"
|
|
@ -1,5 +0,0 @@
|
|||
# List of ongoing issues
|
||||
# run with: DEBUG=ON ./tests.sh --no-skipped --tags bug
|
||||
@bug
|
||||
Feature: Issues
|
||||
# No confirmed issue at the moment
|
|
@ -1,36 +0,0 @@
|
|||
@llama.cpp
|
||||
@lora
|
||||
Feature: llama.cpp server
|
||||
|
||||
Background: Server startup
|
||||
Given a server listening on localhost:8080
|
||||
And a model url https://huggingface.co/ggml-org/stories15M_MOE/resolve/main/stories15M_MOE-F16.gguf
|
||||
And a model file stories15M_MOE-F16.gguf
|
||||
And a model alias stories15M_MOE
|
||||
And a lora adapter file from https://huggingface.co/ggml-org/stories15M_MOE/resolve/main/moe_shakespeare15M.gguf
|
||||
And 42 as server seed
|
||||
And 1024 as batch size
|
||||
And 1024 as ubatch size
|
||||
And 2048 KV cache size
|
||||
And 64 max tokens to predict
|
||||
And 0.0 temperature
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
Scenario: Completion LoRA disabled
|
||||
Given switch off lora adapter 0
|
||||
Given a prompt:
|
||||
"""
|
||||
Look in thy glass
|
||||
"""
|
||||
And a completion request with no api error
|
||||
Then 64 tokens are predicted matching little|girl|three|years|old
|
||||
|
||||
Scenario: Completion LoRA enabled
|
||||
Given switch on lora adapter 0
|
||||
Given a prompt:
|
||||
"""
|
||||
Look in thy glass
|
||||
"""
|
||||
And a completion request with no api error
|
||||
Then 64 tokens are predicted matching eye|love|glass|sun
|
|
@ -1,131 +0,0 @@
|
|||
@llama.cpp
|
||||
@parallel
|
||||
Feature: Parallel
|
||||
|
||||
Background: Server startup
|
||||
Given a server listening on localhost:8080
|
||||
And a model file tinyllamas/split/stories15M-00001-of-00003.gguf from HF repo ggml-org/models
|
||||
And a model file test-model-00001-of-00003.gguf
|
||||
And 42 as server seed
|
||||
And 128 as batch size
|
||||
And 256 KV cache size
|
||||
And 2 slots
|
||||
And continuous batching
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
Scenario Outline: Multi users completion
|
||||
Given a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write another very long music lyrics.
|
||||
"""
|
||||
And <n_predict> max tokens to predict
|
||||
Given concurrent completion requests
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
And all slots are idle
|
||||
Then all prompts are predicted with <n_predict> tokens
|
||||
Examples:
|
||||
| n_predict |
|
||||
| 128 |
|
||||
|
||||
Scenario Outline: Multi users OAI completions compatibility
|
||||
Given a system prompt You are a writer.
|
||||
And a model tinyllama-2
|
||||
Given a prompt:
|
||||
"""
|
||||
Write a very long book.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write another a poem.
|
||||
"""
|
||||
And <n_predict> max tokens to predict
|
||||
And streaming is <streaming>
|
||||
Given concurrent OAI completions requests
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
Then all prompts are predicted with <n_predict> tokens
|
||||
Examples:
|
||||
| streaming | n_predict |
|
||||
| disabled | 128 |
|
||||
| enabled | 64 |
|
||||
|
||||
Scenario Outline: Multi users OAI completions compatibility no v1
|
||||
Given a system prompt You are a writer.
|
||||
And a model tinyllama-2
|
||||
Given a prompt:
|
||||
"""
|
||||
Write a very long book.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write another a poem.
|
||||
"""
|
||||
And <n_predict> max tokens to predict
|
||||
And streaming is <streaming>
|
||||
Given concurrent OAI completions requests no v1
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
Then all prompts are predicted with <n_predict> tokens
|
||||
Examples:
|
||||
| streaming | n_predict |
|
||||
| disabled | 128 |
|
||||
| enabled | 64 |
|
||||
|
||||
Scenario Outline: Multi users with number of prompts exceeding number of slots
|
||||
Given a system prompt You are a writer.
|
||||
And a model tinyllama-2
|
||||
Given a prompt:
|
||||
"""
|
||||
Write a very long book.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write another a poem.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
What is LLM?
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
The sky is blue and I love it.
|
||||
"""
|
||||
And <n_predict> max tokens to predict
|
||||
And streaming is <streaming>
|
||||
Given concurrent OAI completions requests
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
Then all prompts are predicted with <n_predict> tokens
|
||||
Examples:
|
||||
| streaming | n_predict |
|
||||
| disabled | 128 |
|
||||
| enabled | 64 |
|
||||
|
||||
Scenario: Multi users with total number of tokens to predict exceeds the KV Cache size #3969
|
||||
Given a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write another very long music lyrics.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long poem.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long joke.
|
||||
"""
|
||||
And 128 max tokens to predict
|
||||
Given concurrent completion requests
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
Then all prompts are predicted
|
|
@ -1,56 +0,0 @@
|
|||
# run with: ./tests.sh --no-skipped --tags passkey
|
||||
@passkey
|
||||
@slow
|
||||
Feature: Passkey / Self-extend with context shift
|
||||
|
||||
Background: Server startup
|
||||
Given a server listening on localhost:8080
|
||||
|
||||
# Generates a long text of junk and inserts a secret passkey number inside it.
|
||||
# Then we query the LLM for the secret passkey.
|
||||
# see #3856 and #4810
|
||||
Scenario Outline: Passkey
|
||||
Given a model file <hf_file> from HF repo <hf_repo>
|
||||
And <n_batch> as batch size
|
||||
And <n_junk> as number of junk
|
||||
And <n_predicted> server max tokens to predict
|
||||
And 42 as seed
|
||||
And 0.0 temperature
|
||||
And <n_ctx> KV cache size
|
||||
And 1 slots
|
||||
And <n_ga> group attention factor to extend context size through self-extend
|
||||
And <n_ga_w> group attention width to extend context size through self-extend
|
||||
# Can be override with N_GPU_LAYERS
|
||||
And <ngl> GPU offloaded layers
|
||||
Then the server is starting
|
||||
# Higher timeout because the model may need to be downloaded from the internet
|
||||
Then the server is healthy with timeout 120 seconds
|
||||
Given available models
|
||||
Then model 0 is trained on <n_ctx_train> tokens context
|
||||
Given a prefix prompt:
|
||||
"""
|
||||
here is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there.
|
||||
"""
|
||||
And a passkey prompt template:
|
||||
"""
|
||||
The pass key is <passkey> Remember it. <passkey> is the pass key.
|
||||
"""
|
||||
And a junk suffix prompt:
|
||||
"""
|
||||
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
|
||||
"""
|
||||
And a suffix prompt:
|
||||
"""
|
||||
What is the pass key? The pass key is
|
||||
"""
|
||||
Given a "<passkey>" passkey challenge prompt with the passkey inserted every <i_pos> junk
|
||||
And a completion request with no api error
|
||||
Then <n_predicted> tokens are predicted matching <re_content>
|
||||
|
||||
Examples:
|
||||
| hf_repo | hf_file | n_ctx_train | ngl | n_ctx | n_batch | n_ga | n_ga_w | n_junk | i_pos | passkey | n_predicted | re_content |
|
||||
| TheBloke/phi-2-GGUF | phi-2.Q4_K_M.gguf | 2048 | 5 | 8192 | 512 | 4 | 512 | 250 | 50 | 42 | 1 | 42 |
|
||||
| TheBloke/phi-2-GGUF | phi-2.Q4_K_M.gguf | 2048 | 5 | 8192 | 512 | 2 | 512 | 250 | 50 | 42 | 1 | \b((?!42)\w)+\b |
|
||||
#| TheBloke/Llama-2-7B-GGUF | llama-2-7b.Q2_K.gguf | 4096 | 3 | 16384 | 512 | 4 | 512 | 500 | 300 | 1234 | 5 | 1234 |
|
||||
#| TheBloke/Mixtral-8x7B-v0.1-GGUF | mixtral-8x7b-v0.1.Q2_K.gguf | 32768 | 2 | 16384 | 512 | 4 | 512 | 500 | 100 | 0987 | 5 | 0
|
||||
# 987 |
|
|
@ -1,42 +0,0 @@
|
|||
@llama.cpp
|
||||
@rerank
|
||||
Feature: llama.cpp server
|
||||
|
||||
Background: Server startup
|
||||
Given a server listening on localhost:8080
|
||||
And a model url https://huggingface.co/ggml-org/models/resolve/main/jina-reranker-v1-tiny-en/ggml-model-f16.gguf
|
||||
And a model file jina-reranker-v1-tiny-en.gguf
|
||||
And a model alias jina-reranker-v1-tiny-en
|
||||
And 42 as server seed
|
||||
And 2 slots
|
||||
And 512 as batch size
|
||||
And 512 as ubatch size
|
||||
And 512 KV cache size
|
||||
And enable reranking endpoint
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
Scenario: Rerank
|
||||
Given a rerank query:
|
||||
"""
|
||||
Machine learning is
|
||||
"""
|
||||
And a rerank document:
|
||||
"""
|
||||
A machine is a physical system that uses power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromolecules, such as molecular machines.
|
||||
"""
|
||||
And a rerank document:
|
||||
"""
|
||||
Learning is the process of acquiring new understanding, knowledge, behaviors, skills, values, attitudes, and preferences. The ability to learn is possessed by humans, non-human animals, and some machines; there is also evidence for some kind of learning in certain plants.
|
||||
"""
|
||||
And a rerank document:
|
||||
"""
|
||||
Machine learning is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions.
|
||||
"""
|
||||
And a rerank document:
|
||||
"""
|
||||
Paris, capitale de la France, est une grande ville européenne et un centre mondial de l'art, de la mode, de la gastronomie et de la culture. Son paysage urbain du XIXe siècle est traversé par de larges boulevards et la Seine.
|
||||
"""
|
||||
When reranking request
|
||||
Then reranking results are returned
|
||||
Then reranking highest score is index 2 and lowest score is index 3
|
|
@ -1,118 +0,0 @@
|
|||
@llama.cpp
|
||||
@results
|
||||
Feature: Results
|
||||
|
||||
Background: Server startup
|
||||
Given a server listening on localhost:8080
|
||||
And a model file tinyllamas/split/stories15M-00001-of-00003.gguf from HF repo ggml-org/models
|
||||
And a model file test-model-00001-of-00003.gguf
|
||||
And 128 as batch size
|
||||
And 1024 KV cache size
|
||||
And 128 max tokens to predict
|
||||
And continuous batching
|
||||
|
||||
Scenario Outline: consistent results with same seed
|
||||
Given <n_slots> slots
|
||||
And 1.0 temperature
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
Given 4 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 42
|
||||
|
||||
Given concurrent completion requests
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
And all slots are idle
|
||||
Then all predictions are equal
|
||||
Examples:
|
||||
| n_slots |
|
||||
| 1 |
|
||||
# FIXME: unified KV cache nondeterminism
|
||||
# | 2 |
|
||||
|
||||
Scenario Outline: different results with different seed
|
||||
Given <n_slots> slots
|
||||
And 1.0 temperature
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 42
|
||||
Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 43
|
||||
Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 44
|
||||
Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 45
|
||||
|
||||
Given concurrent completion requests
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
And all slots are idle
|
||||
Then all predictions are different
|
||||
Examples:
|
||||
| n_slots |
|
||||
| 1 |
|
||||
| 2 |
|
||||
|
||||
Scenario Outline: consistent results with same seed and varying batch size
|
||||
Given 4 slots
|
||||
And <temp> temperature
|
||||
# And 0 as draft
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
Given 1 prompts "Write a very long story about AI." with seed 42
|
||||
And concurrent completion requests
|
||||
# Then the server is busy # Not all slots will be utilized.
|
||||
Then the server is idle
|
||||
And all slots are idle
|
||||
|
||||
Given <n_parallel> prompts "Write a very long story about AI." with seed 42
|
||||
And concurrent completion requests
|
||||
# Then the server is busy # Not all slots will be utilized.
|
||||
Then the server is idle
|
||||
And all slots are idle
|
||||
|
||||
Then all predictions are equal
|
||||
Examples:
|
||||
| n_parallel | temp |
|
||||
| 1 | 0.0 |
|
||||
| 1 | 1.0 |
|
||||
# FIXME: unified KV cache nondeterminism
|
||||
# See https://github.com/ggerganov/whisper.cpp/issues/1941#issuecomment-1986923227
|
||||
# and https://github.com/ggerganov/llama.cpp/pull/6122#discussion_r1531405574
|
||||
# and https://github.com/ggerganov/llama.cpp/pull/7347 .
|
||||
# | 2 | 0.0 |
|
||||
# | 4 | 0.0 |
|
||||
# | 2 | 1.0 |
|
||||
# | 4 | 1.0 |
|
||||
|
||||
Scenario Outline: consistent token probs with same seed and prompt
|
||||
Given <n_slots> slots
|
||||
And <n_kv> KV cache size
|
||||
And 1.0 temperature
|
||||
And <n_predict> max tokens to predict
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
Given 1 prompts "The meaning of life is" with seed 42
|
||||
And concurrent completion requests
|
||||
# Then the server is busy # Not all slots will be utilized.
|
||||
Then the server is idle
|
||||
And all slots are idle
|
||||
|
||||
Given <n_parallel> prompts "The meaning of life is" with seed 42
|
||||
And concurrent completion requests
|
||||
# Then the server is busy # Not all slots will be utilized.
|
||||
Then the server is idle
|
||||
And all slots are idle
|
||||
|
||||
Then all token probabilities are equal
|
||||
Examples:
|
||||
| n_slots | n_kv | n_predict | n_parallel |
|
||||
| 4 | 1024 | 1 | 1 |
|
||||
# FIXME: unified KV cache nondeterminism
|
||||
# See https://github.com/ggerganov/whisper.cpp/issues/1941#issuecomment-1986923227
|
||||
# and https://github.com/ggerganov/llama.cpp/pull/6122#discussion_r1531405574
|
||||
# and https://github.com/ggerganov/llama.cpp/pull/7347 .
|
||||
# | 4 | 1024 | 1 | 4 |
|
||||
# | 4 | 1024 | 100 | 1 |
|
||||
# This test still fails even the above patches; the first token probabilities are already different.
|
||||
# | 4 | 1024 | 100 | 4 |
|
|
@ -1,68 +0,0 @@
|
|||
@llama.cpp
|
||||
@security
|
||||
Feature: Security
|
||||
|
||||
Background: Server startup with an api key defined
|
||||
Given a server listening on localhost:8080
|
||||
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
|
||||
And a server api key THIS_IS_THE_KEY
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
Scenario Outline: Completion with some user api key
|
||||
Given a prompt test
|
||||
And a user api key <api_key>
|
||||
And 4 max tokens to predict
|
||||
And a completion request with <api_error> api error
|
||||
|
||||
Examples: Prompts
|
||||
| api_key | api_error |
|
||||
| THIS_IS_THE_KEY | no |
|
||||
| THIS_IS_THE_KEY | no |
|
||||
| hackeme | raised |
|
||||
| | raised |
|
||||
|
||||
Scenario Outline: OAI Compatibility
|
||||
Given a system prompt test
|
||||
And a user prompt test
|
||||
And a model test
|
||||
And 2 max tokens to predict
|
||||
And streaming is disabled
|
||||
And a user api key <api_key>
|
||||
Given an OAI compatible chat completions request with <api_error> api error
|
||||
|
||||
Examples: Prompts
|
||||
| api_key | api_error |
|
||||
| THIS_IS_THE_KEY | no |
|
||||
| THIS_IS_THE_KEY | no |
|
||||
| hackme | raised |
|
||||
|
||||
Scenario Outline: OAI Compatibility (invalid response formats)
|
||||
Given a system prompt test
|
||||
And a user prompt test
|
||||
And a response format <response_format>
|
||||
And a model test
|
||||
And 2 max tokens to predict
|
||||
And streaming is disabled
|
||||
Given an OAI compatible chat completions request with raised api error
|
||||
|
||||
Examples: Prompts
|
||||
| response_format |
|
||||
| {"type": "sound"} |
|
||||
| {"type": "json_object", "schema": 123} |
|
||||
| {"type": "json_object", "schema": {"type": 123}} |
|
||||
| {"type": "json_object", "schema": {"type": "hiccup"}} |
|
||||
|
||||
|
||||
Scenario Outline: CORS Options
|
||||
Given a user api key THIS_IS_THE_KEY
|
||||
When an OPTIONS request is sent from <origin>
|
||||
Then CORS header <cors_header> is set to <cors_header_value>
|
||||
|
||||
Examples: Headers
|
||||
| origin | cors_header | cors_header_value |
|
||||
| localhost | Access-Control-Allow-Origin | localhost |
|
||||
| web.mydomain.fr | Access-Control-Allow-Origin | web.mydomain.fr |
|
||||
| origin | Access-Control-Allow-Credentials | true |
|
||||
| web.mydomain.fr | Access-Control-Allow-Methods | GET, POST |
|
||||
| web.mydomain.fr | Access-Control-Allow-Headers | * |
|
|
@ -1,120 +0,0 @@
|
|||
@llama.cpp
|
||||
@server
|
||||
Feature: llama.cpp server
|
||||
|
||||
Background: Server startup
|
||||
Given a server listening on localhost:8080
|
||||
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
|
||||
And a model file test-model.gguf
|
||||
And a model alias tinyllama-2
|
||||
And BOS token is 1
|
||||
And 42 as server seed
|
||||
# KV Cache corresponds to the total amount of tokens
|
||||
# that can be stored across all independent sequences: #4130
|
||||
# see --ctx-size and #5568
|
||||
And 256 KV cache size
|
||||
And 32 as batch size
|
||||
And 2 slots
|
||||
And 64 server max tokens to predict
|
||||
And prometheus compatible metrics exposed
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
Scenario: Health
|
||||
Then the server is ready
|
||||
And all slots are idle
|
||||
|
||||
|
||||
Scenario Outline: Completion
|
||||
Given a prompt <prompt>
|
||||
And <n_predict> max tokens to predict
|
||||
And a completion request with no api error
|
||||
Then <n_predicted> tokens are predicted matching <re_content>
|
||||
And the completion is <truncated> truncated
|
||||
And <n_prompt> prompt tokens are processed
|
||||
And prometheus metrics are exposed
|
||||
And metric llamacpp:tokens_predicted is <n_predicted>
|
||||
|
||||
Examples: Prompts
|
||||
| prompt | n_predict | re_content | n_prompt | n_predicted | truncated |
|
||||
| I believe the meaning of life is | 8 | (read\|going)+ | 18 | 8 | not |
|
||||
| Write a joke about AI from a very long prompt which will not be truncated | 256 | (princesses\|everyone\|kids\|Anna\|forest)+ | 46 | 64 | not |
|
||||
|
||||
Scenario: Completion prompt truncated
|
||||
Given a prompt:
|
||||
"""
|
||||
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
|
||||
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
|
||||
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
|
||||
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
|
||||
"""
|
||||
And a completion request with no api error
|
||||
Then 64 tokens are predicted matching fun|Annaks|popcorns|pictry|bowl
|
||||
And the completion is truncated
|
||||
And 109 prompt tokens are processed
|
||||
|
||||
|
||||
Scenario Outline: OAI Compatibility
|
||||
Given a model <model>
|
||||
And a system prompt <system_prompt>
|
||||
And a user prompt <user_prompt>
|
||||
And <max_tokens> max tokens to predict
|
||||
And streaming is <enable_streaming>
|
||||
Given an OAI compatible chat completions request with no api error
|
||||
Then <n_predicted> tokens are predicted matching <re_content>
|
||||
And <n_prompt> prompt tokens are processed
|
||||
And the completion is <truncated> truncated
|
||||
|
||||
Examples: Prompts
|
||||
| model | system_prompt | user_prompt | max_tokens | re_content | n_prompt | n_predicted | enable_streaming | truncated |
|
||||
| llama-2 | Book | What is the best book | 8 | (Here\|what)+ | 77 | 8 | disabled | not |
|
||||
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 128 | (thanks\|happy\|bird\|Annabyear)+ | -1 | 64 | enabled | |
|
||||
|
||||
|
||||
Scenario Outline: OAI Compatibility w/ response format
|
||||
Given a model test
|
||||
And a system prompt test
|
||||
And a user prompt test
|
||||
And a response format <response_format>
|
||||
And 10 max tokens to predict
|
||||
Given an OAI compatible chat completions request with no api error
|
||||
Then <n_predicted> tokens are predicted matching <re_content>
|
||||
|
||||
Examples: Prompts
|
||||
| response_format | n_predicted | re_content |
|
||||
| {"type": "json_object", "schema": {"const": "42"}} | 6 | "42" |
|
||||
| {"type": "json_object", "schema": {"items": [{"type": "integer"}]}} | 10 | \[ -300 \] |
|
||||
| {"type": "json_object"} | 10 | \{ " Jacky. |
|
||||
|
||||
|
||||
Scenario: Tokenize / Detokenize
|
||||
When tokenizing:
|
||||
"""
|
||||
What is the capital of France ?
|
||||
"""
|
||||
Then tokens can be detokenized
|
||||
And tokens do not begin with BOS
|
||||
|
||||
Scenario: Tokenize w/ BOS
|
||||
Given adding special tokens
|
||||
When tokenizing:
|
||||
"""
|
||||
What is the capital of Germany?
|
||||
"""
|
||||
Then tokens begin with BOS
|
||||
Given first token is removed
|
||||
Then tokens can be detokenized
|
||||
|
||||
Scenario: Tokenize with pieces
|
||||
When tokenizing with pieces:
|
||||
"""
|
||||
What is the capital of Germany?
|
||||
媽
|
||||
"""
|
||||
Then tokens are given with pieces
|
||||
|
||||
Scenario: Models available
|
||||
Given available models
|
||||
Then 1 models are supported
|
||||
Then model 0 is identified by tinyllama-2
|
||||
Then model 0 is trained on 128 tokens context
|
|
@ -1,58 +0,0 @@
|
|||
@llama.cpp
|
||||
@slotsave
|
||||
Feature: llama.cpp server slot management
|
||||
|
||||
Background: Server startup
|
||||
Given a server listening on localhost:8080
|
||||
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
|
||||
And prompt caching is enabled
|
||||
And 2 slots
|
||||
And . as slot save path
|
||||
And 2048 KV cache size
|
||||
And 42 as server seed
|
||||
And 24 max tokens to predict
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
Scenario: Save and Restore Slot
|
||||
# First prompt in slot 1 should be fully processed
|
||||
Given a user prompt "What is the capital of France?"
|
||||
And using slot id 1
|
||||
And a completion request with no api error
|
||||
Then 24 tokens are predicted matching (Lily|cake)
|
||||
And 22 prompt tokens are processed
|
||||
When the slot 1 is saved with filename "slot1.bin"
|
||||
Then the server responds with status code 200
|
||||
# Since we have cache, this should only process the last tokens
|
||||
Given a user prompt "What is the capital of Germany?"
|
||||
And a completion request with no api error
|
||||
Then 24 tokens are predicted matching (Thank|special)
|
||||
And 7 prompt tokens are processed
|
||||
# Loading the original cache into slot 0,
|
||||
# we should only be processing 1 prompt token and get the same output
|
||||
When the slot 0 is restored with filename "slot1.bin"
|
||||
Then the server responds with status code 200
|
||||
Given a user prompt "What is the capital of France?"
|
||||
And using slot id 0
|
||||
And a completion request with no api error
|
||||
Then 24 tokens are predicted matching (Lily|cake)
|
||||
And 1 prompt tokens are processed
|
||||
# For verification that slot 1 was not corrupted during slot 0 load, same thing
|
||||
Given a user prompt "What is the capital of Germany?"
|
||||
And using slot id 1
|
||||
And a completion request with no api error
|
||||
Then 24 tokens are predicted matching (Thank|special)
|
||||
And 1 prompt tokens are processed
|
||||
|
||||
Scenario: Erase Slot
|
||||
Given a user prompt "What is the capital of France?"
|
||||
And using slot id 1
|
||||
And a completion request with no api error
|
||||
Then 24 tokens are predicted matching (Lily|cake)
|
||||
And 22 prompt tokens are processed
|
||||
When the slot 1 is erased
|
||||
Then the server responds with status code 200
|
||||
Given a user prompt "What is the capital of France?"
|
||||
And a completion request with no api error
|
||||
Then 24 tokens are predicted matching (Lily|cake)
|
||||
And 22 prompt tokens are processed
|
File diff suppressed because it is too large
Load diff
|
@ -1,25 +0,0 @@
|
|||
# run with: ./tests.sh --no-skipped --tags wrong_usage
|
||||
@wrong_usage
|
||||
Feature: Wrong usage of llama.cpp server
|
||||
|
||||
#3969 The user must always set --n-predict option
|
||||
# to cap the number of tokens any completion request can generate
|
||||
# or pass n_predict/max_tokens in the request.
|
||||
Scenario: Infinite loop
|
||||
Given a server listening on localhost:8080
|
||||
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
|
||||
And 42 as server seed
|
||||
And 2048 KV cache size
|
||||
# Uncomment below to fix the issue
|
||||
#And 64 server max tokens to predict
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
Given a prompt:
|
||||
"""
|
||||
Go to: infinite loop
|
||||
"""
|
||||
# Uncomment below to fix the issue
|
||||
#And 128 max tokens to predict
|
||||
Given concurrent completion requests
|
||||
Then the server is idle
|
||||
Then all prompts are predicted
|
|
@ -1,5 +1,5 @@
|
|||
aiohttp~=3.9.3
|
||||
behave~=1.2.6
|
||||
pytest~=8.3.3
|
||||
huggingface_hub~=0.23.2
|
||||
numpy~=1.26.4
|
||||
openai~=1.30.3
|
||||
|
|
|
@ -4,8 +4,7 @@ set -eu
|
|||
|
||||
if [ $# -lt 1 ]
|
||||
then
|
||||
# Start @llama.cpp scenario
|
||||
behave --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp
|
||||
pytest -v -x
|
||||
else
|
||||
behave "$@"
|
||||
pytest "$@"
|
||||
fi
|
||||
|
|
34
examples/server/tests/unit/test_basic.py
Normal file
34
examples/server/tests/unit/test_basic.py
Normal file
|
@ -0,0 +1,34 @@
|
|||
import pytest
|
||||
from utils import *
|
||||
|
||||
server = ServerPreset.tinyllama2()
|
||||
|
||||
|
||||
@pytest.fixture(scope="module", autouse=True)
|
||||
def create_server():
|
||||
global server
|
||||
server = ServerPreset.tinyllama2()
|
||||
|
||||
|
||||
def test_server_start_simple():
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("GET", "/health")
|
||||
assert res.status_code == 200
|
||||
|
||||
|
||||
def test_server_props():
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("GET", "/props")
|
||||
assert res.status_code == 200
|
||||
assert res.body["total_slots"] == server.n_slots
|
||||
|
||||
|
||||
def test_server_models():
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("GET", "/models")
|
||||
assert res.status_code == 200
|
||||
assert len(res.body["data"]) == 1
|
||||
assert res.body["data"][0]["id"] == server.model_alias
|
129
examples/server/tests/unit/test_chat_completion.py
Normal file
129
examples/server/tests/unit/test_chat_completion.py
Normal file
|
@ -0,0 +1,129 @@
|
|||
import pytest
|
||||
from openai import OpenAI
|
||||
from utils import *
|
||||
|
||||
server = ServerPreset.tinyllama2()
|
||||
|
||||
|
||||
@pytest.fixture(scope="module", autouse=True)
|
||||
def create_server():
|
||||
global server
|
||||
server = ServerPreset.tinyllama2()
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,truncated",
|
||||
[
|
||||
("llama-2", "Book", "What is the best book", 8, "(Suddenly)+", 77, 8, False),
|
||||
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, False),
|
||||
]
|
||||
)
|
||||
def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, truncated):
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("POST", "/chat/completions", data={
|
||||
"model": model,
|
||||
"max_tokens": max_tokens,
|
||||
"messages": [
|
||||
{"role": "system", "content": system_prompt},
|
||||
{"role": "user", "content": user_prompt},
|
||||
],
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert res.body["usage"]["prompt_tokens"] == n_prompt
|
||||
assert res.body["usage"]["completion_tokens"] == n_predicted
|
||||
choice = res.body["choices"][0]
|
||||
assert "assistant" == choice["message"]["role"]
|
||||
assert match_regex(re_content, choice["message"]["content"])
|
||||
if truncated:
|
||||
assert choice["finish_reason"] == "length"
|
||||
else:
|
||||
assert choice["finish_reason"] == "stop"
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,truncated",
|
||||
[
|
||||
("llama-2", "Book", "What is the best book", 8, "(Suddenly)+", 77, 8, False),
|
||||
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, False),
|
||||
]
|
||||
)
|
||||
def test_chat_completion_stream(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, truncated):
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_stream_request("POST", "/chat/completions", data={
|
||||
"model": model,
|
||||
"max_tokens": max_tokens,
|
||||
"messages": [
|
||||
{"role": "system", "content": system_prompt},
|
||||
{"role": "user", "content": user_prompt},
|
||||
],
|
||||
"stream": True,
|
||||
})
|
||||
content = ""
|
||||
for data in res:
|
||||
choice = data["choices"][0]
|
||||
if choice["finish_reason"] in ["stop", "length"]:
|
||||
assert data["usage"]["prompt_tokens"] == n_prompt
|
||||
assert data["usage"]["completion_tokens"] == n_predicted
|
||||
assert "content" not in choice["delta"]
|
||||
assert match_regex(re_content, content)
|
||||
# FIXME: not sure why this is incorrect in stream mode
|
||||
# if truncated:
|
||||
# assert choice["finish_reason"] == "length"
|
||||
# else:
|
||||
# assert choice["finish_reason"] == "stop"
|
||||
else:
|
||||
assert choice["finish_reason"] is None
|
||||
content += choice["delta"]["content"]
|
||||
|
||||
|
||||
def test_chat_completion_with_openai_library():
|
||||
global server
|
||||
server.start()
|
||||
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}")
|
||||
res = client.chat.completions.create(
|
||||
model="gpt-3.5-turbo-instruct",
|
||||
messages=[
|
||||
{"role": "system", "content": "Book"},
|
||||
{"role": "user", "content": "What is the best book"},
|
||||
],
|
||||
max_tokens=8,
|
||||
seed=42,
|
||||
temperature=0.8,
|
||||
)
|
||||
print(res)
|
||||
assert res.choices[0].finish_reason == "stop"
|
||||
assert res.choices[0].message.content is not None
|
||||
assert match_regex("(Suddenly)+", res.choices[0].message.content)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("response_format,n_predicted,re_content", [
|
||||
({"type": "json_object", "schema": {"const": "42"}}, 6, "\"42\""),
|
||||
({"type": "json_object", "schema": {"items": [{"type": "integer"}]}}, 10, "[ -3000 ]"),
|
||||
({"type": "json_object"}, 10, "(\\{|John)+"),
|
||||
({"type": "sound"}, 0, None),
|
||||
# invalid response format (expected to fail)
|
||||
({"type": "json_object", "schema": 123}, 0, None),
|
||||
({"type": "json_object", "schema": {"type": 123}}, 0, None),
|
||||
({"type": "json_object", "schema": {"type": "hiccup"}}, 0, None),
|
||||
])
|
||||
def test_completion_with_response_format(response_format: dict, n_predicted: int, re_content: str | None):
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("POST", "/chat/completions", data={
|
||||
"max_tokens": n_predicted,
|
||||
"messages": [
|
||||
{"role": "system", "content": "You are a coding assistant."},
|
||||
{"role": "user", "content": "Write an example"},
|
||||
],
|
||||
"response_format": response_format,
|
||||
})
|
||||
if re_content is not None:
|
||||
assert res.status_code == 200
|
||||
choice = res.body["choices"][0]
|
||||
assert match_regex(re_content, choice["message"]["content"])
|
||||
else:
|
||||
assert res.status_code != 200
|
||||
assert "error" in res.body
|
||||
|
223
examples/server/tests/unit/test_completion.py
Normal file
223
examples/server/tests/unit/test_completion.py
Normal file
|
@ -0,0 +1,223 @@
|
|||
import pytest
|
||||
import time
|
||||
from utils import *
|
||||
|
||||
server = ServerPreset.tinyllama2()
|
||||
|
||||
|
||||
@pytest.fixture(scope="module", autouse=True)
|
||||
def create_server():
|
||||
global server
|
||||
server = ServerPreset.tinyllama2()
|
||||
|
||||
@pytest.mark.parametrize("prompt,n_predict,re_content,n_prompt,n_predicted,truncated", [
|
||||
("I believe the meaning of life is", 8, "(going|bed)+", 18, 8, False),
|
||||
("Write a joke about AI from a very long prompt which will not be truncated", 256, "(princesses|everyone|kids|Anna|forest)+", 46, 64, False),
|
||||
])
|
||||
def test_completion(prompt: str, n_predict: int, re_content: str, n_prompt: int, n_predicted: int, truncated: bool):
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("POST", "/completion", data={
|
||||
"n_predict": n_predict,
|
||||
"prompt": prompt,
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert res.body["timings"]["prompt_n"] == n_prompt
|
||||
assert res.body["timings"]["predicted_n"] == n_predicted
|
||||
assert res.body["truncated"] == truncated
|
||||
assert match_regex(re_content, res.body["content"])
|
||||
|
||||
|
||||
@pytest.mark.parametrize("prompt,n_predict,re_content,n_prompt,n_predicted,truncated", [
|
||||
("I believe the meaning of life is", 8, "(going|bed)+", 18, 8, False),
|
||||
("Write a joke about AI from a very long prompt which will not be truncated", 256, "(princesses|everyone|kids|Anna|forest)+", 46, 64, False),
|
||||
])
|
||||
def test_completion_stream(prompt: str, n_predict: int, re_content: str, n_prompt: int, n_predicted: int, truncated: bool):
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_stream_request("POST", "/completion", data={
|
||||
"n_predict": n_predict,
|
||||
"prompt": prompt,
|
||||
"stream": True,
|
||||
})
|
||||
content = ""
|
||||
for data in res:
|
||||
if data["stop"]:
|
||||
assert data["timings"]["prompt_n"] == n_prompt
|
||||
assert data["timings"]["predicted_n"] == n_predicted
|
||||
assert data["truncated"] == truncated
|
||||
assert match_regex(re_content, content)
|
||||
else:
|
||||
content += data["content"]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("n_slots", [1, 2])
|
||||
def test_consistent_result_same_seed(n_slots: int):
|
||||
global server
|
||||
server.n_slots = n_slots
|
||||
server.start()
|
||||
last_res = None
|
||||
for _ in range(4):
|
||||
res = server.make_request("POST", "/completion", data={
|
||||
"prompt": "I believe the meaning of life is",
|
||||
"seed": 42,
|
||||
"temperature": 1.0,
|
||||
"cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed
|
||||
})
|
||||
if last_res is not None:
|
||||
assert res.body["content"] == last_res.body["content"]
|
||||
last_res = res
|
||||
|
||||
|
||||
@pytest.mark.parametrize("n_slots", [1, 2])
|
||||
def test_different_result_different_seed(n_slots: int):
|
||||
global server
|
||||
server.n_slots = n_slots
|
||||
server.start()
|
||||
last_res = None
|
||||
for seed in range(4):
|
||||
res = server.make_request("POST", "/completion", data={
|
||||
"prompt": "I believe the meaning of life is",
|
||||
"seed": seed,
|
||||
"temperature": 1.0,
|
||||
"cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed
|
||||
})
|
||||
if last_res is not None:
|
||||
assert res.body["content"] != last_res.body["content"]
|
||||
last_res = res
|
||||
|
||||
|
||||
@pytest.mark.parametrize("n_batch", [16, 32])
|
||||
@pytest.mark.parametrize("temperature", [0.0, 1.0])
|
||||
def test_consistent_result_different_batch_size(n_batch: int, temperature: float):
|
||||
global server
|
||||
server.n_batch = n_batch
|
||||
server.start()
|
||||
last_res = None
|
||||
for _ in range(4):
|
||||
res = server.make_request("POST", "/completion", data={
|
||||
"prompt": "I believe the meaning of life is",
|
||||
"seed": 42,
|
||||
"temperature": temperature,
|
||||
"cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed
|
||||
})
|
||||
if last_res is not None:
|
||||
assert res.body["content"] == last_res.body["content"]
|
||||
last_res = res
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="This test fails on linux, need to be fixed")
|
||||
def test_cache_vs_nocache_prompt():
|
||||
global server
|
||||
server.start()
|
||||
res_cache = server.make_request("POST", "/completion", data={
|
||||
"prompt": "I believe the meaning of life is",
|
||||
"seed": 42,
|
||||
"temperature": 1.0,
|
||||
"cache_prompt": True,
|
||||
})
|
||||
res_no_cache = server.make_request("POST", "/completion", data={
|
||||
"prompt": "I believe the meaning of life is",
|
||||
"seed": 42,
|
||||
"temperature": 1.0,
|
||||
"cache_prompt": False,
|
||||
})
|
||||
assert res_cache.body["content"] == res_no_cache.body["content"]
|
||||
|
||||
|
||||
def test_completion_with_tokens_input():
|
||||
global server
|
||||
server.temperature = 0.0
|
||||
server.start()
|
||||
prompt_str = "I believe the meaning of life is"
|
||||
res = server.make_request("POST", "/tokenize", data={
|
||||
"content": prompt_str,
|
||||
"add_special": True,
|
||||
})
|
||||
assert res.status_code == 200
|
||||
tokens = res.body["tokens"]
|
||||
|
||||
# single completion
|
||||
res = server.make_request("POST", "/completion", data={
|
||||
"prompt": tokens,
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert type(res.body["content"]) == str
|
||||
|
||||
# batch completion
|
||||
res = server.make_request("POST", "/completion", data={
|
||||
"prompt": [tokens, tokens],
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert type(res.body) == list
|
||||
assert len(res.body) == 2
|
||||
assert res.body[0]["content"] == res.body[1]["content"]
|
||||
|
||||
# mixed string and tokens
|
||||
res = server.make_request("POST", "/completion", data={
|
||||
"prompt": [tokens, prompt_str],
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert type(res.body) == list
|
||||
assert len(res.body) == 2
|
||||
assert res.body[0]["content"] == res.body[1]["content"]
|
||||
|
||||
# mixed string and tokens in one sequence
|
||||
res = server.make_request("POST", "/completion", data={
|
||||
"prompt": [1, 2, 3, 4, 5, 6, prompt_str, 7, 8, 9, 10, prompt_str],
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert type(res.body["content"]) == str
|
||||
|
||||
|
||||
@pytest.mark.parametrize("n_slots,n_requests", [
|
||||
(1, 3),
|
||||
(2, 2),
|
||||
(2, 4),
|
||||
(4, 2), # some slots must be idle
|
||||
(4, 6),
|
||||
])
|
||||
def test_completion_parallel_slots(n_slots: int, n_requests: int):
|
||||
global server
|
||||
server.n_slots = n_slots
|
||||
server.temperature = 0.0
|
||||
server.start()
|
||||
|
||||
PROMPTS = [
|
||||
("Write a very long book.", "(very|special|big)+"),
|
||||
("Write another a poem.", "(small|house)+"),
|
||||
("What is LLM?", "(Dad|said)+"),
|
||||
("The sky is blue and I love it.", "(climb|leaf)+"),
|
||||
("Write another very long music lyrics.", "(friends|step|sky)+"),
|
||||
("Write a very long joke.", "(cat|Whiskers)+"),
|
||||
]
|
||||
def check_slots_status():
|
||||
should_all_slots_busy = n_requests >= n_slots
|
||||
time.sleep(0.1)
|
||||
res = server.make_request("GET", "/slots")
|
||||
n_busy = sum([1 for slot in res.body if slot["is_processing"]])
|
||||
if should_all_slots_busy:
|
||||
assert n_busy == n_slots
|
||||
else:
|
||||
assert n_busy <= n_slots
|
||||
|
||||
tasks = []
|
||||
for i in range(n_requests):
|
||||
prompt, re_content = PROMPTS[i % len(PROMPTS)]
|
||||
tasks.append((server.make_request, ("POST", "/completion", {
|
||||
"prompt": prompt,
|
||||
"seed": 42,
|
||||
"temperature": 1.0,
|
||||
})))
|
||||
tasks.append((check_slots_status, ()))
|
||||
results = parallel_function_calls(tasks)
|
||||
|
||||
# check results
|
||||
for i in range(n_requests):
|
||||
prompt, re_content = PROMPTS[i % len(PROMPTS)]
|
||||
res = results[i]
|
||||
assert res.status_code == 200
|
||||
assert type(res.body["content"]) == str
|
||||
assert len(res.body["content"]) > 10
|
||||
# FIXME: the result is not deterministic when using other slot than slot 0
|
||||
# assert match_regex(re_content, res.body["content"])
|
67
examples/server/tests/unit/test_ctx_shift.py
Normal file
67
examples/server/tests/unit/test_ctx_shift.py
Normal file
|
@ -0,0 +1,67 @@
|
|||
import pytest
|
||||
from utils import *
|
||||
|
||||
server = ServerPreset.tinyllama2()
|
||||
|
||||
|
||||
LONG_TEXT = """
|
||||
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
|
||||
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
|
||||
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
|
||||
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
|
||||
""".strip()
|
||||
|
||||
@pytest.fixture(scope="module", autouse=True)
|
||||
def create_server():
|
||||
global server
|
||||
server = ServerPreset.tinyllama2()
|
||||
server.n_ctx = 256
|
||||
server.n_slots = 2
|
||||
|
||||
|
||||
def test_ctx_shift_enabled():
|
||||
# the prompt is 301 tokens
|
||||
# the slot context is 256/2 = 128 tokens
|
||||
# the prompt is truncated to keep the last 109 tokens
|
||||
# 64 tokens are generated thanks to shifting the context when it gets full
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("POST", "/completion", data={
|
||||
"n_predict": 64,
|
||||
"prompt": LONG_TEXT,
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert res.body["timings"]["prompt_n"] == 109
|
||||
assert res.body["timings"]["predicted_n"] == 64
|
||||
assert res.body["truncated"] is True
|
||||
|
||||
|
||||
@pytest.mark.parametrize("n_predict,n_token_output,truncated", [
|
||||
(64, 64, False),
|
||||
(-1, 120, True),
|
||||
])
|
||||
def test_ctx_shift_disabled_short_prompt(n_predict: int, n_token_output: int, truncated: bool):
|
||||
global server
|
||||
server.disable_ctx_shift = True
|
||||
server.n_predict = -1
|
||||
server.start()
|
||||
res = server.make_request("POST", "/completion", data={
|
||||
"n_predict": n_predict,
|
||||
"prompt": "Hi how are you",
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert res.body["timings"]["predicted_n"] == n_token_output
|
||||
assert res.body["truncated"] == truncated
|
||||
|
||||
|
||||
def test_ctx_shift_disabled_long_prompt():
|
||||
global server
|
||||
server.disable_ctx_shift = True
|
||||
server.start()
|
||||
res = server.make_request("POST", "/completion", data={
|
||||
"n_predict": 64,
|
||||
"prompt": LONG_TEXT,
|
||||
})
|
||||
assert res.status_code != 200
|
||||
assert "error" in res.body
|
||||
assert "exceeds the available context size" in res.body["error"]["message"]
|
99
examples/server/tests/unit/test_embedding.py
Normal file
99
examples/server/tests/unit/test_embedding.py
Normal file
|
@ -0,0 +1,99 @@
|
|||
import pytest
|
||||
from openai import OpenAI
|
||||
from utils import *
|
||||
|
||||
server = ServerPreset.bert_bge_small()
|
||||
|
||||
EPSILON = 1e-3
|
||||
|
||||
@pytest.fixture(scope="module", autouse=True)
|
||||
def create_server():
|
||||
global server
|
||||
server = ServerPreset.bert_bge_small()
|
||||
|
||||
|
||||
def test_embedding_single():
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("POST", "/embeddings", data={
|
||||
"input": "I believe the meaning of life is",
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert len(res.body['data']) == 1
|
||||
assert 'embedding' in res.body['data'][0]
|
||||
assert len(res.body['data'][0]['embedding']) > 1
|
||||
|
||||
# make sure embedding vector is normalized
|
||||
assert abs(sum([x ** 2 for x in res.body['data'][0]['embedding']]) - 1) < EPSILON
|
||||
|
||||
|
||||
def test_embedding_multiple():
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("POST", "/embeddings", data={
|
||||
"input": [
|
||||
"I believe the meaning of life is",
|
||||
"Write a joke about AI from a very long prompt which will not be truncated",
|
||||
"This is a test",
|
||||
"This is another test",
|
||||
],
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert len(res.body['data']) == 4
|
||||
for d in res.body['data']:
|
||||
assert 'embedding' in d
|
||||
assert len(d['embedding']) > 1
|
||||
|
||||
|
||||
def test_embedding_openai_library_single():
|
||||
global server
|
||||
server.start()
|
||||
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}")
|
||||
res = client.embeddings.create(model="text-embedding-3-small", input="I believe the meaning of life is")
|
||||
assert len(res.data) == 1
|
||||
assert len(res.data[0].embedding) > 1
|
||||
|
||||
|
||||
def test_embedding_openai_library_multiple():
|
||||
global server
|
||||
server.start()
|
||||
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}")
|
||||
res = client.embeddings.create(model="text-embedding-3-small", input=[
|
||||
"I believe the meaning of life is",
|
||||
"Write a joke about AI from a very long prompt which will not be truncated",
|
||||
"This is a test",
|
||||
"This is another test",
|
||||
])
|
||||
assert len(res.data) == 4
|
||||
for d in res.data:
|
||||
assert len(d.embedding) > 1
|
||||
|
||||
|
||||
def test_embedding_error_prompt_too_long():
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("POST", "/embeddings", data={
|
||||
"input": "This is a test " * 512,
|
||||
})
|
||||
assert res.status_code != 200
|
||||
assert "too large" in res.body["error"]["message"]
|
||||
|
||||
|
||||
def test_same_prompt_give_same_result():
|
||||
server.start()
|
||||
res = server.make_request("POST", "/embeddings", data={
|
||||
"input": [
|
||||
"I believe the meaning of life is",
|
||||
"I believe the meaning of life is",
|
||||
"I believe the meaning of life is",
|
||||
"I believe the meaning of life is",
|
||||
"I believe the meaning of life is",
|
||||
],
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert len(res.body['data']) == 5
|
||||
for i in range(1, len(res.body['data'])):
|
||||
v0 = res.body['data'][0]['embedding']
|
||||
vi = res.body['data'][i]['embedding']
|
||||
for x, y in zip(v0, vi):
|
||||
assert abs(x - y) < EPSILON
|
35
examples/server/tests/unit/test_infill.py
Normal file
35
examples/server/tests/unit/test_infill.py
Normal file
|
@ -0,0 +1,35 @@
|
|||
import pytest
|
||||
from utils import *
|
||||
|
||||
server = ServerPreset.tinyllama_infill()
|
||||
|
||||
@pytest.fixture(scope="module", autouse=True)
|
||||
def create_server():
|
||||
global server
|
||||
server = ServerPreset.tinyllama_infill()
|
||||
|
||||
def test_infill_without_input_extra():
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("POST", "/infill", data={
|
||||
"prompt": "Complete this",
|
||||
"input_prefix": "#include <cstdio>\n#include \"llama.h\"\n\nint main() {\n int n_threads = llama_",
|
||||
"input_suffix": "}\n",
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert match_regex("(One|day|she|saw|big|scary|bird)+", res.body["content"])
|
||||
|
||||
def test_infill_with_input_extra():
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("POST", "/infill", data={
|
||||
"prompt": "Complete this",
|
||||
"input_extra": [{
|
||||
"filename": "llama.h",
|
||||
"text": "LLAMA_API int32_t llama_n_threads();\n"
|
||||
}],
|
||||
"input_prefix": "#include <cstdio>\n#include \"llama.h\"\n\nint main() {\n int n_threads = llama_",
|
||||
"input_suffix": "}\n",
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert match_regex("(cuts|Jimmy|mom|came|into|the|room)+", res.body["content"])
|
42
examples/server/tests/unit/test_lora.py
Normal file
42
examples/server/tests/unit/test_lora.py
Normal file
|
@ -0,0 +1,42 @@
|
|||
import pytest
|
||||
import os
|
||||
from utils import *
|
||||
|
||||
server = ServerPreset.stories15m_moe()
|
||||
|
||||
LORA_FILE_URL = "https://huggingface.co/ggml-org/stories15M_MOE/resolve/main/moe_shakespeare15M.gguf"
|
||||
|
||||
@pytest.fixture(scope="module", autouse=True)
|
||||
def create_server():
|
||||
global server
|
||||
server = ServerPreset.stories15m_moe()
|
||||
# download lora file if needed
|
||||
file_name = LORA_FILE_URL.split('/').pop()
|
||||
lora_file = f'../../../{file_name}'
|
||||
if not os.path.exists(lora_file):
|
||||
print(f"Downloading {LORA_FILE_URL} to {lora_file}")
|
||||
with open(lora_file, 'wb') as f:
|
||||
f.write(requests.get(LORA_FILE_URL).content)
|
||||
print(f"Done downloading lora file")
|
||||
server.lora_files = [lora_file]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("scale,re_content", [
|
||||
# without applying lora, the model should behave like a bedtime story generator
|
||||
(0.0, "(little|girl|three|years|old)+"),
|
||||
# with lora, the model should behave like a Shakespearean text generator
|
||||
(1.0, "(eye|love|glass|sun)+"),
|
||||
])
|
||||
def test_lora(scale: float, re_content: str):
|
||||
global server
|
||||
server.start()
|
||||
res_lora_control = server.make_request("POST", "/lora-adapters", data=[
|
||||
{"id": 0, "scale": scale}
|
||||
])
|
||||
assert res_lora_control.status_code == 200
|
||||
res = server.make_request("POST", "/completion", data={
|
||||
"prompt": "Look in thy glass",
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert match_regex(re_content, res.body["content"])
|
||||
|
38
examples/server/tests/unit/test_rerank.py
Normal file
38
examples/server/tests/unit/test_rerank.py
Normal file
|
@ -0,0 +1,38 @@
|
|||
import pytest
|
||||
from utils import *
|
||||
|
||||
server = ServerPreset.jina_reranker_tiny()
|
||||
|
||||
|
||||
@pytest.fixture(scope="module", autouse=True)
|
||||
def create_server():
|
||||
global server
|
||||
server = ServerPreset.jina_reranker_tiny()
|
||||
|
||||
|
||||
def test_rerank():
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("POST", "/rerank", data={
|
||||
"query": "Machine learning is",
|
||||
"documents": [
|
||||
"A machine is a physical system that uses power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromolecules, such as molecular machines.",
|
||||
"Learning is the process of acquiring new understanding, knowledge, behaviors, skills, values, attitudes, and preferences. The ability to learn is possessed by humans, non-human animals, and some machines; there is also evidence for some kind of learning in certain plants.",
|
||||
"Machine learning is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions.",
|
||||
"Paris, capitale de la France, est une grande ville européenne et un centre mondial de l'art, de la mode, de la gastronomie et de la culture. Son paysage urbain du XIXe siècle est traversé par de larges boulevards et la Seine."
|
||||
]
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert len(res.body["results"]) == 4
|
||||
|
||||
most_relevant = res.body["results"][0]
|
||||
least_relevant = res.body["results"][0]
|
||||
for doc in res.body["results"]:
|
||||
if doc["relevance_score"] > most_relevant["relevance_score"]:
|
||||
most_relevant = doc
|
||||
if doc["relevance_score"] < least_relevant["relevance_score"]:
|
||||
least_relevant = doc
|
||||
|
||||
assert most_relevant["relevance_score"] > least_relevant["relevance_score"]
|
||||
assert most_relevant["index"] == 2
|
||||
assert least_relevant["index"] == 3
|
83
examples/server/tests/unit/test_security.py
Normal file
83
examples/server/tests/unit/test_security.py
Normal file
|
@ -0,0 +1,83 @@
|
|||
import pytest
|
||||
from openai import OpenAI
|
||||
from utils import *
|
||||
|
||||
server = ServerPreset.tinyllama2()
|
||||
|
||||
TEST_API_KEY = "sk-this-is-the-secret-key"
|
||||
|
||||
@pytest.fixture(scope="module", autouse=True)
|
||||
def create_server():
|
||||
global server
|
||||
server = ServerPreset.tinyllama2()
|
||||
server.api_key = TEST_API_KEY
|
||||
|
||||
|
||||
@pytest.mark.parametrize("endpoint", ["/health", "/models"])
|
||||
def test_access_public_endpoint(endpoint: str):
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("GET", endpoint)
|
||||
assert res.status_code == 200
|
||||
assert "error" not in res.body
|
||||
|
||||
|
||||
@pytest.mark.parametrize("api_key", [None, "invalid-key"])
|
||||
def test_incorrect_api_key(api_key: str):
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("POST", "/completions", data={
|
||||
"prompt": "I believe the meaning of life is",
|
||||
}, headers={
|
||||
"Authorization": f"Bearer {api_key}" if api_key else None,
|
||||
})
|
||||
assert res.status_code == 401
|
||||
assert "error" in res.body
|
||||
assert res.body["error"]["type"] == "authentication_error"
|
||||
|
||||
|
||||
def test_correct_api_key():
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("POST", "/completions", data={
|
||||
"prompt": "I believe the meaning of life is",
|
||||
}, headers={
|
||||
"Authorization": f"Bearer {TEST_API_KEY}",
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert "error" not in res.body
|
||||
assert "content" in res.body
|
||||
|
||||
|
||||
def test_openai_library_correct_api_key():
|
||||
global server
|
||||
server.start()
|
||||
client = OpenAI(api_key=TEST_API_KEY, base_url=f"http://{server.server_host}:{server.server_port}")
|
||||
res = client.chat.completions.create(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a chatbot."},
|
||||
{"role": "user", "content": "What is the meaning of life?"},
|
||||
],
|
||||
)
|
||||
assert len(res.choices) == 1
|
||||
|
||||
|
||||
@pytest.mark.parametrize("origin,cors_header,cors_header_value", [
|
||||
("localhost", "Access-Control-Allow-Origin", "localhost"),
|
||||
("web.mydomain.fr", "Access-Control-Allow-Origin", "web.mydomain.fr"),
|
||||
("origin", "Access-Control-Allow-Credentials", "true"),
|
||||
("web.mydomain.fr", "Access-Control-Allow-Methods", "GET, POST"),
|
||||
("web.mydomain.fr", "Access-Control-Allow-Headers", "*"),
|
||||
])
|
||||
def test_cors_options(origin: str, cors_header: str, cors_header_value: str):
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("OPTIONS", "/completions", headers={
|
||||
"Origin": origin,
|
||||
"Access-Control-Request-Method": "POST",
|
||||
"Access-Control-Request-Headers": "Authorization",
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert cors_header in res.headers
|
||||
assert res.headers[cors_header] == cors_header_value
|
98
examples/server/tests/unit/test_slot_save.py
Normal file
98
examples/server/tests/unit/test_slot_save.py
Normal file
|
@ -0,0 +1,98 @@
|
|||
import pytest
|
||||
from utils import *
|
||||
|
||||
server = ServerPreset.tinyllama2()
|
||||
|
||||
@pytest.fixture(scope="module", autouse=True)
|
||||
def create_server():
|
||||
global server
|
||||
server = ServerPreset.tinyllama2()
|
||||
server.slot_save_path = "./tmp"
|
||||
server.temperature = 0.0
|
||||
|
||||
|
||||
def test_slot_save_restore():
|
||||
global server
|
||||
server.start()
|
||||
|
||||
# First prompt in slot 1 should be fully processed
|
||||
res = server.make_request("POST", "/completion", data={
|
||||
"prompt": "What is the capital of France?",
|
||||
"id_slot": 1,
|
||||
"cache_prompt": True,
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert match_regex("(Whiskers|Flana)+", res.body["content"])
|
||||
assert res.body["timings"]["prompt_n"] == 21 # all tokens are processed
|
||||
|
||||
# Save state of slot 1
|
||||
res = server.make_request("POST", "/slots/1?action=save", data={
|
||||
"filename": "slot1.bin",
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert res.body["n_saved"] == 84
|
||||
|
||||
# Since we have cache, this should only process the last tokens
|
||||
res = server.make_request("POST", "/completion", data={
|
||||
"prompt": "What is the capital of Germany?",
|
||||
"id_slot": 1,
|
||||
"cache_prompt": True,
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert match_regex("(Jack|said)+", res.body["content"])
|
||||
assert res.body["timings"]["prompt_n"] == 6 # only different part is processed
|
||||
|
||||
# Loading the saved cache into slot 0
|
||||
res = server.make_request("POST", "/slots/0?action=restore", data={
|
||||
"filename": "slot1.bin",
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert res.body["n_restored"] == 84
|
||||
|
||||
# Since we have cache, slot 0 should only process the last tokens
|
||||
res = server.make_request("POST", "/completion", data={
|
||||
"prompt": "What is the capital of Germany?",
|
||||
"id_slot": 0,
|
||||
"cache_prompt": True,
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert match_regex("(Jack|said)+", res.body["content"])
|
||||
assert res.body["timings"]["prompt_n"] == 6 # only different part is processed
|
||||
|
||||
# For verification that slot 1 was not corrupted during slot 0 load, same thing should work
|
||||
res = server.make_request("POST", "/completion", data={
|
||||
"prompt": "What is the capital of Germany?",
|
||||
"id_slot": 1,
|
||||
"cache_prompt": True,
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert match_regex("(Jack|said)+", res.body["content"])
|
||||
assert res.body["timings"]["prompt_n"] == 1
|
||||
|
||||
|
||||
def test_slot_erase():
|
||||
global server
|
||||
server.start()
|
||||
|
||||
res = server.make_request("POST", "/completion", data={
|
||||
"prompt": "What is the capital of France?",
|
||||
"id_slot": 1,
|
||||
"cache_prompt": True,
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert match_regex("(Whiskers|Flana)+", res.body["content"])
|
||||
assert res.body["timings"]["prompt_n"] == 21 # all tokens are processed
|
||||
|
||||
# erase slot 1
|
||||
res = server.make_request("POST", "/slots/1?action=erase")
|
||||
assert res.status_code == 200
|
||||
|
||||
# re-run the same prompt, it should process all tokens again
|
||||
res = server.make_request("POST", "/completion", data={
|
||||
"prompt": "What is the capital of France?",
|
||||
"id_slot": 1,
|
||||
"cache_prompt": True,
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert match_regex("(Whiskers|Flana)+", res.body["content"])
|
||||
assert res.body["timings"]["prompt_n"] == 21 # all tokens are processed
|
59
examples/server/tests/unit/test_tokenize.py
Normal file
59
examples/server/tests/unit/test_tokenize.py
Normal file
|
@ -0,0 +1,59 @@
|
|||
import pytest
|
||||
from utils import *
|
||||
|
||||
server = ServerPreset.tinyllama2()
|
||||
|
||||
|
||||
@pytest.fixture(scope="module", autouse=True)
|
||||
def create_server():
|
||||
global server
|
||||
server = ServerPreset.tinyllama2()
|
||||
|
||||
|
||||
def test_tokenize_detokenize():
|
||||
global server
|
||||
server.start()
|
||||
# tokenize
|
||||
content = "What is the capital of France ?"
|
||||
res_tok = server.make_request("POST", "/tokenize", data={
|
||||
"content": content
|
||||
})
|
||||
assert res_tok.status_code == 200
|
||||
assert len(res_tok.body["tokens"]) > 5
|
||||
# detokenize
|
||||
res_detok = server.make_request("POST", "/detokenize", data={
|
||||
"tokens": res_tok.body["tokens"],
|
||||
})
|
||||
assert res_detok.status_code == 200
|
||||
assert res_detok.body["content"].strip() == content
|
||||
|
||||
|
||||
def test_tokenize_with_bos():
|
||||
global server
|
||||
server.start()
|
||||
# tokenize
|
||||
content = "What is the capital of France ?"
|
||||
bosId = 1
|
||||
res_tok = server.make_request("POST", "/tokenize", data={
|
||||
"content": content,
|
||||
"add_special": True,
|
||||
})
|
||||
assert res_tok.status_code == 200
|
||||
assert res_tok.body["tokens"][0] == bosId
|
||||
|
||||
|
||||
def test_tokenize_with_pieces():
|
||||
global server
|
||||
server.start()
|
||||
# tokenize
|
||||
content = "This is a test string with unicode 媽 and emoji 🤗"
|
||||
res_tok = server.make_request("POST", "/tokenize", data={
|
||||
"content": content,
|
||||
"with_pieces": True,
|
||||
})
|
||||
assert res_tok.status_code == 200
|
||||
for token in res_tok.body["tokens"]:
|
||||
assert "id" in token
|
||||
assert token["id"] > 0
|
||||
assert "piece" in token
|
||||
assert len(token["piece"]) > 0
|
377
examples/server/tests/utils.py
Normal file
377
examples/server/tests/utils.py
Normal file
|
@ -0,0 +1,377 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# type: ignore[reportUnusedImport]
|
||||
|
||||
import subprocess
|
||||
import os
|
||||
import re
|
||||
import json
|
||||
import sys
|
||||
import threading
|
||||
import requests
|
||||
import time
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
ContextManager,
|
||||
Iterable,
|
||||
Iterator,
|
||||
List,
|
||||
Literal,
|
||||
Tuple,
|
||||
Set,
|
||||
)
|
||||
from re import RegexFlag
|
||||
|
||||
|
||||
class ServerResponse:
|
||||
headers: dict
|
||||
status_code: int
|
||||
body: dict | Any
|
||||
|
||||
|
||||
class ServerProcess:
|
||||
# default options
|
||||
debug: bool = False
|
||||
server_port: int = 8080
|
||||
server_host: str = "127.0.0.1"
|
||||
model_hf_repo: str = "ggml-org/models"
|
||||
model_hf_file: str = "tinyllamas/stories260K.gguf"
|
||||
model_alias: str = "tinyllama-2"
|
||||
temperature: float = 0.8
|
||||
seed: int = 42
|
||||
|
||||
# custom options
|
||||
model_alias: str | None = None
|
||||
model_url: str | None = None
|
||||
model_file: str | None = None
|
||||
n_threads: int | None = None
|
||||
n_gpu_layer: int | None = None
|
||||
n_batch: int | None = None
|
||||
n_ubatch: int | None = None
|
||||
n_ctx: int | None = None
|
||||
n_ga: int | None = None
|
||||
n_ga_w: int | None = None
|
||||
n_predict: int | None = None
|
||||
n_prompts: int | None = 0
|
||||
slot_save_path: str | None = None
|
||||
id_slot: int | None = None
|
||||
cache_prompt: bool | None = None
|
||||
n_slots: int | None = None
|
||||
server_continuous_batching: bool | None = False
|
||||
server_embeddings: bool | None = False
|
||||
server_reranking: bool | None = False
|
||||
server_metrics: bool | None = False
|
||||
draft: int | None = None
|
||||
api_key: str | None = None
|
||||
response_format: str | None = None
|
||||
lora_files: List[str] | None = None
|
||||
disable_ctx_shift: int | None = False
|
||||
|
||||
# session variables
|
||||
process: subprocess.Popen | None = None
|
||||
|
||||
def __init__(self):
|
||||
if "N_GPU_LAYERS" in os.environ:
|
||||
self.n_gpu_layer = int(os.environ["N_GPU_LAYERS"])
|
||||
if "DEBUG" in os.environ:
|
||||
self.debug = True
|
||||
if "PORT" in os.environ:
|
||||
self.server_port = int(os.environ["PORT"])
|
||||
|
||||
def start(self, timeout_seconds: int = 10) -> None:
|
||||
if "LLAMA_SERVER_BIN_PATH" in os.environ:
|
||||
server_path = os.environ["LLAMA_SERVER_BIN_PATH"]
|
||||
elif os.name == "nt":
|
||||
server_path = "../../../build/bin/Release/llama-server.exe"
|
||||
else:
|
||||
server_path = "../../../build/bin/llama-server"
|
||||
server_args = [
|
||||
"--slots", # requires to get slot status via /slots endpoint
|
||||
"--host",
|
||||
self.server_host,
|
||||
"--port",
|
||||
self.server_port,
|
||||
"--temp",
|
||||
self.temperature,
|
||||
"--seed",
|
||||
self.seed,
|
||||
]
|
||||
if self.model_file:
|
||||
server_args.extend(["--model", self.model_file])
|
||||
if self.model_url:
|
||||
server_args.extend(["--model-url", self.model_url])
|
||||
if self.model_hf_repo:
|
||||
server_args.extend(["--hf-repo", self.model_hf_repo])
|
||||
if self.model_hf_file:
|
||||
server_args.extend(["--hf-file", self.model_hf_file])
|
||||
if self.n_batch:
|
||||
server_args.extend(["--batch-size", self.n_batch])
|
||||
if self.n_ubatch:
|
||||
server_args.extend(["--ubatch-size", self.n_ubatch])
|
||||
if self.n_threads:
|
||||
server_args.extend(["--threads", self.n_threads])
|
||||
if self.n_gpu_layer:
|
||||
server_args.extend(["--n-gpu-layers", self.n_gpu_layer])
|
||||
if self.draft is not None:
|
||||
server_args.extend(["--draft", self.draft])
|
||||
if self.server_continuous_batching:
|
||||
server_args.append("--cont-batching")
|
||||
if self.server_embeddings:
|
||||
server_args.append("--embedding")
|
||||
if self.server_reranking:
|
||||
server_args.append("--reranking")
|
||||
if self.server_metrics:
|
||||
server_args.append("--metrics")
|
||||
if self.model_alias:
|
||||
server_args.extend(["--alias", self.model_alias])
|
||||
if self.n_ctx:
|
||||
server_args.extend(["--ctx-size", self.n_ctx])
|
||||
if self.n_slots:
|
||||
server_args.extend(["--parallel", self.n_slots])
|
||||
if self.n_predict:
|
||||
server_args.extend(["--n-predict", self.n_predict])
|
||||
if self.slot_save_path:
|
||||
server_args.extend(["--slot-save-path", self.slot_save_path])
|
||||
if self.n_ga:
|
||||
server_args.extend(["--grp-attn-n", self.n_ga])
|
||||
if self.n_ga_w:
|
||||
server_args.extend(["--grp-attn-w", self.n_ga_w])
|
||||
if self.debug:
|
||||
server_args.append("--verbose")
|
||||
if self.lora_files:
|
||||
for lora_file in self.lora_files:
|
||||
server_args.extend(["--lora", lora_file])
|
||||
if self.disable_ctx_shift:
|
||||
server_args.extend(["--no-context-shift"])
|
||||
if self.api_key:
|
||||
server_args.extend(["--api-key", self.api_key])
|
||||
|
||||
args = [str(arg) for arg in [server_path, *server_args]]
|
||||
print(f"bench: starting server with: {' '.join(args)}")
|
||||
|
||||
flags = 0
|
||||
if "nt" == os.name:
|
||||
flags |= subprocess.DETACHED_PROCESS
|
||||
flags |= subprocess.CREATE_NEW_PROCESS_GROUP
|
||||
flags |= subprocess.CREATE_NO_WINDOW
|
||||
|
||||
self.process = subprocess.Popen(
|
||||
[str(arg) for arg in [server_path, *server_args]],
|
||||
creationflags=flags,
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.PIPE,
|
||||
env={**os.environ, "LLAMA_CACHE": "tmp"},
|
||||
)
|
||||
server_instances.add(self)
|
||||
|
||||
def server_log(in_stream, out_stream):
|
||||
for line in iter(in_stream.readline, b""):
|
||||
print(line.decode("utf-8"), end="", file=out_stream)
|
||||
|
||||
thread_stdout = threading.Thread(
|
||||
target=server_log, args=(self.process.stdout, sys.stdout), daemon=True
|
||||
)
|
||||
thread_stdout.start()
|
||||
|
||||
thread_stderr = threading.Thread(
|
||||
target=server_log, args=(self.process.stderr, sys.stderr), daemon=True
|
||||
)
|
||||
thread_stderr.start()
|
||||
|
||||
print(f"server pid={self.process.pid}, pytest pid={os.getpid()}")
|
||||
|
||||
# wait for server to start
|
||||
start_time = time.time()
|
||||
while time.time() - start_time < timeout_seconds:
|
||||
try:
|
||||
response = self.make_request("GET", "/slots", headers={
|
||||
"Authorization": f"Bearer {self.api_key}" if self.api_key else None
|
||||
})
|
||||
if response.status_code == 200:
|
||||
self.ready = True
|
||||
return # server is ready
|
||||
except Exception as e:
|
||||
pass
|
||||
print(f"Waiting for server to start...")
|
||||
time.sleep(0.5)
|
||||
raise TimeoutError(f"Server did not start within {timeout_seconds} seconds")
|
||||
|
||||
def stop(self) -> None:
|
||||
server_instances.remove(self)
|
||||
if self.process:
|
||||
print(f"Stopping server with pid={self.process.pid}")
|
||||
self.process.kill()
|
||||
self.process = None
|
||||
|
||||
def make_request(
|
||||
self,
|
||||
method: str,
|
||||
path: str,
|
||||
data: dict | Any | None = None,
|
||||
headers: dict | None = None,
|
||||
) -> ServerResponse:
|
||||
url = f"http://{self.server_host}:{self.server_port}{path}"
|
||||
parse_body = False
|
||||
if method == "GET":
|
||||
response = requests.get(url, headers=headers)
|
||||
parse_body = True
|
||||
elif method == "POST":
|
||||
response = requests.post(url, headers=headers, json=data)
|
||||
parse_body = True
|
||||
elif method == "OPTIONS":
|
||||
response = requests.options(url, headers=headers)
|
||||
else:
|
||||
raise ValueError(f"Unimplemented method: {method}")
|
||||
result = ServerResponse()
|
||||
result.headers = dict(response.headers)
|
||||
result.status_code = response.status_code
|
||||
result.body = response.json() if parse_body else None
|
||||
print("Response from server", result.body)
|
||||
return result
|
||||
|
||||
def make_stream_request(
|
||||
self,
|
||||
method: str,
|
||||
path: str,
|
||||
data: dict | None = None,
|
||||
headers: dict | None = None,
|
||||
) -> Iterator[dict]:
|
||||
url = f"http://{self.server_host}:{self.server_port}{path}"
|
||||
if method == "POST":
|
||||
response = requests.post(url, headers=headers, json=data, stream=True)
|
||||
else:
|
||||
raise ValueError(f"Unimplemented method: {method}")
|
||||
for line_bytes in response.iter_lines():
|
||||
line = line_bytes.decode("utf-8")
|
||||
if '[DONE]' in line:
|
||||
break
|
||||
elif line.startswith('data: '):
|
||||
data = json.loads(line[6:])
|
||||
print("Partial response from server", data)
|
||||
yield data
|
||||
|
||||
|
||||
server_instances: Set[ServerProcess] = set()
|
||||
|
||||
|
||||
class ServerPreset:
|
||||
@staticmethod
|
||||
def tinyllama2() -> ServerProcess:
|
||||
server = ServerProcess()
|
||||
server.model_hf_repo = "ggml-org/models"
|
||||
server.model_hf_file = "tinyllamas/stories260K.gguf"
|
||||
server.model_alias = "tinyllama-2"
|
||||
server.n_ctx = 256
|
||||
server.n_batch = 32
|
||||
server.n_slots = 2
|
||||
server.n_predict = 64
|
||||
server.seed = 42
|
||||
return server
|
||||
|
||||
@staticmethod
|
||||
def bert_bge_small() -> ServerProcess:
|
||||
server = ServerProcess()
|
||||
server.model_hf_repo = "ggml-org/models"
|
||||
server.model_hf_file = "bert-bge-small/ggml-model-f16.gguf"
|
||||
server.model_alias = "bert-bge-small"
|
||||
server.n_ctx = 512
|
||||
server.n_batch = 128
|
||||
server.n_ubatch = 128
|
||||
server.n_slots = 2
|
||||
server.seed = 42
|
||||
server.server_embeddings = True
|
||||
return server
|
||||
|
||||
@staticmethod
|
||||
def tinyllama_infill() -> ServerProcess:
|
||||
server = ServerProcess()
|
||||
server.model_hf_repo = "ggml-org/models"
|
||||
server.model_hf_file = "tinyllamas/stories260K-infill.gguf"
|
||||
server.model_alias = "tinyllama-infill"
|
||||
server.n_ctx = 2048
|
||||
server.n_batch = 1024
|
||||
server.n_slots = 1
|
||||
server.n_predict = 64
|
||||
server.temperature = 0.0
|
||||
server.seed = 42
|
||||
return server
|
||||
|
||||
@staticmethod
|
||||
def stories15m_moe() -> ServerProcess:
|
||||
server = ServerProcess()
|
||||
server.model_hf_repo = "ggml-org/stories15M_MOE"
|
||||
server.model_hf_file = "stories15M_MOE-F16.gguf"
|
||||
server.model_alias = "stories15m-moe"
|
||||
server.n_ctx = 2048
|
||||
server.n_batch = 1024
|
||||
server.n_slots = 1
|
||||
server.n_predict = 64
|
||||
server.temperature = 0.0
|
||||
server.seed = 42
|
||||
return server
|
||||
|
||||
@staticmethod
|
||||
def jina_reranker_tiny() -> ServerProcess:
|
||||
server = ServerProcess()
|
||||
server.model_hf_repo = "ggml-org/models"
|
||||
server.model_hf_file = "jina-reranker-v1-tiny-en/ggml-model-f16.gguf"
|
||||
server.model_alias = "jina-reranker"
|
||||
server.model_file = "./tmp/jina-reranker-v1-tiny-en.gguf"
|
||||
server.n_ctx = 512
|
||||
server.n_batch = 512
|
||||
server.n_slots = 1
|
||||
server.seed = 42
|
||||
server.server_reranking = True
|
||||
return server
|
||||
|
||||
|
||||
def parallel_function_calls(function_list: List[Tuple[Callable[..., Any], Tuple[Any, ...]]]) -> List[Any]:
|
||||
"""
|
||||
Run multiple functions in parallel and return results in the same order as calls. Equivalent to Promise.all in JS.
|
||||
|
||||
Example usage:
|
||||
|
||||
results = parallel_function_calls([
|
||||
(func1, (arg1, arg2)),
|
||||
(func2, (arg3, arg4)),
|
||||
])
|
||||
"""
|
||||
results = [None] * len(function_list)
|
||||
exceptions = []
|
||||
|
||||
def worker(index, func, args):
|
||||
try:
|
||||
result = func(*args)
|
||||
results[index] = result
|
||||
except Exception as e:
|
||||
exceptions.append((index, str(e)))
|
||||
|
||||
with ThreadPoolExecutor() as executor:
|
||||
futures = []
|
||||
for i, (func, args) in enumerate(function_list):
|
||||
future = executor.submit(worker, i, func, args)
|
||||
futures.append(future)
|
||||
|
||||
# Wait for all futures to complete
|
||||
for future in as_completed(futures):
|
||||
pass
|
||||
|
||||
# Check if there were any exceptions
|
||||
if exceptions:
|
||||
print("Exceptions occurred:")
|
||||
for index, error in exceptions:
|
||||
print(f"Function at index {index}: {error}")
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def match_regex(regex: str, text: str) -> bool:
|
||||
return (
|
||||
re.compile(
|
||||
regex, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL
|
||||
).search(text)
|
||||
is not None
|
||||
)
|
|
@ -24,7 +24,6 @@
|
|||
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
using llama_tokens = std::vector<llama_token>;
|
||||
|
||||
#define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
|
||||
#define SLT_WRN(slot, fmt, ...) LOG_WRN("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
|
||||
|
@ -439,62 +438,6 @@ static std::string gen_chatcmplid() {
|
|||
// other common utils
|
||||
//
|
||||
|
||||
static size_t longest_common_prefix(const llama_tokens & a, const llama_tokens & b) {
|
||||
size_t i;
|
||||
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
|
||||
|
||||
return i;
|
||||
}
|
||||
|
||||
static size_t longest_common_subsequence(const llama_tokens & a, const llama_tokens & b) {
|
||||
// check for empty sequences
|
||||
if (a.empty() || b.empty()) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// get the lengths of the input sequences
|
||||
size_t a_len = a.size();
|
||||
size_t b_len = b.size();
|
||||
|
||||
// initialize the maximum length of the longest common subsequence (LCS)
|
||||
size_t max_length = 0;
|
||||
|
||||
// use two rows instead of a 2D matrix to optimize space
|
||||
std::vector<size_t> prev_row(b_len + 1, 0);
|
||||
std::vector<size_t> curr_row(b_len + 1, 0);
|
||||
|
||||
// iterate through the elements of a
|
||||
for (size_t i = 1; i <= a_len; i++) {
|
||||
// iterate through the elements of b
|
||||
for (size_t j = 1; j <= b_len; j++) {
|
||||
// if elements at the current positions match
|
||||
if (a[i - 1] == b[j - 1]) {
|
||||
// if it's the first element of either sequences, set LCS length to 1
|
||||
if (i == 1 || j == 1) {
|
||||
curr_row[j] = 1;
|
||||
} else {
|
||||
// increment LCS length by 1 compared to the previous element
|
||||
curr_row[j] = prev_row[j - 1] + 1;
|
||||
}
|
||||
|
||||
// update max_length if necessary
|
||||
if (curr_row[j] > max_length) {
|
||||
max_length = curr_row[j];
|
||||
}
|
||||
} else {
|
||||
// reset LCS length if elements don't match
|
||||
curr_row[j] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// update the previous row for the next iteration
|
||||
prev_row = curr_row;
|
||||
}
|
||||
|
||||
// return the maximum length of the LCS
|
||||
return max_length;
|
||||
}
|
||||
|
||||
static bool ends_with(const std::string & str, const std::string & suffix) {
|
||||
return str.size() >= suffix.size() && 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
|
||||
}
|
||||
|
|
|
@ -62,6 +62,9 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
}, nullptr);
|
||||
|
||||
// load dynamic backends
|
||||
ggml_backend_load_all();
|
||||
|
||||
// initialize the model
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
model_params.n_gpu_layers = ngl;
|
||||
|
|
|
@ -74,6 +74,10 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
}
|
||||
|
||||
// load dynamic backends
|
||||
|
||||
ggml_backend_load_all();
|
||||
|
||||
// initialize the model
|
||||
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
|
|
5
examples/speculative-simple/CMakeLists.txt
Normal file
5
examples/speculative-simple/CMakeLists.txt
Normal file
|
@ -0,0 +1,5 @@
|
|||
set(TARGET llama-speculative-simple)
|
||||
add_executable(${TARGET} speculative-simple.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
12
examples/speculative-simple/README.md
Normal file
12
examples/speculative-simple/README.md
Normal file
|
@ -0,0 +1,12 @@
|
|||
# llama.cpp/examples/speculative-simple
|
||||
|
||||
Demonstration of basic greedy speculative decoding
|
||||
|
||||
```bash
|
||||
./bin/llama-speculative-simple \
|
||||
-m ../models/qwen2.5-32b-coder-instruct/ggml-model-q8_0.gguf \
|
||||
-md ../models/qwen2.5-1.5b-coder-instruct/ggml-model-q4_0.gguf \
|
||||
-f test.txt -c 0 -ngl 99 --color \
|
||||
--sampling-seq k --top-k 1 -fa --temp 0.0 \
|
||||
-ngld 99 --draft-max 16 --draft-min 5 --draft-p-min 0.9
|
||||
```
|
265
examples/speculative-simple/speculative-simple.cpp
Normal file
265
examples/speculative-simple/speculative-simple.cpp
Normal file
|
@ -0,0 +1,265 @@
|
|||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "sampling.h"
|
||||
#include "speculative.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (params.n_predict < -1) {
|
||||
LOG_ERR("%s: --n-predict must be >= -1\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
common_init();
|
||||
|
||||
if (params.speculative.model.empty()) {
|
||||
LOG_ERR("%s: --model-draft is required\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model_tgt = NULL;
|
||||
llama_model * model_dft = NULL;
|
||||
|
||||
llama_context * ctx_tgt = NULL;
|
||||
llama_context * ctx_dft = NULL;
|
||||
|
||||
// load the target model
|
||||
common_init_result llama_init_tgt = common_init_from_params(params);
|
||||
|
||||
model_tgt = llama_init_tgt.model;
|
||||
ctx_tgt = llama_init_tgt.context;
|
||||
|
||||
// load the draft model
|
||||
params.devices = params.speculative.devices;
|
||||
params.model = params.speculative.model;
|
||||
params.n_ctx = params.speculative.n_ctx;
|
||||
params.n_batch = params.speculative.n_ctx > 0 ? params.speculative.n_ctx : params.n_batch;
|
||||
params.n_gpu_layers = params.speculative.n_gpu_layers;
|
||||
|
||||
if (params.speculative.cpuparams.n_threads > 0) {
|
||||
params.cpuparams.n_threads = params.speculative.cpuparams.n_threads;
|
||||
}
|
||||
|
||||
params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
|
||||
common_init_result llama_init_dft = common_init_from_params(params);
|
||||
|
||||
model_dft = llama_init_dft.model;
|
||||
ctx_dft = llama_init_dft.context;
|
||||
|
||||
if (!common_speculative_are_compatible(ctx_tgt, ctx_dft)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
inp = common_tokenize(ctx_tgt, params.prompt, true, true);
|
||||
|
||||
if (llama_n_ctx(ctx_tgt) < (uint32_t) inp.size()) {
|
||||
LOG_ERR("%s: the prompt exceeds the context size (%d tokens, ctx %d)\n", __func__, (int) inp.size(), llama_n_ctx(ctx_tgt));
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (llama_n_batch(ctx_tgt) < (uint32_t) inp.size()) {
|
||||
LOG_ERR("%s: the prompt exceeds the batch size (%d tokens, batch %d)\n", __func__, (int) inp.size(), llama_n_batch(ctx_tgt));
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
LOG("\n\n");
|
||||
|
||||
for (auto id : inp) {
|
||||
LOG("%s", common_token_to_piece(ctx_tgt, id).c_str());
|
||||
}
|
||||
|
||||
// how many tokens to draft each time
|
||||
int n_draft = params.speculative.n_max;
|
||||
int n_draft_min = params.speculative.n_min;
|
||||
|
||||
float p_min = params.speculative.p_min;
|
||||
|
||||
int n_predict = 0;
|
||||
int n_drafted = 0;
|
||||
int n_accept = 0;
|
||||
|
||||
// used to determine end of generation
|
||||
bool has_eos = false;
|
||||
|
||||
// ================================================
|
||||
// everything until here is standard initialization
|
||||
// the relevant stuff for speculative decoding starts here
|
||||
|
||||
const auto t_enc_start = ggml_time_us();
|
||||
|
||||
// target model sampling context
|
||||
struct common_sampler * smpl = common_sampler_init(model_tgt, params.sampling);
|
||||
|
||||
// eval the prompt
|
||||
llama_decode(ctx_tgt, llama_batch_get_one(inp.data(), inp.size() - 1));
|
||||
|
||||
// note: keep the last token separate!
|
||||
llama_token id_last = inp.back();
|
||||
|
||||
// all tokens currently in the target context
|
||||
llama_tokens prompt_tgt(inp.begin(), inp.end() - 1);
|
||||
prompt_tgt.reserve(llama_n_ctx(ctx_tgt));
|
||||
|
||||
int n_past = inp.size() - 1;
|
||||
|
||||
// init the speculator
|
||||
struct common_speculative_params params_spec;
|
||||
params_spec.n_draft = n_draft;
|
||||
params_spec.n_reuse = llama_n_ctx(ctx_dft) - n_draft;
|
||||
params_spec.p_min = p_min;
|
||||
|
||||
struct common_speculative * spec = common_speculative_init(ctx_dft);
|
||||
|
||||
llama_batch batch_tgt = llama_batch_init(llama_n_batch(ctx_tgt), 0, 1);
|
||||
|
||||
const auto t_enc_end = ggml_time_us();
|
||||
|
||||
const auto t_dec_start = ggml_time_us();
|
||||
|
||||
while (true) {
|
||||
// optionally, generate draft tokens that can be appended to the target batch
|
||||
//
|
||||
// this is the most important part of the speculation. the more probable tokens that are provided here
|
||||
// the better the performance will be. in theory, this computation can be performed asynchronously and even
|
||||
// offloaded to a remote device. it doesn't even have to be based on an LLM. instead, it can provide tokens
|
||||
// from a cache or lookup tables.
|
||||
//
|
||||
llama_tokens draft = common_speculative_gen_draft(spec, params_spec, prompt_tgt, id_last);
|
||||
|
||||
//LOG_DBG("draft: %s\n", string_from(ctx_dft, draft).c_str());
|
||||
|
||||
// always have a token to evaluate from before - id_last
|
||||
common_batch_clear(batch_tgt);
|
||||
common_batch_add (batch_tgt, id_last, n_past++, { 0 }, true);
|
||||
|
||||
// evaluate the target model on [id_last, draft0, draft1, ..., draftN-1]
|
||||
{
|
||||
// do not waste time on small drafts
|
||||
if (draft.size() < (size_t) n_draft_min) {
|
||||
draft.clear();
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < draft.size(); ++i) {
|
||||
common_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true);
|
||||
}
|
||||
|
||||
//LOG_DBG("target batch: %s\n", string_from(ctx_tgt, batch_tgt).c_str());
|
||||
|
||||
llama_decode(ctx_tgt, batch_tgt);
|
||||
}
|
||||
|
||||
// sample from the full target batch and return the accepted tokens based on the target sampler
|
||||
//
|
||||
// for each token to be accepted, the sampler would have to sample that same token
|
||||
// in such cases, instead of decoding the sampled token as we normally do, we simply continue with the
|
||||
// available logits from the batch and sample the next token until we run out of logits or the sampler
|
||||
// disagrees with the draft
|
||||
//
|
||||
const auto ids = common_sampler_sample_and_accept_n(smpl, ctx_tgt, draft);
|
||||
|
||||
//LOG_DBG("ids: %s\n", string_from(ctx_tgt, ids).c_str());
|
||||
|
||||
GGML_ASSERT(ids.size() > 0); // there will always be at least one accepted token
|
||||
|
||||
n_past += ids.size() - 1;
|
||||
n_drafted += draft.size(); // note: we ignore the discarded small drafts
|
||||
n_accept += ids.size() - 1;
|
||||
n_predict += ids.size();
|
||||
|
||||
// process the accepted tokens and update contexts
|
||||
//
|
||||
// this is the standard token post-processing that we normally do
|
||||
// in this case, we do it for a group of accepted tokens at once
|
||||
//
|
||||
for (size_t i = 0; i < ids.size(); ++i) {
|
||||
prompt_tgt.push_back(id_last);
|
||||
|
||||
id_last = ids[i];
|
||||
|
||||
if (llama_token_is_eog(model_tgt, id_last)) {
|
||||
has_eos = true;
|
||||
break;
|
||||
}
|
||||
|
||||
const std::string token_str = common_token_to_piece(ctx_tgt, id_last);
|
||||
|
||||
if (params.use_color && i + 1 < ids.size()) {
|
||||
LOG("\u001b[%dm%s\u001b[37m", (36 - 0 % 6), token_str.c_str());
|
||||
} else {
|
||||
LOG("%s", token_str.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
LOG_DBG("accepted %d/%d draft tokens, the last target token is: (%d)\n", (int) ids.size() - 1, (int) draft.size(), id_last);
|
||||
|
||||
{
|
||||
LOG_DBG("clear kv cache from any extra tokens, n_past = %d\n", n_past);
|
||||
|
||||
llama_kv_cache_seq_rm(ctx_tgt, 0, n_past, -1);
|
||||
}
|
||||
|
||||
if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
auto t_dec_end = ggml_time_us();
|
||||
|
||||
const int n_input = inp.size();
|
||||
|
||||
LOG("\n\n");
|
||||
|
||||
LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
|
||||
LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("n_draft = %d\n", n_draft);
|
||||
LOG_INF("n_predict = %d\n", n_predict);
|
||||
LOG_INF("n_drafted = %d\n", n_drafted);
|
||||
LOG_INF("n_accept = %d\n", n_accept);
|
||||
LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("draft:\n\n");
|
||||
|
||||
llama_perf_context_print(ctx_dft);
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("target:\n\n");
|
||||
common_perf_print(ctx_tgt, smpl);
|
||||
|
||||
common_sampler_free(smpl);
|
||||
common_speculative_free(spec);
|
||||
|
||||
llama_free(ctx_tgt);
|
||||
llama_free_model(model_tgt);
|
||||
|
||||
llama_free(ctx_dft);
|
||||
llama_free_model(model_dft);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
LOG("\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -12,7 +12,7 @@
|
|||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 100
|
||||
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
|
||||
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
|
||||
|
||||
struct seq_draft {
|
||||
|
@ -33,7 +33,7 @@ int main(int argc, char ** argv) {
|
|||
common_params params;
|
||||
|
||||
// needed to get candidate probs even for temp <= 0.0
|
||||
params.sparams.n_probs = 128;
|
||||
params.sampling.n_probs = 128;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
|
||||
return 1;
|
||||
|
@ -46,7 +46,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
common_init();
|
||||
|
||||
if (params.model_draft.empty()) {
|
||||
if (params.speculative.model.empty()) {
|
||||
LOG_ERR("%s: --model-draft is required\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
@ -55,9 +55,9 @@ int main(int argc, char ** argv) {
|
|||
const int n_seq_dft = params.n_parallel;
|
||||
|
||||
// probability threshold for splitting a draft branch (only for n_seq_dft > 1)
|
||||
const float p_split = params.p_split;
|
||||
const float p_draft_split = params.speculative.p_split;
|
||||
|
||||
std::default_random_engine rng(params.sparams.seed == LLAMA_DEFAULT_SEED ? std::random_device()() : params.sparams.seed);
|
||||
std::default_random_engine rng(params.sampling.seed == LLAMA_DEFAULT_SEED ? std::random_device()() : params.sampling.seed);
|
||||
std::uniform_real_distribution<> u_dist;
|
||||
|
||||
// init llama.cpp
|
||||
|
@ -76,13 +76,14 @@ int main(int argc, char ** argv) {
|
|||
ctx_tgt = llama_init_tgt.context;
|
||||
|
||||
// load the draft model
|
||||
params.model = params.model_draft;
|
||||
params.n_gpu_layers = params.n_gpu_layers_draft;
|
||||
if (params.draft_cpuparams.n_threads > 0) {
|
||||
params.cpuparams.n_threads = params.draft_cpuparams.n_threads;
|
||||
params.devices = params.speculative.devices;
|
||||
params.model = params.speculative.model;
|
||||
params.n_gpu_layers = params.speculative.n_gpu_layers;
|
||||
if (params.speculative.cpuparams.n_threads > 0) {
|
||||
params.cpuparams.n_threads = params.speculative.cpuparams.n_threads;
|
||||
}
|
||||
|
||||
params.cpuparams_batch.n_threads = params.draft_cpuparams_batch.n_threads;
|
||||
params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
|
||||
common_init_result llama_init_dft = common_init_from_params(params);
|
||||
model_dft = llama_init_dft.model;
|
||||
ctx_dft = llama_init_dft.context;
|
||||
|
@ -170,7 +171,7 @@ int main(int argc, char ** argv) {
|
|||
//GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));
|
||||
|
||||
// how many tokens to draft each time
|
||||
int n_draft = params.n_draft;
|
||||
int n_draft = params.speculative.n_max;
|
||||
|
||||
int n_predict = 0;
|
||||
int n_drafted = 0;
|
||||
|
@ -183,14 +184,14 @@ int main(int argc, char ** argv) {
|
|||
bool has_eos = false;
|
||||
|
||||
// target model sampling context (reuse the llama_context's sampling instance)
|
||||
struct common_sampler * smpl = common_sampler_init(model_tgt, params.sparams);
|
||||
struct common_sampler * smpl = common_sampler_init(model_tgt, params.sampling);
|
||||
|
||||
// draft sequence data
|
||||
std::vector<seq_draft> drafts(n_seq_dft);
|
||||
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
// allocate llama_sampler for each draft sequence
|
||||
drafts[s].smpl = common_sampler_init(model_dft, params.sparams);
|
||||
drafts[s].smpl = common_sampler_init(model_dft, params.sampling);
|
||||
}
|
||||
|
||||
llama_batch batch_dft = llama_batch_init(llama_n_batch(ctx_dft), 0, 1);
|
||||
|
@ -230,7 +231,7 @@ int main(int argc, char ** argv) {
|
|||
// for stochastic sampling, attempt to match the token with the drafted tokens
|
||||
{
|
||||
bool accept = false;
|
||||
if (params.sparams.temp > 0) {
|
||||
if (params.sampling.temp > 0) {
|
||||
// stochastic verification
|
||||
common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
|
||||
|
||||
|
@ -494,7 +495,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
// attempt to split the branch if the probability is high enough
|
||||
for (int f = 1; f < 8; ++f) {
|
||||
if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_split) {
|
||||
if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_draft_split) {
|
||||
LOG_DBG("splitting seq %3d into %3d\n", s, n_seq_cur);
|
||||
|
||||
llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1);
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue