diff --git a/.github/workflows/server.yml b/.github/workflows/server.yml index 671fe595c..ed1c357a5 100644 --- a/.github/workflows/server.yml +++ b/.github/workflows/server.yml @@ -112,9 +112,9 @@ jobs: -DGGML_OPENMP=OFF ; cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server - - name: Build - id: cmake_build - if: ${{ matrix.sanitizer != 'THREAD' }} + - name: Build (sanitizers) + id: cmake_build_sanitizers + if: ${{ matrix.sanitizer != '' && matrix.sanitizer != 'THREAD' }} run: | cmake -B build \ -DGGML_NATIVE=OFF \ @@ -124,12 +124,31 @@ jobs: -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ; cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server + - name: Build (sanitizers) + id: cmake_build + if: ${{ matrix.sanitizer == '' }} + run: | + cmake -B build \ + -DGGML_NATIVE=OFF \ + -DLLAMA_BUILD_SERVER=ON \ + -DLLAMA_CURL=ON \ + -DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ; + cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server + - name: Tests id: server_integration_tests + if: ${{ matrix.sanitizer == '' }} run: | cd examples/server/tests ./tests.sh + - name: Tests (sanitizers) + id: server_integration_tests_sanitizers + if: ${{ matrix.sanitizer != '' }} + run: | + cd examples/server/tests + LLAMA_SANITIZE=1 ./tests.sh + - name: Slow tests id: server_integration_tests_slow if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }} diff --git a/examples/server/tests/utils.py b/examples/server/tests/utils.py index 73be4c92f..9d1a7a5b0 100644 --- a/examples/server/tests/utils.py +++ b/examples/server/tests/utils.py @@ -26,6 +26,9 @@ from re import RegexFlag import wget +DEFAULT_HTTP_TIMEOUT = 10 if "LLAMA_SANITIZE" not in os.environ else 30 + + class ServerResponse: headers: dict status_code: int @@ -88,7 +91,7 @@ class ServerProcess: if "PORT" in os.environ: self.server_port = int(os.environ["PORT"]) - def start(self, timeout_seconds: int = 10) -> None: + def start(self, timeout_seconds: int | None = DEFAULT_HTTP_TIMEOUT) -> None: if "LLAMA_SERVER_BIN_PATH" in os.environ: server_path = os.environ["LLAMA_SERVER_BIN_PATH"] elif os.name == "nt": diff --git a/examples/simple-chat/simple-chat.cpp b/examples/simple-chat/simple-chat.cpp index e8eda9c22..26422601d 100644 --- a/examples/simple-chat/simple-chat.cpp +++ b/examples/simple-chat/simple-chat.cpp @@ -95,11 +95,11 @@ int main(int argc, char ** argv) { llama_sampler_chain_add(smpl, llama_sampler_init_dist(LLAMA_DEFAULT_SEED)); // helper function to evaluate a prompt and generate a response - auto generate = [&](const std::string & prompt) { + auto generate = [&](const std::string & prompt, bool is_first) { std::string response; // tokenize the prompt - const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, true, true); + const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true); std::vector prompt_tokens(n_prompt_tokens); if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), llama_get_kv_cache_used_cells(ctx) == 0, true) < 0) { GGML_ABORT("failed to tokenize the prompt\n"); @@ -180,7 +180,7 @@ int main(int argc, char ** argv) { // generate a response printf("\033[33m"); - std::string response = generate(prompt); + std::string response = generate(prompt, prev_len == 0); printf("\n\033[0m"); // add the response to the messages diff --git a/ggml/src/ggml-sycl/common.hpp b/ggml/src/ggml-sycl/common.hpp index e9500f3a1..abad847ca 100644 --- a/ggml/src/ggml-sycl/common.hpp +++ b/ggml/src/ggml-sycl/common.hpp @@ -333,8 +333,12 @@ struct ggml_backend_sycl_context { // pool std::unique_ptr pools[GGML_SYCL_MAX_DEVICES]; + std::unique_ptr host_pools[GGML_SYCL_MAX_DEVICES]; + static std::unique_ptr new_pool_for_device(queue_ptr qptr, int device); + static std::unique_ptr new_pool_for_host(queue_ptr qptr, int device); + ggml_sycl_pool & pool(int device) { if (pools[device] == nullptr) { pools[device] = new_pool_for_device(stream(device,0), device); @@ -345,6 +349,15 @@ struct ggml_backend_sycl_context { ggml_sycl_pool & pool() { return pool(device); } + + ggml_sycl_pool & host_pool(int device) { + if (host_pools[device] == nullptr) { + host_pools[device] = new_pool_for_host(stream(device, 0), device); + } + return *host_pools[device]; + } + + ggml_sycl_pool & host_pool() { return host_pool(device); } }; // common device functions diff --git a/ggml/src/ggml-sycl/dpct/helper.hpp b/ggml/src/ggml-sycl/dpct/helper.hpp index e167948e7..c96395be6 100644 --- a/ggml/src/ggml-sycl/dpct/helper.hpp +++ b/ggml/src/ggml-sycl/dpct/helper.hpp @@ -82,6 +82,14 @@ inline std::string get_device_backend_and_type(const sycl::device &device) { return device_type.str(); } +template struct matrix_info_t { + oneapi::mkl::transpose transpose_info[2]; + Ts value_info[2]; + std::int64_t size_info[3]; + std::int64_t ld_info[3]; + std::int64_t groupsize_info; +}; + namespace dpct { typedef sycl::queue *queue_ptr; @@ -1727,26 +1735,13 @@ namespace dpct }; template - inline void gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans, - oneapi::mkl::transpose b_trans, int m, int n, int k, - const void *alpha, const void **a, int lda, - const void **b, int ldb, const void *beta, void **c, - int ldc, int batch_size) - { - struct matrix_info_t - { - oneapi::mkl::transpose transpose_info[2]; - Ts value_info[2]; - std::int64_t size_info[3]; - std::int64_t ld_info[3]; - std::int64_t groupsize_info; - }; - + inline void gemm_batch_impl(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, + int m, int n, int k, const void * alpha, const void ** a, int lda, const void ** b, + int ldb, const void * beta, void ** c, int ldc, int batch_size, + matrix_info_t * matrix_info) { Ts alpha_value = dpct::get_value(reinterpret_cast(alpha), q); Ts beta_value = dpct::get_value(reinterpret_cast(beta), q); - matrix_info_t *matrix_info = - (matrix_info_t *)std::malloc(sizeof(matrix_info_t)); matrix_info->transpose_info[0] = a_trans; matrix_info->transpose_info[1] = b_trans; matrix_info->value_info[0] = alpha_value; @@ -1763,23 +1758,18 @@ namespace dpct sycl::event e = oneapi::mkl::blas::column_major::gemm_batch( oneapi::mkl::backend_selector{ q }, matrix_info->transpose_info, matrix_info->transpose_info + 1, matrix_info->size_info, matrix_info->size_info + 1, - matrix_info->size_info + 2, matrix_info->value_info, reinterpret_cast(a), - matrix_info->ld_info, reinterpret_cast(b), matrix_info->ld_info + 1, - matrix_info->value_info + 1, reinterpret_cast(c), matrix_info->ld_info + 2, 1, - &(matrix_info->groupsize_info)); + matrix_info->size_info + 2, reinterpret_cast(matrix_info->value_info), + reinterpret_cast(a), matrix_info->ld_info, reinterpret_cast(b), + matrix_info->ld_info + 1, reinterpret_cast(matrix_info->value_info + 1), + reinterpret_cast(c), matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info)); #else sycl::event e = oneapi::mkl::blas::column_major::gemm_batch( q, matrix_info->transpose_info, matrix_info->transpose_info + 1, matrix_info->size_info, - matrix_info->size_info + 1, matrix_info->size_info + 2, matrix_info->value_info, + matrix_info->size_info + 1, matrix_info->size_info + 2, reinterpret_cast(matrix_info->value_info), reinterpret_cast(a), matrix_info->ld_info, reinterpret_cast(b), - matrix_info->ld_info + 1, matrix_info->value_info + 1, reinterpret_cast(c), - matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info)); + matrix_info->ld_info + 1, reinterpret_cast(matrix_info->value_info + 1), + reinterpret_cast(c), matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info)); #endif - - q.submit([&](sycl::handler &cgh) - { - cgh.depends_on(e); - cgh.host_task([=] { std::free(matrix_info); }); }); } template @@ -2422,25 +2412,11 @@ namespace dpct /// \param [in] ldc Leading dimension of C. /// \param [in] batch_size Specifies the number of matrix multiply operations to perform. /// \param [in] scaling_type Data type of the scaling factors. - inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans, - oneapi::mkl::transpose b_trans, int m, int n, int k, - const void *alpha, const void *a[], - library_data_t a_type, int lda, const void *b[], - library_data_t b_type, int ldb, const void *beta, - void *c[], library_data_t c_type, int ldc, - int batch_size, library_data_t scaling_type) - { - if (scaling_type == library_data_t::real_float && - c_type == library_data_t::complex_float) - { - scaling_type = library_data_t::complex_float; - } - else if (scaling_type == library_data_t::real_double && - c_type == library_data_t::complex_double) - { - scaling_type = library_data_t::complex_double; - } - + inline void gemm_batch(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, + int n, int k, const void * alpha, const void * a[], library_data_t a_type, int lda, + const void * b[], library_data_t b_type, int ldb, const void * beta, void * c[], + library_data_t c_type, int ldc, int batch_size, library_data_t scaling_type, + matrix_info_t * matrix_info) { std::uint64_t key = detail::get_type_combination_id(a_type, b_type, c_type, scaling_type); switch (key) @@ -2449,48 +2425,24 @@ namespace dpct library_data_t::real_float, library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { - detail::gemm_batch_impl( - q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, - batch_size); + detail::gemm_batch_impl(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, + beta, c, ldc, batch_size, matrix_info); break; } case detail::get_type_combination_id( library_data_t::real_double, library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { - detail::gemm_batch_impl( - q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, - batch_size); - break; - } - case detail::get_type_combination_id( - library_data_t::complex_float, library_data_t::complex_float, - library_data_t::complex_float, library_data_t::complex_float): - { - detail::gemm_batch_impl, std::complex, - std::complex, std::complex>( - q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, - batch_size); - break; - } - case detail::get_type_combination_id( - library_data_t::complex_double, library_data_t::complex_double, - library_data_t::complex_double, library_data_t::complex_double): - { - detail::gemm_batch_impl, std::complex, - std::complex, std::complex>( - q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, - batch_size); + detail::gemm_batch_impl(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, + beta, c, ldc, batch_size, matrix_info); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_half): { - detail::gemm_batch_impl(q, a_trans, b_trans, m, n, k, alpha, - a, lda, b, ldb, beta, c, ldc, - batch_size); + detail::gemm_batch_impl( + q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info); break; } #ifdef __INTEL_MKL__ @@ -2498,19 +2450,16 @@ namespace dpct library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float): { - detail::gemm_batch_impl( - q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, - batch_size); + detail::gemm_batch_impl( + q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info); break; } case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float, library_data_t::real_float): { - detail::gemm_batch_impl(q, a_trans, b_trans, m, n, k, alpha, a, lda, - b, ldb, beta, c, ldc, batch_size); + detail::gemm_batch_impl( + q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info); break; } #endif @@ -2522,10 +2471,9 @@ namespace dpct dpct::get_value(reinterpret_cast(alpha), q); float beta_float = dpct::get_value(reinterpret_cast(beta), q); - detail::gemm_batch_impl(q, a_trans, b_trans, m, n, k, &alpha_float, - a, lda, b, ldb, &beta_float, c, ldc, - batch_size); + detail::gemm_batch_impl( + q, a_trans, b_trans, m, n, k, &alpha_float, a, lda, b, ldb, &beta_float, c, ldc, batch_size, + matrix_info); break; } case detail::get_type_combination_id( @@ -2533,8 +2481,7 @@ namespace dpct library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl( - q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, - batch_size); + q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info); break; } case detail::get_type_combination_id( @@ -2542,8 +2489,7 @@ namespace dpct library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl( - q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, - batch_size); + q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info); break; } case detail::get_type_combination_id( @@ -2557,8 +2503,7 @@ namespace dpct sycl::half alpha_half(alpha_value); sycl::half beta_half(beta_value); detail::gemm_batch_impl( - q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc, - batch_size); + q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc, batch_size, matrix_info); break; } default: diff --git a/ggml/src/ggml-sycl/ggml-sycl.cpp b/ggml/src/ggml-sycl/ggml-sycl.cpp index 5272ca454..ed4d8bb8b 100644 --- a/ggml/src/ggml-sycl/ggml-sycl.cpp +++ b/ggml/src/ggml-sycl/ggml-sycl.cpp @@ -1173,6 +1173,85 @@ struct ggml_sycl_pool_leg : public ggml_sycl_pool { } }; +struct ggml_sycl_pool_host : public ggml_sycl_pool { + queue_ptr qptr; + int device; + + inline static int counter{ 0 }; + + struct ggml_sycl_buffer { + void * ptr = nullptr; + size_t size = 0; + }; + + // Set arbitrarly to 64 + static constexpr int MAX_POOL_SIZE{ 64 }; + std::vector buffer_pool = std::vector(MAX_POOL_SIZE); + size_t pool_size = 0; + + explicit ggml_sycl_pool_host(queue_ptr qptr_, int device_) : qptr(qptr_), device(device_) {} + + ~ggml_sycl_pool_host() { + for (int i = 0; i < MAX_POOL_SIZE; ++i) { + ggml_sycl_buffer & b = buffer_pool[i]; + if (b.ptr != nullptr) { + SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(b.ptr, *qptr))); + b.ptr = nullptr; + pool_size -= b.size; + b.size = 0; + } + } + counter = 0; + } + + void * alloc(size_t size, size_t * actual_size) override { + if (counter == MAX_POOL_SIZE) { + ggml_sycl_buffer b = buffer_pool[0]; + void * ptr = b.ptr; + *actual_size = b.size; + counter = 1; + return ptr; + } + ggml_sycl_buffer & b = buffer_pool[counter]; + + if (b.ptr == nullptr) { + void * ptr; + + SYCL_CHECK(CHECK_TRY_ERROR(ptr = (void *) sycl::malloc_host(size, *qptr))); + if (!ptr) { + GGML_LOG_ERROR("%s: can't allocate %lu Bytes of memory on host\n", __func__, size); + return nullptr; + } + pool_size += size; + *actual_size = size; + counter = counter + 1; + return ptr; + } else { + ++counter; + b.size = size; + return b.ptr; + } + } + + void free(void * ptr, size_t size) override { + // if the pool is not completed add the pointer to it in place of the first nullptr found. + // Otherwise do nothing, pointers will be freed once the pool is deallocated. + for (int i = 0; i < MAX_POOL_SIZE; ++i) { + ggml_sycl_buffer & b = buffer_pool[i]; + if (b.ptr == nullptr) { + b.ptr = ptr; + b.size = size; + return; + } + } + } +}; + +std::unique_ptr ggml_backend_sycl_context::new_pool_for_host(queue_ptr qptr, int device) { + // return pool for the host to speed up memory management + return std::unique_ptr(new ggml_sycl_pool_host(qptr, device)); +} + std::unique_ptr ggml_backend_sycl_context::new_pool_for_device(queue_ptr qptr, int device) { // TBD: NO VMM support // if (ggml_sycl_info().devices[device].vmm) { @@ -3363,6 +3442,7 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx, ggml_sycl_pool_alloc ptrs_src(ctx.pool(), 2*ne23); ggml_sycl_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23); + ggml_sycl_pool_alloc> matrix_info(ctx.host_pool(), 1); sycl::range<3> block_dims(1, ne12, ne13); /* @@ -3391,14 +3471,10 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx, }); } SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch( - *main_stream, oneapi::mkl::transpose::trans, - oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha, - (const void **)(ptrs_src.get() + 0 * ne23), - dpct::library_data_t::real_half, nb01 / nb00, - (const void **)(ptrs_src.get() + 1 * ne23), - dpct::library_data_t::real_half, nb11 / nb10, beta, - (void **)(ptrs_dst.get() + 0 * ne23), cu_data_type, ne01, ne23, - cu_compute_type))); + *main_stream, oneapi::mkl::transpose::trans, oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha, + (const void **) (ptrs_src.get() + 0 * ne23), dpct::library_data_t::real_half, nb01 / nb00, + (const void **) (ptrs_src.get() + 1 * ne23), dpct::library_data_t::real_half, nb11 / nb10, beta, + (void **) (ptrs_dst.get() + 0 * ne23), cu_data_type, ne01, ne23, cu_compute_type, matrix_info.get()))); } } catch (sycl::exception const &exc) { diff --git a/src/llama-model.cpp b/src/llama-model.cpp index c2d23a8d3..590386e64 100644 --- a/src/llama-model.cpp +++ b/src/llama-model.cpp @@ -2203,6 +2203,50 @@ bool llama_model::load_tensors(llama_model_loader & ml) { layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); } } break; + case LLM_ARCH_PHIMOE: + { + const int64_t n_embd_head = n_embd / n_head; + + tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0); + + // output + output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0); + output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); + output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0); + output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0); + + for (int i = 0; i < n_layer; ++i) { + auto & layer = layers[i]; + + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0); + layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0); + + layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED); + if (layer.wqkv == nullptr) { + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); + layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0); + + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0); + + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0); + } + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0); + layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0); + + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0); + layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0); + + layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); + layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); + layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0); + layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); + + layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); + layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); + } + } break; case LLM_ARCH_PLAMO: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);