llama : vocab pimpl

ggml-ci
This commit is contained in:
Georgi Gerganov 2025-01-08 19:47:51 +02:00
parent f4b6969b1d
commit 2c9f20d4bb
No known key found for this signature in database
GPG key ID: 449E073F9DC10735
2 changed files with 62 additions and 58 deletions

View file

@ -66,12 +66,18 @@ struct naive_trie {
//
struct llm_tokenizer {
llm_tokenizer() {}
virtual ~llm_tokenizer() = default;
llm_tokenizer() {}
virtual ~llm_tokenizer() = default;
};
struct llama_vocab::impl {
std::unique_ptr<llm_tokenizer> tokenizer;
};
llama_vocab::llama_vocab() : pimpl(new impl()) {
}
llama_vocab::~llama_vocab() {
delete tokenizer;
}
int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
@ -194,7 +200,7 @@ struct llm_bigram_spm {
};
struct llm_tokenizer_spm : llm_tokenizer {
llm_tokenizer_spm(const llama_vocab & /*vocab*/) : llm_tokenizer() {}
llm_tokenizer_spm(const llama_vocab & /*vocab*/) {}
};
struct llm_tokenizer_spm_session {
@ -364,7 +370,7 @@ struct llm_bigram_bpe {
};
struct llm_tokenizer_bpe : llm_tokenizer {
llm_tokenizer_bpe(const llama_vocab & vocab) : llm_tokenizer() {
llm_tokenizer_bpe(const llama_vocab & vocab) {
GGML_ASSERT(vocab.type == LLAMA_VOCAB_TYPE_BPE);
switch (vocab.type_pre) {
case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
@ -499,8 +505,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
};
struct llm_tokenizer_bpe_session {
llm_tokenizer_bpe_session(const llama_vocab & vocab) : vocab(vocab),
bpe_tokenizer(static_cast<const llm_tokenizer_bpe *>(vocab.tokenizer)) {}
llm_tokenizer_bpe_session(const llama_vocab & vocab, const llm_tokenizer_bpe & tokenizer) : vocab(vocab), tokenizer(tokenizer) {}
static void append(const llama_vocab::id token_id, std::vector<llama_vocab::id> & output) {
output.push_back(token_id);
@ -541,7 +546,7 @@ struct llm_tokenizer_bpe_session {
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
int final_prev_index = -1;
const auto word_collection = unicode_regex_split(text, bpe_tokenizer->regex_exprs);
const auto word_collection = unicode_regex_split(text, tokenizer.regex_exprs);
symbols_final.clear();
@ -671,7 +676,7 @@ private:
}
const llama_vocab & vocab;
const llm_tokenizer_bpe * bpe_tokenizer;
const llm_tokenizer_bpe & tokenizer;
std::vector<llm_symbol> symbols;
std::vector<llm_symbol> symbols_final;
@ -683,7 +688,7 @@ private:
//
struct llm_tokenizer_wpm : llm_tokenizer {
llm_tokenizer_wpm(const llama_vocab & /*vocab*/) : llm_tokenizer() {}
llm_tokenizer_wpm(const llama_vocab & /*vocab*/) {}
};
struct llm_tokenizer_wpm_session {
@ -800,7 +805,7 @@ private:
//
struct llm_tokenizer_ugm : llm_tokenizer {
llm_tokenizer_ugm(const llama_vocab & vocab) : llm_tokenizer() {
llm_tokenizer_ugm(const llama_vocab & vocab) {
if (vocab.precompiled_charsmap.size() > 0) {
size_t charsmap_offset = 0;
@ -867,8 +872,7 @@ struct llm_tokenizer_ugm : llm_tokenizer {
};
struct llm_tokenizer_ugm_session {
llm_tokenizer_ugm_session(const llama_vocab & vocab) : vocab(vocab),
ugm_tokenizer(static_cast<const llm_tokenizer_ugm *>(vocab.tokenizer)) {}
llm_tokenizer_ugm_session(const llama_vocab & vocab, const llm_tokenizer_ugm & tokenizer) : vocab(vocab), tokenizer(tokenizer) {}
/* This implementation is based on SentencePiece optimized Viterbi algorithm for
* unigram language models. The general idea is to:
@ -908,7 +912,7 @@ struct llm_tokenizer_ugm_session {
// traverse the token matcher trie to find a matching token
bool single_codepoint_token_found = false;
const struct best_tokenization & current_best = tokenization_results[input_offset];
const struct naive_trie * node = ugm_tokenizer->token_matcher.traverse(normalized[prefix_offset++]);
const struct naive_trie * node = tokenizer.token_matcher.traverse(normalized[prefix_offset++]);
while (prefix_offset <= input_len && node != NULL) {
// check if we found valid token in prefix
@ -938,7 +942,7 @@ struct llm_tokenizer_ugm_session {
// if we didn't find a valid token corresponding to the whole UTF code point
// then use unknown token as the tokenization of this UTF code point
if (!single_codepoint_token_found) {
const double challenger_score = current_best.score_sum + ugm_tokenizer->unknown_token_score;
const double challenger_score = current_best.score_sum + tokenizer.unknown_token_score;
prefix_offset = input_offset + n_utf8_code_units;
struct best_tokenization & current_champ = tokenization_results[prefix_offset];
if (challenger_score > current_champ.score_sum) {
@ -982,7 +986,7 @@ private:
normalized->clear();
normalized->reserve(input.size() * 3);
const std::string space = vocab.tokenizer_escape_whitespaces ? ugm_tokenizer->escaped_space : " ";
const std::string space = vocab.tokenizer_escape_whitespaces ? tokenizer.escaped_space : " ";
bool shall_prepend_space = !vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix;
bool shall_append_space = vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix;
@ -1078,7 +1082,7 @@ private:
// if input prefix matches some user-defined token return this token as normalization result
auto user_defined_token_match =
ugm_tokenizer->user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset);
tokenizer.user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset);
if (user_defined_token_match.second > 0) {
return { &input[input_offset], user_defined_token_match.second, user_defined_token_match.second };
}
@ -1086,8 +1090,8 @@ private:
size_t longest_prefix_length = 0;
size_t longest_prefix_offset = 0;
if (ugm_tokenizer->xcda_array_size > 0) {
struct xcda_array_view xcda_view(ugm_tokenizer->xcda_array, ugm_tokenizer->xcda_array_size);
if (tokenizer.xcda_array_size > 0) {
struct xcda_array_view xcda_view(tokenizer.xcda_array, tokenizer.xcda_array_size);
// Find the longest normalized sequence matching the input prefix by walking
// the XOR-compressed compact double array (XCDA) starting from the root node
@ -1123,10 +1127,10 @@ private:
if (longest_prefix_length > 0) {
// we have a match, so return the replacement sequence
if (longest_prefix_offset >= ugm_tokenizer->prefix_replacements_size) {
if (longest_prefix_offset >= tokenizer.prefix_replacements_size) {
throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
}
const char * prefix_replacement = &(ugm_tokenizer->prefix_replacements)[longest_prefix_offset];
const char * prefix_replacement = &(tokenizer.prefix_replacements)[longest_prefix_offset];
return { prefix_replacement, strlen(prefix_replacement), longest_prefix_length };
}
@ -1143,7 +1147,7 @@ private:
}
const llama_vocab & vocab;
const llm_tokenizer_ugm * ugm_tokenizer;
const llm_tokenizer_ugm & tokenizer;
};
//
@ -1205,7 +1209,7 @@ static std::vector<uint8_t> llama_unescape_rwkv_token(const std::string & escape
}
struct llm_tokenizer_rwkv : llm_tokenizer {
llm_tokenizer_rwkv(const llama_vocab & vocab) : llm_tokenizer() {
llm_tokenizer_rwkv(const llama_vocab & vocab) {
// RWKV supports arbitrary byte tokens, but the vocab struct only supports string tokens.
// For now, we decode the vocab here into the lookup we'll use for tokenization.
@ -1221,13 +1225,12 @@ struct llm_tokenizer_rwkv : llm_tokenizer {
};
struct llm_tokenizer_rwkv_session {
llm_tokenizer_rwkv_session(const llama_vocab & vocab) : vocab(vocab),
rwkv_tokenizer(static_cast<const llm_tokenizer_rwkv &>(*vocab.tokenizer)) {}
llm_tokenizer_rwkv_session(const llama_vocab & vocab, const llm_tokenizer_rwkv & tokenizer) : vocab(vocab), tokenizer(tokenizer) {}
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
uint32_t position = 0;
while (position < text.size()) {
const struct naive_trie * node = rwkv_tokenizer.token_matcher.traverse(text[position]);
const struct naive_trie * node = tokenizer.token_matcher.traverse(text[position]);
if (node == NULL) {
// no matching token found, add unknown token
output.push_back(vocab.special_unk_id);
@ -1254,25 +1257,25 @@ struct llm_tokenizer_rwkv_session {
private:
const llama_vocab & vocab;
const llm_tokenizer_rwkv & rwkv_tokenizer;
const llm_tokenizer_rwkv & tokenizer;
};
void llama_vocab::init_tokenizer() {
switch (type) {
case LLAMA_VOCAB_TYPE_SPM:
tokenizer = new llm_tokenizer_spm(*this);
pimpl->tokenizer = std::make_unique<llm_tokenizer_spm>(*this);
break;
case LLAMA_VOCAB_TYPE_BPE:
tokenizer = new llm_tokenizer_bpe(*this);
pimpl->tokenizer = std::make_unique<llm_tokenizer_bpe>(*this);
break;
case LLAMA_VOCAB_TYPE_WPM:
tokenizer = new llm_tokenizer_wpm(*this);
pimpl->tokenizer = std::make_unique<llm_tokenizer_wpm>(*this);
break;
case LLAMA_VOCAB_TYPE_UGM:
tokenizer = new llm_tokenizer_ugm(*this);
pimpl->tokenizer = std::make_unique<llm_tokenizer_ugm>(*this);
break;
case LLAMA_VOCAB_TYPE_RWKV:
tokenizer = new llm_tokenizer_rwkv(*this);
pimpl->tokenizer = std::make_unique<llm_tokenizer_rwkv>(*this);
break;
default:
GGML_ABORT("unsupported vocab type");
@ -1566,7 +1569,7 @@ std::vector<llama_vocab::id> llama_vocab::tokenize(
std::string raw_text,
bool add_special,
bool parse_special) const {
GGML_ASSERT(tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first.");
GGML_ASSERT(pimpl->tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first.");
std::vector<id> output;
std::forward_list<fragment_buffer_variant> fragment_buffer;
@ -1628,7 +1631,7 @@ std::vector<llama_vocab::id> llama_vocab::tokenize(
} break;
case LLAMA_VOCAB_TYPE_BPE:
{
llm_tokenizer_bpe_session session(*this);
llm_tokenizer_bpe_session session(*this, *static_cast<const llm_tokenizer_bpe *>(pimpl->tokenizer.get()));
// it calls some other methods that are not exist in llm_tokenizer,
// here just cast it to bpe tokenizer object
if (add_special) {
@ -1685,7 +1688,7 @@ std::vector<llama_vocab::id> llama_vocab::tokenize(
GGML_ASSERT(special_bos_id != LLAMA_TOKEN_NULL);
output.push_back(special_bos_id);
}
llm_tokenizer_ugm_session session(*this);
llm_tokenizer_ugm_session session(*this, *static_cast<const llm_tokenizer_ugm *>(pimpl->tokenizer.get()));
for (const auto & fragment : fragment_buffer) {
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
@ -1713,7 +1716,7 @@ std::vector<llama_vocab::id> llama_vocab::tokenize(
} break;
case LLAMA_VOCAB_TYPE_RWKV:
{
llm_tokenizer_rwkv_session session(*this);
llm_tokenizer_rwkv_session session(*this, *static_cast<const llm_tokenizer_rwkv *>(pimpl->tokenizer.get()));
for (const auto & fragment : fragment_buffer) {
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
@ -1872,7 +1875,7 @@ int32_t llama_vocab::detokenize(
return 0;
}
GGML_ASSERT(tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first.");
GGML_ASSERT(pimpl->tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first.");
int32_t avail = text_len_max;
int32_t total = 0;

View file

@ -7,8 +7,7 @@
#include <unordered_map>
#include <map>
#include <set>
struct llm_tokenizer;
#include <memory>
struct llama_vocab {
using id = llama_token;
@ -73,9 +72,7 @@ struct llama_vocab {
std::vector<char> precompiled_charsmap;
llm_tokenizer * tokenizer = nullptr;
llama_vocab() = default;
llama_vocab();
~llama_vocab();
int find_bpe_rank(const std::string & token_left, const std::string & token_right) const;
@ -131,30 +128,30 @@ struct llama_vocab {
bool add_eos_token() const;
std::vector<id> tokenize(
std::string raw_text,
bool add_special,
bool parse_special = false) const;
std::string raw_text,
bool add_special,
bool parse_special = false) const;
int32_t tokenize(
const char * text,
int32_t text_len,
llama_token * tokens,
int32_t n_tokens_max,
bool add_special,
bool parse_special) const;
const char * text,
int32_t text_len,
llama_token * tokens,
int32_t n_tokens_max,
bool add_special,
bool parse_special) const;
// does not write null-terminator to buf
int32_t token_to_piece(
llama_token token,
char * buf,
int32_t length,
int32_t lstrip,
bool special) const;
llama_token token,
char * buf,
int32_t length,
int32_t lstrip,
bool special) const;
// check if token0 is contained as a prefix in token1
bool token_is_prefix(
llama_token token0,
llama_token token1) const;
llama_token token0,
llama_token token1) const;
int32_t detokenize(
const llama_token * tokens,
@ -167,4 +164,8 @@ struct llama_vocab {
std::string detokenize(
const std::vector<llama_token> & tokens,
bool special) const;
private:
struct impl;
std::unique_ptr<impl> pimpl;
};