llama : refactor tensor names (#2622)
* gguf: update tensor names searched in quantization * gguf : define tensor names as constants
This commit is contained in:
parent
da424b6699
commit
2d87c9c796
1 changed files with 33 additions and 22 deletions
|
@ -56,6 +56,20 @@
|
||||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
// tensor names
|
||||||
|
#define TN_TOKEN_EMBD "token_embd.weight"
|
||||||
|
#define TN_OUTPUT_NORM "output_norm.weight"
|
||||||
|
#define TN_OUTPUT "output.weight"
|
||||||
|
#define TN_ATTN_NORM "blk.%d.attn_norm.weight"
|
||||||
|
#define TN_ATTN_Q "blk.%d.attn_q.weight"
|
||||||
|
#define TN_ATTN_K "blk.%d.attn_k.weight"
|
||||||
|
#define TN_ATTN_V "blk.%d.attn_v.weight"
|
||||||
|
#define TN_ATTN_OUTPUT "blk.%d.attn_output.weight"
|
||||||
|
#define TN_FFN_NORM "blk.%d.ffn_norm.weight"
|
||||||
|
#define TN_FFN_GATE "blk.%d.ffn_gate.weight"
|
||||||
|
#define TN_FFN_DOWN "blk.%d.ffn_down.weight"
|
||||||
|
#define TN_FFN_UP "blk.%d.ffn_up.weight"
|
||||||
|
|
||||||
static void llama_log_internal(llama_log_level level, const char* format, ...);
|
static void llama_log_internal(llama_log_level level, const char* format, ...);
|
||||||
static void llama_log_callback_default(llama_log_level level, const char * text, void * user_data);
|
static void llama_log_callback_default(llama_log_level level, const char * text, void * user_data);
|
||||||
#define LLAMA_LOG_INFO(...) llama_log_internal(LLAMA_LOG_LEVEL_INFO , __VA_ARGS__)
|
#define LLAMA_LOG_INFO(...) llama_log_internal(LLAMA_LOG_LEVEL_INFO , __VA_ARGS__)
|
||||||
|
@ -1310,7 +1324,7 @@ static void llama_model_load_internal(
|
||||||
|
|
||||||
ml->ggml_ctx = ctx;
|
ml->ggml_ctx = ctx;
|
||||||
|
|
||||||
model.tok_embeddings = ml->get_tensor("token_embd.weight", {n_embd, n_vocab}, GGML_BACKEND_CPU);
|
model.tok_embeddings = ml->get_tensor(TN_TOKEN_EMBD, {n_embd, n_vocab}, GGML_BACKEND_CPU);
|
||||||
|
|
||||||
// "output" tensor
|
// "output" tensor
|
||||||
{
|
{
|
||||||
|
@ -1331,8 +1345,8 @@ static void llama_model_load_internal(
|
||||||
backend_output = GGML_BACKEND_CPU;
|
backend_output = GGML_BACKEND_CPU;
|
||||||
}
|
}
|
||||||
|
|
||||||
model.norm = ml->get_tensor("output_norm.weight", {n_embd}, backend_norm);
|
model.norm = ml->get_tensor(TN_OUTPUT_NORM, {n_embd}, backend_norm);
|
||||||
model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output);
|
model.output = ml->get_tensor(TN_OUTPUT, {n_embd, n_vocab}, backend_output);
|
||||||
if (backend_norm == GGML_BACKEND_GPU) {
|
if (backend_norm == GGML_BACKEND_GPU) {
|
||||||
vram_weights += ggml_nbytes(model.norm);
|
vram_weights += ggml_nbytes(model.norm);
|
||||||
}
|
}
|
||||||
|
@ -1349,21 +1363,18 @@ static void llama_model_load_internal(
|
||||||
const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
|
const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
|
||||||
|
|
||||||
auto & layer = model.layers[i];
|
auto & layer = model.layers[i];
|
||||||
|
layer.attention_norm = ml->get_tensor(format(TN_ATTN_NORM, i), {n_embd}, backend);
|
||||||
|
|
||||||
std::string layers_i = "blk." + std::to_string(i);
|
layer.wq = ml->get_tensor(format(TN_ATTN_Q, i), {n_embd, n_embd}, backend_split);
|
||||||
|
layer.wk = ml->get_tensor(format(TN_ATTN_K, i), {n_embd, n_embd_gqa}, backend_split);
|
||||||
|
layer.wv = ml->get_tensor(format(TN_ATTN_V, i), {n_embd, n_embd_gqa}, backend_split);
|
||||||
|
layer.wo = ml->get_tensor(format(TN_ATTN_OUTPUT, i), {n_embd, n_embd}, backend_split);
|
||||||
|
|
||||||
layer.attention_norm = ml->get_tensor(layers_i + ".attn_norm.weight", {n_embd}, backend);
|
layer.ffn_norm = ml->get_tensor(format(TN_FFN_NORM, i), {n_embd}, backend);
|
||||||
|
|
||||||
layer.wq = ml->get_tensor(layers_i + ".attn_q.weight", {n_embd, n_embd}, backend_split);
|
layer.w1 = ml->get_tensor(format(TN_FFN_GATE, i), {n_embd, n_ff}, backend_split);
|
||||||
layer.wk = ml->get_tensor(layers_i + ".attn_k.weight", {n_embd, n_embd_gqa}, backend_split);
|
layer.w2 = ml->get_tensor(format(TN_FFN_DOWN, i), { n_ff, n_embd}, backend_split);
|
||||||
layer.wv = ml->get_tensor(layers_i + ".attn_v.weight", {n_embd, n_embd_gqa}, backend_split);
|
layer.w3 = ml->get_tensor(format(TN_FFN_UP, i), {n_embd, n_ff}, backend_split);
|
||||||
layer.wo = ml->get_tensor(layers_i + ".attn_output.weight", {n_embd, n_embd}, backend_split);
|
|
||||||
|
|
||||||
layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend);
|
|
||||||
|
|
||||||
layer.w1 = ml->get_tensor(layers_i + ".ffn_gate.weight", {n_embd, n_ff}, backend_split);
|
|
||||||
layer.w2 = ml->get_tensor(layers_i + ".ffn_down.weight", { n_ff, n_embd}, backend_split);
|
|
||||||
layer.w3 = ml->get_tensor(layers_i + ".ffn_up.weight", {n_embd, n_ff}, backend_split);
|
|
||||||
|
|
||||||
if (backend == GGML_BACKEND_GPU) {
|
if (backend == GGML_BACKEND_GPU) {
|
||||||
vram_weights +=
|
vram_weights +=
|
||||||
|
@ -3240,10 +3251,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
int n_attention_wv = 0;
|
int n_attention_wv = 0;
|
||||||
int n_feed_forward_w2 = 0;
|
int n_feed_forward_w2 = 0;
|
||||||
for (auto& tensor : model_loader->tensors_map.tensors) {
|
for (auto& tensor : model_loader->tensors_map.tensors) {
|
||||||
if (tensor.name.find("attention.wv.weight") != std::string::npos) {
|
if (tensor.name.find("attn_v.weight") != std::string::npos) {
|
||||||
++n_attention_wv;
|
++n_attention_wv;
|
||||||
}
|
}
|
||||||
else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
|
else if (tensor.name.find("ffn_down.weight") != std::string::npos) {
|
||||||
++n_feed_forward_w2;
|
++n_feed_forward_w2;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -3298,13 +3309,13 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
} else {
|
} else {
|
||||||
new_type = quantized_type;
|
new_type = quantized_type;
|
||||||
#ifdef GGML_USE_K_QUANTS
|
#ifdef GGML_USE_K_QUANTS
|
||||||
if (tensor.name == "output.weight") {
|
if (tensor.name == TN_OUTPUT) {
|
||||||
int nx = tensor.ne.at(0);
|
int nx = tensor.ne.at(0);
|
||||||
int ny = tensor.ne.at(1);
|
int ny = tensor.ne.at(1);
|
||||||
if (nx % QK_K == 0 && ny % QK_K == 0) {
|
if (nx % QK_K == 0 && ny % QK_K == 0) {
|
||||||
new_type = GGML_TYPE_Q6_K;
|
new_type = GGML_TYPE_Q6_K;
|
||||||
}
|
}
|
||||||
} else if (tensor.name.find("attention.wv.weight") != std::string::npos) {
|
} else if (tensor.name.find("attn_v.weight") != std::string::npos) {
|
||||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
|
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
|
||||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
||||||
|
@ -3319,7 +3330,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
|
use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
|
||||||
//else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_feed_forward_w2 < n_feed_forward_w2/8) new_type = GGML_TYPE_Q6_K;
|
//else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_feed_forward_w2 < n_feed_forward_w2/8) new_type = GGML_TYPE_Q6_K;
|
||||||
++i_feed_forward_w2;
|
++i_feed_forward_w2;
|
||||||
} else if (tensor.name.find("attention.wo.weight") != std::string::npos) {
|
} else if (tensor.name.find("attn_output.weight") != std::string::npos) {
|
||||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
|
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
|
||||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||||
}
|
}
|
||||||
|
@ -3334,10 +3345,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (convert_incompatible_tensor) {
|
if (convert_incompatible_tensor) {
|
||||||
if (tensor.name == "output.weight") {
|
if (tensor.name == TN_OUTPUT) {
|
||||||
new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
|
new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
|
||||||
LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n");
|
LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n");
|
||||||
} else if (tensor.name == "tok_embeddings.weight") {
|
} else if (tensor.name == TN_TOKEN_EMBD) {
|
||||||
new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
|
new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
|
||||||
LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n");
|
LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n");
|
||||||
} else {
|
} else {
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue