SYCL: remove ggml_sycl_op_flatten function

This commit is contained in:
Akarshan Biswas 2025-01-30 19:46:34 +05:30
parent 9f4cc8f8d3
commit 2d72bd94b0
No known key found for this signature in database
GPG key ID: 52A578A14B32134D
12 changed files with 469 additions and 692 deletions

View file

@ -65,37 +65,3 @@ int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block
}
return sycl_down_blk_size;
}
void ggml_sycl_op_flatten(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const ggml_sycl_op_flatten_t op) try {
const bool use_src1 = src1 != nullptr;
if(use_src1)
GGML_ASSERT(strcmp(src1->buffer->buft->iface.get_name(src1->buffer->buft), GGML_SYCL_NAME "_Split") != 0);
GGML_ASSERT(strcmp(dst->buffer->buft->iface.get_name(dst->buffer->buft), GGML_SYCL_NAME "_Split") != 0);
// dd = data device
float * src0_ddf = (float *) src0->data;
float * src1_ddf = use_src1 ? (float *) src1->data : nullptr;
float * dst_ddf = (float *) dst->data;
ggml_sycl_pool_alloc<float> src0_f(ctx.pool());
ggml_sycl_pool_alloc<float> src1_f(ctx.pool());
ggml_sycl_pool_alloc<float> dst_f(ctx.pool());
ggml_sycl_set_device(ctx.device);
queue_ptr main_stream = ctx.stream();
// GGML_SYCL_DEBUG("ctx.device=%d, main_stream=%p src0_on_device=%d, src1_on_device=%d, dst_on_device=%d\n",
// ctx.device, main_stream, src0_on_device, src1_on_device, dst_on_device);
// do the computation
op(ctx, src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
// print_ggml_tensor("tensor", dst);
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}

View file

@ -677,8 +677,17 @@ inline void ggml_sycl_op_bin_bcast(ggml_backend_sycl_context & ctx, const ggml_t
bool gpu_has_xmx(sycl::device &dev);
void ggml_sycl_op_flatten(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const ggml_sycl_op_flatten_t op);
// Some backend specific macros
#define GGML_SYCL_TENSOR_BINARY_OP_LOCALS \
GGML_TENSOR_LOCALS(int64_t, ne0, dst->src[0], ne) \
GGML_TENSOR_LOCALS(size_t, nb0, dst->src[0], nb) GGML_TENSOR_LOCALS(int64_t, ne1, dst->src[1], ne) \
GGML_TENSOR_LOCALS(size_t, nb1, dst->src[1], nb) GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
#define GGML_SYCL_TENSOR_BINARY_OP_CP_LOCALS \
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
#endif // GGML_SYCL_COMMON_HPP

View file

@ -1,5 +1,6 @@
#include "common.hpp"
#include "element_wise.hpp"
#include "ggml.h"
void acc_f32(const float * x, const float * y, float * dst, const int ne,
const int ne10, const int ne11, const int ne12,
@ -509,497 +510,410 @@ void pad_f32_sycl(const float *x, float *dst, const int ne00,
});
}
inline void ggml_sycl_op_silu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
silu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
silu_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_gelu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_gelu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
gelu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_gelu_quick(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
gelu_quick_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
gelu_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_tanh(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
tanh_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
gelu_quick_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_relu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_tanh(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
const dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
tanh_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_hardsigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_relu(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
hardsigmoid_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_hardswish(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd, const queue_ptr &main_stream) {
inline void ggml_sycl_op_hardsigmoid(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
hardswish_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
hardsigmoid_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_exp(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd, const queue_ptr &main_stream) {
inline void ggml_sycl_op_hardswish(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
exp_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
const dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
hardswish_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_log(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd, const queue_ptr &main_stream) {
inline void ggml_sycl_op_exp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
log_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
exp_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_sigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd, const queue_ptr &main_stream) {
inline void ggml_sycl_op_log(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
const dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
sigmoid_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
log_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_sqrt(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd, const queue_ptr &main_stream) {
inline void ggml_sycl_op_sigmoid(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
sqrt_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
sigmoid_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_sin(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd, const queue_ptr &main_stream) {
inline void ggml_sycl_op_sqrt(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
sin_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
sqrt_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_cos(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd, const queue_ptr &main_stream) {
inline void ggml_sycl_op_sin(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
cos_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
sin_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_step(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd, const queue_ptr &main_stream) {
inline void ggml_sycl_op_cos(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
step_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
const dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
cos_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_neg(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd, const queue_ptr &main_stream) {
inline void ggml_sycl_op_step(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
dpct::queue_ptr main_stream = ctx.stream();
neg_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
step_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_leaky_relu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_neg(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
dpct::queue_ptr main_stream = ctx.stream();
neg_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_leaky_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
float negative_slope;
memcpy(&negative_slope, dst->op_params, sizeof(float));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
leaky_relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), negative_slope, main_stream);
dpct::queue_ptr main_stream = ctx.stream();
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
leaky_relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), negative_slope, main_stream);
}
inline void ggml_sycl_op_sqr(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_sqr(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
dpct::queue_ptr main_stream = ctx.stream();
sqr_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
sqr_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const float sf0 = (float)dst->ne[0]/src0->ne[0];
const float sf1 = (float)dst->ne[1]/src0->ne[1];
const float sf2 = (float)dst->ne[2]/src0->ne[2];
const float sf3 = (float)dst->ne[3]/src0->ne[3];
const float sf0 = (float)dst->ne[0]/dst->src[0]->ne[0];
const float sf1 = (float)dst->ne[1]/dst->src[0]->ne[1];
const float sf2 = (float)dst->ne[2]/dst->src[0]->ne[2];
const float sf3 = (float)dst->ne[3]/dst->src[0]->ne[3];
upscale_f32_sycl(src0_dd, dst_dd, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
dpct::queue_ptr main_stream = ctx.stream();
upscale_f32_sycl(src0_dd, dst_dd, dst->src[0]->nb[0], dst->src[0]->nb[1], dst->src[0]->nb[2], dst->src[0]->nb[3],
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3,
main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
GGML_ASSERT(dst->src[0]->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
dpct::queue_ptr main_stream = ctx.stream();
pad_f32_sycl(src0_dd, dst_dd,
src0->ne[0], src0->ne[1], src0->ne[2],
dst->src[0]->ne[0], dst->src[0]->ne[1], dst->src[0]->ne[2],
dst->ne[0], dst->ne[1], dst->ne[2], main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx,
ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[1]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
const dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
const float * src1_dd = static_cast<const float *>(dst->src[1]->data);
float * dst_dd = static_cast<float *>(dst->data);
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
// int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
int offset = dst->op_params[3] / 4; // offset in bytes
acc_f32_sycl(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, main_stream);
GGML_UNUSED(dst);
GGML_UNUSED(ctx);
acc_f32_sycl(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), dst->src[1]->ne[0], dst->src[1]->ne[1], dst->src[1]->ne[2], nb1, nb2, offset, main_stream);
}
inline void ggml_sycl_op_add(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_add(ggml_backend_sycl_context & ctx,
ggml_tensor *dst) {
// TODO: remove duplicate variables
const float * src0_dd = static_cast<float *>(dst->src[0]->data);
const float * src1_dd = static_cast<float *>(dst->src[1]->data);
float * dst_dd = static_cast<float *>(dst->data);
const dpct::queue_ptr main_stream = ctx.stream();
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_add>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_add>>(ctx, dst->src[0], dst->src[1], dst, src0_dd, src1_dd, dst_dd, main_stream);
}
inline void ggml_sycl_op_sub(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_sub(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
// TODO: remove duplicate variables
const float * src0_dd = static_cast<float *>(dst->src[0]->data);
const float * src1_dd = static_cast<float *>(dst->src[1]->data);
float * dst_dd = static_cast<float *>(dst->data);
const dpct::queue_ptr main_stream = ctx.stream();
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_sub>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_sub>>(ctx, dst->src[0], dst->src[1], dst, src0_dd, src1_dd, dst_dd, main_stream);
}
inline void ggml_sycl_op_mul(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_mul(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
// TODO: remove duplicate variables
const float * src0_dd = static_cast<float *>(dst->src[0]->data);
const float * src1_dd = static_cast<float *>(dst->src[1]->data);
float * dst_dd = static_cast<float *>(dst->data);
const dpct::queue_ptr main_stream = ctx.stream();
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_mul>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_mul>>(ctx, dst->src[0], dst->src[1], dst, src0_dd, src1_dd, dst_dd, main_stream);
}
inline void ggml_sycl_op_div(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_div(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
// TODO: remove duplicate variables
const float * src0_dd = static_cast<float *>(dst->src[0]->data);
const float * src1_dd = static_cast<float *>(dst->src[1]->data);
float * dst_dd = static_cast<float *>(dst->data);
const dpct::queue_ptr main_stream = ctx.stream();
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_div>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_div>>(ctx, dst->src[0], dst->src[1], dst, src0_dd, src1_dd, dst_dd, main_stream);
}
void ggml_sycl_sqrt(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_sqrt);
ggml_sycl_op_sqrt(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_sin(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_sin);
ggml_sycl_op_sin(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_cos(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_cos);
ggml_sycl_op_cos(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_acc(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_acc);
ggml_sycl_op_acc(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_gelu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_gelu);
ggml_sycl_op_gelu(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_silu);
ggml_sycl_op_silu(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_gelu_quick);
ggml_sycl_op_gelu_quick(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_tanh);
ggml_sycl_op_tanh(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_relu);
ggml_sycl_op_relu(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_sigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_sigmoid);
ggml_sycl_op_sigmoid(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_hardsigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_hardsigmoid);
ggml_sycl_op_hardsigmoid(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_hardswish(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_hardswish);
ggml_sycl_op_hardswish(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_exp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_exp);
ggml_sycl_op_exp(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_log(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_log);
ggml_sycl_op_log(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_neg(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_neg);
ggml_sycl_op_neg(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_step(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_step);
ggml_sycl_op_step(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_leaky_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_leaky_relu);
ggml_sycl_op_leaky_relu(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_sqr(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_sqr);
ggml_sycl_op_sqr(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_upscale);
ggml_sycl_op_upscale(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_pad);
ggml_sycl_op_pad(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
@ -1007,24 +921,24 @@ void ggml_sycl_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
void ggml_sycl_add(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_add);
ggml_sycl_op_add(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_sub(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_sub);
ggml_sycl_op_sub(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_mul(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_mul);
ggml_sycl_op_mul(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_div(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_div);
ggml_sycl_op_div(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}

View file

@ -1897,12 +1897,9 @@ static void pool2d_nchw_kernel(
}
template <int qk, int qr, dequantize_kernel_t dq>
static void get_rows_sycl(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const void *src0_dd,
const int32_t *src1_dd, float *dst_dd,
queue_ptr stream) {
static void get_rows_sycl(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_TENSOR_BINARY_OP_LOCALS
GGML_SYCL_TENSOR_BINARY_OP_LOCALS
const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
const int block_num_x = (ne00 + 2*SYCL_GET_ROWS_BLOCK_SIZE - 1) / (2*SYCL_GET_ROWS_BLOCK_SIZE);
@ -1914,12 +1911,17 @@ static void get_rows_sycl(ggml_backend_sycl_context & ctx, const ggml_tensor *sr
const size_t s2 = nb2 / ggml_element_size(dst);
const size_t s3 = nb3 / ggml_element_size(dst);
const size_t s10 = nb10 / ggml_element_size(src1);
const size_t s11 = nb11 / ggml_element_size(src1);
const size_t s12 = nb12 / ggml_element_size(src1);
//const size_t s13 = nb13 / ggml_element_size(src1);
const size_t s10 = nb10 / ggml_element_size(dst->src[1]);
const size_t s11 = nb11 / ggml_element_size(dst->src[1]);
const size_t s12 = nb12 / ggml_element_size(dst->src[1]);
//const size_t s13 = nb13 / ggml_element_size(dst->src[1]);
GGML_ASSERT(ne00 % 2 == 0);
const void * src0_dd = dst->src[0]->data;
const int32_t * src1_dd = static_cast<const int32_t *>(dst->src[1]->data);
float * dst_dd = static_cast<float *>(dst->data);
dpct::queue_ptr stream = ctx.stream();
stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
@ -1928,17 +1930,12 @@ static void get_rows_sycl(ggml_backend_sycl_context & ctx, const ggml_tensor *sr
s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
});
GGML_UNUSED(dst);
GGML_UNUSED(ctx);
}
template <typename src0_t>
static void get_rows_sycl_float(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const src0_t *src0_dd, const int32_t *src1_dd,
float *dst_dd, queue_ptr stream) {
static void get_rows_sycl_float(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_TENSOR_BINARY_OP_LOCALS
GGML_SYCL_TENSOR_BINARY_OP_LOCALS
const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
const int block_num_x = (ne00 + SYCL_GET_ROWS_BLOCK_SIZE - 1) / SYCL_GET_ROWS_BLOCK_SIZE;
@ -1950,10 +1947,15 @@ static void get_rows_sycl_float(ggml_backend_sycl_context & ctx, const ggml_tens
const size_t s2 = nb2 / ggml_element_size(dst);
const size_t s3 = nb3 / ggml_element_size(dst);
const size_t s10 = nb10 / ggml_element_size(src1);
const size_t s11 = nb11 / ggml_element_size(src1);
const size_t s12 = nb12 / ggml_element_size(src1);
//const size_t s13 = nb13 / ggml_element_size(src1);
const size_t s10 = nb10 / ggml_element_size(dst->src[1]);
const size_t s11 = nb11 / ggml_element_size(dst->src[1]);
const size_t s12 = nb12 / ggml_element_size(dst->src[1]);
//const size_t s13 = nb13 / ggml_element_size(dst->src[1]);
const src0_t * src0_dd = static_cast<const src0_t *>(dst->src[0]->data);
const int32_t * src1_dd = static_cast<const int32_t *>(dst->src[1]->data);
float * dst_dd = static_cast<float *>(dst->data);
dpct::queue_ptr stream = ctx.stream();
{
dpct::has_capability_or_fail(stream->get_device(),
@ -1966,9 +1968,6 @@ static void get_rows_sycl_float(ggml_backend_sycl_context & ctx, const ggml_tens
s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
});
}
GGML_UNUSED(dst);
GGML_UNUSED(ctx);
}
static void quantize_row_q8_1_sycl(const float *x, void *vy, const int kx,
@ -2494,62 +2493,53 @@ catch (sycl::exception const &exc) {
std::exit(1);
}
static void ggml_sycl_op_get_rows(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_d, const float *src1_d,
float *dst_d, const queue_ptr &stream) {
static void ggml_sycl_op_get_rows(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src1->type == GGML_TYPE_I32);
GGML_ASSERT(dst->src[1]->type == GGML_TYPE_I32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
GGML_ASSERT(dst->src[0]->nb[0] == ggml_type_size(dst->src[0]->type));
GGML_ASSERT(dst->src[1]->nb[0] == ggml_type_size(dst->src[1]->type));
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
const int32_t * src1_i32 = (const int32_t *) src1_d;
switch (src0->type) {
switch (dst->src[0]->type) {
case GGML_TYPE_F16:
get_rows_sycl_float(ctx, src0, src1, dst, (const sycl::half *)src0_d,
src1_i32, dst_d, stream);
get_rows_sycl_float<sycl::half>(ctx, dst);
break;
case GGML_TYPE_F32:
get_rows_sycl_float(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
get_rows_sycl_float<float>(ctx, dst);
break;
case GGML_TYPE_Q4_0:
get_rows_sycl<QK4_0, QR4_0, dequantize_q4_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
get_rows_sycl<QK4_0, QR4_0, dequantize_q4_0>(ctx, dst);
break;
case GGML_TYPE_Q4_1:
get_rows_sycl<QK4_1, QR4_1, dequantize_q4_1>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
get_rows_sycl<QK4_1, QR4_1, dequantize_q4_1>(ctx, dst);
break;
case GGML_TYPE_Q5_0:
get_rows_sycl<QK5_0, QR5_0, dequantize_q5_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
get_rows_sycl<QK5_0, QR5_0, dequantize_q5_0>(ctx, dst);
break;
case GGML_TYPE_Q5_1:
get_rows_sycl<QK5_1, QR5_1, dequantize_q5_1>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
get_rows_sycl<QK5_1, QR5_1, dequantize_q5_1>(ctx, dst);
break;
case GGML_TYPE_Q8_0:
get_rows_sycl<QK8_0, QR8_0, dequantize_q8_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
get_rows_sycl<QK8_0, QR8_0, dequantize_q8_0>(ctx, dst);
break;
default:
// TODO: k-quants
GGML_LOG_ERROR("%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
GGML_LOG_ERROR("%s: unsupported type: %s\n", __func__, ggml_type_name(dst->src[0]->type));
GGML_ABORT("fatal error");
break;
}
}
static void ggml_sycl_op_repeat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_d, const float *src1_d,
float *dst_d,
const queue_ptr &main_stream) {
static void ggml_sycl_op_repeat(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
// TODO: remove duplicate variables
const float * src0_d = static_cast<float *>(dst->src[0]->data);
float * dst_d = static_cast<float *>(dst->data);
dpct::queue_ptr main_stream = ctx.stream();
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_repeat>>(ctx, dst, src0, dst, nullptr, src0_d, dst_d, main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(src1_d);
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_repeat>>(ctx, dst, dst->src[0], dst, nullptr, src0_d, dst_d, main_stream);
}
@ -2685,13 +2675,10 @@ catch (sycl::exception const &exc) {
std::exit(1);
}
static void ggml_sycl_op_pool2d(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd, const queue_ptr &main_stream) {
static void ggml_sycl_op_pool2d(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int32_t * opts = (const int32_t *)dst->op_params;
enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
@ -2702,8 +2689,8 @@ static void ggml_sycl_op_pool2d(ggml_backend_sycl_context & ctx, const ggml_tens
const int p0 = opts[5];
const int p1 = opts[6];
const int64_t IH = src0->ne[1];
const int64_t IW = src0->ne[0];
const int64_t IH = dst->src[0]->ne[1];
const int64_t IW = dst->src[0]->ne[0];
const int64_t N = dst->ne[3];
const int64_t OC = dst->ne[2];
@ -2712,7 +2699,10 @@ static void ggml_sycl_op_pool2d(ggml_backend_sycl_context & ctx, const ggml_tens
const int parallel_elements = N * OC * OH * OW;
const int num_blocks = (parallel_elements + SYCL_POOL2D_BLOCK_SIZE - 1) / SYCL_POOL2D_BLOCK_SIZE;
sycl::range<3> block_nums(1, 1, num_blocks);
dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
sycl::range<3> block_nums(1, 1, num_blocks);
main_stream->parallel_for(
sycl::nd_range<3>(block_nums *
sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE),
@ -2722,163 +2712,122 @@ static void ggml_sycl_op_pool2d(ggml_backend_sycl_context & ctx, const ggml_tens
parallel_elements, src0_dd, dst_dd, op,
item_ct1);
});
GGML_UNUSED(src1);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_sum(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
inline void ggml_sycl_op_sum(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int64_t ne = ggml_nelements(src0);
const int64_t ne = ggml_nelements(dst->src[0]);
dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
sum_rows_f32_sycl(src0_dd, dst_dd, ne, 1, main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_sum_rows(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_sum_rows(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int64_t ncols = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
const int64_t ncols = dst->src[0]->ne[0];
const int64_t nrows = ggml_nrows(dst->src[0]);
dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
sum_rows_f32_sycl(src0_dd, dst_dd, ncols, nrows, main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_argsort(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_argsort(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_I32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_I32);
const int64_t ncols = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
const int64_t ncols = dst->src[0]->ne[0];
const int64_t nrows = ggml_nrows(dst->src[0]);
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
int32_t * dst_dd = static_cast<int32_t *>(dst->data);
argsort_f32_i32_sycl(src0_dd, (int *)dst_dd, ncols, nrows, order, main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
argsort_f32_i32_sycl(src0_dd, dst_dd, ncols, nrows, order, main_stream);
}
inline void ggml_sycl_op_argmax(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_argmax(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(ggml_is_contiguous(dst->src[0]));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_I32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_I32);
const int64_t ncols = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
const int64_t ncols = dst->src[0]->ne[0];
const int64_t nrows = ggml_nrows(dst->src[0]);
argmax_f32_i32_sycl(src0_dd, (int *)dst_dd, ncols, nrows, main_stream);
dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
int32_t * dst_dd = static_cast<int32_t *>(dst->data);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
argmax_f32_i32_sycl(src0_dd, dst_dd, ncols, nrows, main_stream);
}
inline void ggml_sycl_op_diag_mask_inf(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_diag_mask_inf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int nrows0 = ggml_nrows(src0);
const int64_t ne00 = dst->src[0]->ne[0];
const int64_t ne01 = dst->src[0]->ne[1];
const int nrows0 = ggml_nrows(dst->src[0]);
const int n_past = ((int32_t *) dst->op_params)[0];
dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
diag_mask_inf_f32_sycl(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
float scale;
memcpy(&scale, dst->op_params, sizeof(float));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
scale_f32_sycl(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream);
dpct::queue_ptr main_stream = ctx.stream();
scale_f32_sycl(src0_dd, dst_dd, scale, ggml_nelements(dst->src[0]), main_stream);
/*
DPCT1010:87: SYCL uses exceptions to report errors and does not use the
error codes. The call was replaced with 0. You need to rewrite this code.
*/
SYCL_CHECK(0);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
float min;
float max;
memcpy(&min, dst->op_params, sizeof(float));
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
const dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
clamp_f32_sycl(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
clamp_f32_sycl(src0_dd, dst_dd, min, max, ggml_nelements(dst->src[0]), main_stream);
/*
DPCT1010:88: SYCL uses exceptions to report errors and does not use the
error codes. The call was replaced with 0. You need to rewrite this code.
*/
SYCL_CHECK(0);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
static void ggml_sycl_set_peer_access(const int n_tokens, int main_device) {
@ -3247,33 +3196,21 @@ catch (sycl::exception const &exc) {
}
static void ggml_sycl_repeat(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_repeat);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
static void ggml_sycl_get_rows(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_get_rows);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
static void ggml_sycl_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_norm);
ggml_sycl_op_norm(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
static void ggml_sycl_rms_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_rms_norm);
ggml_sycl_op_rms_norm(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
static void ggml_sycl_group_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_group_norm);
ggml_sycl_op_group_norm(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
@ -3646,7 +3583,7 @@ __dpct_inline__ static void k_copy_dst_from_contiguous(
}
static void ggml_sycl_mul_mat_id(ggml_backend_sycl_context & ctx,
ggml_tensor *dst) try {
ggml_tensor * dst) try {
const ggml_tensor *src0 = dst->src[0];
const ggml_tensor *src1 = dst->src[1];
GGML_ASSERT(!ggml_backend_buffer_is_sycl_split(src0->buffer) && "mul_mat_id does not support split buffers");
@ -3815,22 +3752,21 @@ catch (sycl::exception const &exc) {
}
static void ggml_sycl_scale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_scale);
ggml_sycl_op_scale(ctx, dst);
}
static void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_clamp);
ggml_sycl_op_clamp(ctx, dst);
}
static void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) try {
static void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1) try {
const int64_t ne = ggml_nelements(src0);
GGML_ASSERT(ne == ggml_nelements(src1));
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
GGML_TENSOR_BINARY_OP_LOCALS01;
GGML_SYCL_TENSOR_BINARY_OP_CP_LOCALS;
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
queue_ptr main_stream = ctx.stream();
@ -3861,7 +3797,6 @@ static void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor *sr
ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ABORT("fatal error");
}
GGML_UNUSED(dst);
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
@ -3871,44 +3806,39 @@ catch (sycl::exception const &exc) {
static void ggml_sycl_dup(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
// TODO: why do we pass dst as src1 here?
ggml_sycl_cpy(ctx, dst->src[0], dst, nullptr);
ggml_sycl_cpy(ctx, dst->src[0], dst);
}
static void ggml_sycl_diag_mask_inf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_diag_mask_inf);
ggml_sycl_op_diag_mask_inf(ctx, dst);
}
static void ggml_sycl_rope(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(dst->src[0])); // TODO: this restriction is temporary until non-cont support is implemented
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_rope);
ggml_sycl_op_rope(ctx, dst);
}
static void ggml_sycl_pool2d(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_pool2d);
ggml_sycl_op_pool2d(ctx, dst);
}
static void ggml_sycl_im2col(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_im2col);
ggml_sycl_op_im2col(ctx, dst);
}
static void ggml_sycl_sum(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(dst->src[0]));
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_sum);
ggml_sycl_op_sum(ctx, dst);
}
static void ggml_sycl_sum_rows(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(dst->src[0]));
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_sum_rows);
ggml_sycl_op_sum_rows(ctx, dst);
}
static void ggml_sycl_argsort(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(dst->src[0]));
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_argsort);
}
static void ggml_sycl_argmax(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(dst->src[0]));
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_argmax);
ggml_sycl_op_argsort(ctx, dst);
}
@ -3942,138 +3872,138 @@ bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tens
switch (dst->op) {
case GGML_OP_ARGMAX:
ggml_sycl_argmax(ctx, dst);
ggml_sycl_op_argmax(ctx, dst); // done
break;
case GGML_OP_CONV_TRANSPOSE_1D:
ggml_sycl_op_conv_transpose_1d(ctx, dst);
ggml_sycl_op_conv_transpose_1d(ctx, dst); // already good
break;
case GGML_OP_REPEAT:
ggml_sycl_repeat(ctx, dst);
ggml_sycl_op_repeat(ctx, dst); // partially done
break;
case GGML_OP_GET_ROWS:
ggml_sycl_get_rows(ctx, dst);
ggml_sycl_op_get_rows(ctx, dst); // done
break;
case GGML_OP_DUP:
ggml_sycl_dup(ctx, dst);
ggml_sycl_dup(ctx, dst); // done
break;
case GGML_OP_ADD:
case GGML_OP_ADD1: // TODO: more efficient implementation
ggml_sycl_add(ctx, dst);
ggml_sycl_add(ctx, dst); // partially done
break;
case GGML_OP_SUB:
ggml_sycl_sub(ctx, dst);
ggml_sycl_sub(ctx, dst); // partially done
break;
case GGML_OP_ACC:
ggml_sycl_acc(ctx, dst);
ggml_sycl_acc(ctx, dst); // fully done
break;
case GGML_OP_MUL:
ggml_sycl_mul(ctx, dst);
ggml_sycl_mul(ctx, dst); // partially done
break;
case GGML_OP_LOG:
ggml_sycl_log(ctx, dst);
ggml_sycl_log(ctx, dst); // fully done
break;
case GGML_OP_DIV:
ggml_sycl_div(ctx, dst);
ggml_sycl_div(ctx, dst); // partially done
break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(dst)) {
case GGML_UNARY_OP_NEG:
ggml_sycl_neg(ctx, dst);
ggml_sycl_neg(ctx, dst); // done
break;
case GGML_UNARY_OP_STEP:
ggml_sycl_step(ctx, dst);
ggml_sycl_step(ctx, dst); // done
break;
case GGML_UNARY_OP_GELU:
ggml_sycl_gelu(ctx, dst);
ggml_sycl_gelu(ctx, dst); // done
break;
case GGML_UNARY_OP_SILU:
ggml_sycl_silu(ctx, dst);
ggml_sycl_silu(ctx, dst); // done
break;
case GGML_UNARY_OP_GELU_QUICK:
ggml_sycl_gelu_quick(ctx, dst);
ggml_sycl_gelu_quick(ctx, dst); // done
break;
case GGML_UNARY_OP_TANH:
ggml_sycl_tanh(ctx, dst);
ggml_sycl_tanh(ctx, dst); // done
break;
case GGML_UNARY_OP_RELU:
ggml_sycl_relu(ctx, dst);
ggml_sycl_relu(ctx, dst); // done
break;
case GGML_UNARY_OP_SIGMOID:
ggml_sycl_sigmoid(ctx, dst);
ggml_sycl_sigmoid(ctx, dst); // done
break;
case GGML_UNARY_OP_HARDSIGMOID:
ggml_sycl_hardsigmoid(ctx, dst);
ggml_sycl_hardsigmoid(ctx, dst); // done
break;
case GGML_UNARY_OP_HARDSWISH:
ggml_sycl_hardswish(ctx, dst);
ggml_sycl_hardswish(ctx, dst); // done
break;
case GGML_UNARY_OP_EXP:
ggml_sycl_exp(ctx, dst);
ggml_sycl_exp(ctx, dst); // done
break;
default:
return false;
}
break;
case GGML_OP_NORM:
ggml_sycl_norm(ctx, dst);
ggml_sycl_norm(ctx, dst); // done
break;
case GGML_OP_GROUP_NORM:
ggml_sycl_group_norm(ctx, dst);
ggml_sycl_group_norm(ctx, dst); // done
break;
case GGML_OP_CONCAT:
ggml_sycl_op_concat(ctx, dst);
ggml_sycl_op_concat(ctx, dst); // already good
break;
case GGML_OP_UPSCALE:
ggml_sycl_upscale(ctx, dst);
ggml_sycl_upscale(ctx, dst); // done
break;
case GGML_OP_PAD:
ggml_sycl_pad(ctx, dst);
ggml_sycl_pad(ctx, dst); // done
break;
case GGML_OP_LEAKY_RELU:
ggml_sycl_leaky_relu(ctx, dst);
ggml_sycl_leaky_relu(ctx, dst); // done
break;
case GGML_OP_RMS_NORM:
ggml_sycl_rms_norm(ctx, dst);
ggml_sycl_rms_norm(ctx, dst); // done
break;
case GGML_OP_MUL_MAT:
if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) {
return false;
}
/* ggml_sycl_mul_mat_id is dependent on ggml_sycl_mul_mat */
ggml_sycl_mul_mat(ctx, dst->src[0], dst->src[1], dst);
ggml_sycl_mul_mat(ctx, dst->src[0], dst->src[1], dst); // good
break;
case GGML_OP_MUL_MAT_ID:
if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) {
return false;
}
ggml_sycl_mul_mat_id(ctx, dst);
ggml_sycl_mul_mat_id(ctx, dst); // good
break;
case GGML_OP_OUT_PROD:
ggml_sycl_op_out_prod(ctx, dst);
ggml_sycl_op_out_prod(ctx, dst); // good
break;
case GGML_OP_SCALE:
ggml_sycl_scale(ctx, dst);
ggml_sycl_scale(ctx, dst); // done
break;
case GGML_OP_SQR:
ggml_sycl_sqr(ctx, dst);
ggml_sycl_sqr(ctx, dst); // done
break;
case GGML_OP_SQRT:
ggml_sycl_sqrt(ctx, dst);
ggml_sycl_sqrt(ctx, dst); // done
break;
case GGML_OP_SIN:
ggml_sycl_sin(ctx, dst);
ggml_sycl_sin(ctx, dst); //done
break;
case GGML_OP_COS:
ggml_sycl_cos(ctx, dst);
ggml_sycl_cos(ctx, dst); // done
break;
case GGML_OP_CLAMP:
ggml_sycl_clamp(ctx, dst);
ggml_sycl_clamp(ctx, dst); // done
break;
case GGML_OP_CPY:
ggml_sycl_cpy(ctx, dst->src[0], dst->src[1], dst);
ggml_sycl_cpy(ctx, dst->src[0], dst->src[1]); // okayish, need check
break;
case GGML_OP_CONT:
ggml_sycl_dup(ctx, dst);
ggml_sycl_dup(ctx, dst); // done
break;
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
@ -4083,34 +4013,34 @@ bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tens
GGML_SYCL_DEBUG("%s: Tensor NO-OP\n", __func__);
break;
case GGML_OP_DIAG_MASK_INF:
ggml_sycl_diag_mask_inf(ctx, dst);
ggml_sycl_diag_mask_inf(ctx, dst); // done
break;
case GGML_OP_SOFT_MAX:
ggml_sycl_op_soft_max(ctx, dst);
ggml_sycl_op_soft_max(ctx, dst); // already good
break;
case GGML_OP_ROPE:
ggml_sycl_rope(ctx, dst);
ggml_sycl_rope(ctx, dst); // done
break;
case GGML_OP_IM2COL:
ggml_sycl_im2col(ctx, dst);
ggml_sycl_im2col(ctx, dst); // done
break;
case GGML_OP_POOL_2D:
ggml_sycl_pool2d(ctx, dst);
ggml_sycl_pool2d(ctx, dst); // done
break;
case GGML_OP_SUM:
ggml_sycl_sum(ctx, dst);
ggml_sycl_sum(ctx, dst); // done
break;
case GGML_OP_SUM_ROWS:
ggml_sycl_sum_rows(ctx, dst);
ggml_sycl_sum_rows(ctx, dst); // done
break;
case GGML_OP_ARGSORT:
ggml_sycl_argsort(ctx, dst);
ggml_sycl_argsort(ctx, dst); // done
break;
case GGML_OP_TIMESTEP_EMBEDDING:
ggml_sycl_op_timestep_embedding(ctx, dst);
ggml_sycl_op_timestep_embedding(ctx, dst); // already pretty good
break;
case GGML_OP_RWKV_WKV6:
ggml_sycl_op_rwkv_wkv6(ctx, dst);
ggml_sycl_op_rwkv_wkv6(ctx, dst); // good
break;
case GGML_OP_GATED_LINEAR_ATTN:
ggml_sycl_op_gated_linear_attn(ctx, dst);

View file

@ -82,13 +82,10 @@ static void im2col_sycl(
}
}
void ggml_sycl_op_im2col(
ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd, const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
void ggml_sycl_op_im2col(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F16);
GGML_ASSERT(dst->src[1]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
@ -100,27 +97,28 @@ void ggml_sycl_op_im2col(
const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
const int64_t IC = src1->ne[is_2D ? 2 : 1];
const int64_t IH = is_2D ? src1->ne[1] : 1;
const int64_t IW = src1->ne[0];
const int64_t IC = dst->src[1]->ne[is_2D ? 2 : 1];
const int64_t IH = is_2D ? dst->src[1]->ne[1] : 1;
const int64_t IW = dst->src[1]->ne[0];
const int64_t KH = is_2D ? src0->ne[1] : 1;
const int64_t KW = src0->ne[0];
const int64_t KH = is_2D ? dst->src[0]->ne[1] : 1;
const int64_t KW = dst->src[0]->ne[0];
const int64_t OH = is_2D ? dst->ne[2] : 1;
const int64_t OW = dst->ne[1];
const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
const int64_t batch = src1->ne[3];
const size_t batch_offset = src1->nb[3] / 4; // nb is byte offset, src is type float32
const size_t delta_offset = dst->src[1]->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
const int64_t batch = dst->src[1]->ne[3];
const size_t batch_offset = dst->src[1]->nb[3] / 4; // nb is byte offset, src is type float32
dpct::queue_ptr main_stream = ctx.stream();
if (dst->type == GGML_TYPE_F16) {
im2col_sycl(src1_dd, (sycl::half *)dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
const float * src1_dd = static_cast<const float *>(dst->src[1]->data);
sycl::half * dst_dd = static_cast<sycl::half *>(dst->data);
im2col_sycl(src1_dd, dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
} else {
im2col_sycl(src1_dd, (float *)dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
const float * src1_dd = static_cast<const float *>(dst->src[1]->data);
float * dst_dd = static_cast<float *>(dst->data);
im2col_sycl(src1_dd, dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
}
GGML_UNUSED(src0);
GGML_UNUSED(src0_dd);
GGML_UNUSED(ctx);
}

View file

@ -15,9 +15,6 @@
#include "common.hpp"
void ggml_sycl_op_im2col(
ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd, const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream);
void ggml_sycl_op_im2col(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
#endif // GGML_SYCL_IM2COL_HPP

View file

@ -311,34 +311,27 @@ static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols,
}
}
void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst, const float* src0_dd,
const float* src1_dd, float* dst_dd,
const queue_ptr& main_stream) {
void ggml_sycl_op_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
const int64_t ne00 = dst->src[0]->ne[0];
const int64_t nrows = ggml_nrows(dst->src[0]);
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device);
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
dpct::queue_ptr main_stream = ctx.stream();
(void)src1;
(void)dst;
(void)src1_dd;
norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device);
}
void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst,
const float* src0_dd, const float* src1_dd,
float* dst_dd,
const queue_ptr& main_stream) {
void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
int num_groups = dst->op_params[0];
@ -346,33 +339,26 @@ void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, const ggml_tensor*
float eps;
memcpy(&eps, dst->op_params + 1, sizeof(float));
int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
group_norm_f32_sycl(src0_dd, dst_dd, num_groups, eps, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream, ctx.device);
(void)src1;
(void)dst;
(void)src1_dd;
GGML_UNUSED(ctx);
int group_size = dst->src[0]->ne[0] * dst->src[0]->ne[1] * ((dst->src[0]->ne[2] + num_groups - 1) / num_groups);
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
dpct::queue_ptr main_stream = ctx.stream();
group_norm_f32_sycl(src0_dd, dst_dd, num_groups, eps, group_size, dst->src[0]->ne[0] * dst->src[0]->ne[1] * dst->src[0]->ne[2], main_stream, ctx.device);
}
void ggml_sycl_op_rms_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst,
const float* src0_dd, const float* src1_dd,
float* dst_dd,
const queue_ptr& main_stream) {
void ggml_sycl_op_rms_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
const int64_t ne00 = dst->src[0]->ne[0];
const int64_t nrows = ggml_nrows(dst->src[0]);
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
dpct::queue_ptr main_stream = ctx.stream();
rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device);
(void)src1;
(void)dst;
(void)src1_dd;
}

View file

@ -15,21 +15,10 @@
#include "common.hpp"
void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst, const float* src0_dd,
const float* src1_dd, float* dst_dd,
const queue_ptr& main_stream);
void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, ggml_tensor * dst);
void ggml_sycl_op_rms_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst,
const float* src0_dd, const float* src1_dd,
float* dst_dd,
const queue_ptr& main_stream);
void ggml_sycl_op_rms_norm(ggml_backend_sycl_context& ctx, ggml_tensor * dst);
void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst,
const float* src0_dd, const float* src1_dd,
float* dst_dd,
const queue_ptr& main_stream);
void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, ggml_tensor * dst);
#endif // GGML_SYCL_NORM_HPP

View file

@ -192,18 +192,15 @@ static void rope_neox_sycl(
}
}
void ggml_sycl_op_rope(
ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd, float *dst_dd, const queue_ptr &main_stream) {
const ggml_tensor * src2 = dst->src[2];
void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
GGML_ASSERT(src0->type == dst->type);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
GGML_ASSERT(dst->src[0]->type == dst->type);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t nr = ggml_nrows(src0);
const int64_t ne00 = dst->src[0]->ne[0];
const int64_t ne01 = dst->src[0]->ne[1];
const int64_t nr = ggml_nrows(dst->src[0]);
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
@ -228,49 +225,49 @@ void ggml_sycl_op_rope(
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
const int32_t * pos = (const int32_t *) src1_dd;
const int32_t * pos = static_cast<const int32_t *>(dst->src[1]->data);
const float * freq_factors = nullptr;
if (src2 != nullptr) {
freq_factors = (const float *) src2->data;
if (dst->src[2] != nullptr) {
freq_factors = static_cast<const float *>(dst->src[2]->data);
}
rope_corr_dims corr_dims;
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v);
dpct::queue_ptr main_stream = ctx.stream();
// compute
if (is_neox) {
if (src0->type == GGML_TYPE_F32) {
rope_neox_sycl(
(const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, freq_factors, main_stream
);
} else if (src0->type == GGML_TYPE_F16) {
rope_neox_sycl(
(const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, freq_factors, main_stream
);
if (dst->src[0]->type == GGML_TYPE_F32) {
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
rope_neox_sycl(src0_dd, dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01,
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, main_stream);
} else if (dst->src[0]->type == GGML_TYPE_F16) {
const sycl::half * src0_dd = static_cast<const sycl::half *>(dst->src[0]->data);
sycl::half * dst_dd = static_cast<sycl::half *>(dst->data);
rope_neox_sycl(src0_dd, dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01,
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, main_stream);
} else {
GGML_ABORT("fatal error");
}
} else {
if (src0->type == GGML_TYPE_F32) {
if (dst->src[0]->type == GGML_TYPE_F32) {
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
rope_norm_sycl(
(const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
src0_dd, dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, freq_factors, main_stream
);
} else if (src0->type == GGML_TYPE_F16) {
} else if (dst->src[0]->type == GGML_TYPE_F16) {
const sycl::half * src0_dd = static_cast<const sycl::half *>(dst->src[0]->data);
sycl::half * dst_dd = static_cast<sycl::half *>(dst->data);
rope_norm_sycl(
(const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
src0_dd, dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, freq_factors, main_stream
);
} else {
GGML_ABORT("fatal error");
}
}
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}

View file

@ -15,8 +15,6 @@
#include "common.hpp"
void ggml_sycl_op_rope(
ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd, float *dst_dd, const queue_ptr &main_stream);
void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
#endif // GGML_SYCL_ROPE_HPP

View file

@ -57,9 +57,8 @@ static void timestep_embedding_f32_sycl(
void ggml_sycl_op_timestep_embedding(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
const ggml_tensor *src0 = dst->src[0];
const ggml_tensor *src1 = dst->src[1];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
const float * src0_d = static_cast<const float *>(src0->data);
float * dst_d = static_cast<float *>(dst->data);
dpct::queue_ptr stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
@ -69,5 +68,4 @@ void ggml_sycl_op_timestep_embedding(ggml_backend_sycl_context & ctx, ggml_tenso
const int max_period = dst->op_params[1];
timestep_embedding_f32_sycl(src0_d, dst_d, src0->ne[0], dst->nb[1], dim, max_period, stream);
GGML_UNUSED(src1);
}

View file

@ -97,9 +97,6 @@ static void rwkv_wkv_f32_kernel(
void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
const ggml_tensor *src0 = dst->src[0];
const ggml_tensor *src1 = dst->src[1];
const float* k_d = (const float*)dst->src[0]->data;
const float* v_d = (const float*)dst->src[1]->data;
const float* r_d = (const float*)dst->src[2]->data;
@ -138,6 +135,4 @@ void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
});
});
GGML_UNUSED(src0);
GGML_UNUSED(src1);
}