add log_callback to llama_context_params for custom logging.

This commit is contained in:
grahameth 2023-07-15 20:48:36 +02:00
parent 6e7cca4047
commit 2dfe0aefc6
2 changed files with 137 additions and 73 deletions

199
llama.cpp
View file

@ -56,6 +56,13 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
void llama_log_internal(llama_log_callback log_callback, void * log_callback_user_data, int level, const char* format, ...);
void llama_log_callback_default(int level, const char * text, void * ctx);
#define LLAMA_LOG_INFO(model, format, ...) llama_log_internal((model).log_callback, (model).log_callback_user_data, LLAMA_LOG_LEVEL_INFO, format, __VA_ARGS__)
#define LLAMA_LOG_WARN(model, format, ...) llama_log_internal((model).log_callback, (model).log_callback_user_data, LLAMA_LOG_LEVEL_WARN, format, __VA_ARGS__)
#define LLAMA_LOG_ERROR(model, format, ...) llama_log_internal((model).log_callback, (model).log_callback_user_data, LLAMA_LOG_LEVEL_ERROR, format, __VA_ARGS__)
#define LLAMA_USE_SCRATCH
#define LLAMA_MAX_SCRATCH_BUFFERS 16
@ -287,6 +294,11 @@ struct llama_model {
int64_t t_load_us = 0;
int64_t t_start_us = 0;
// We save the log callback with the model because some logging can occur after loading
// and llama_context_params doesn't exist then anymore.
llama_log_callback log_callback;
void * log_callback_user_data;
llama_vocab vocab;
~llama_model() {
@ -462,9 +474,13 @@ struct llama_file_loader {
llama_hparams hparams;
llama_vocab vocab;
llama_file_loader(const char * fname, llama_load_tensors_map & tensors_map)
llama_file_loader(const char * fname, llama_load_tensors_map & tensors_map, const llama_model * model_for_logging)
: file(fname, "rb") {
fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
if (model_for_logging) {
LLAMA_LOG_INFO(*model_for_logging, "llama.cpp: loading model from %s", fname);
} else {
fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
}
read_magic();
read_hparams();
read_vocab();
@ -640,8 +656,8 @@ struct llama_model_loader {
struct ggml_context * ggml_ctx = NULL;
std::unique_ptr<llama_mmap> mapping;
llama_model_loader(const std::string & fname_base, bool use_mmap) {
file_loader = std::unique_ptr<llama_file_loader>(new llama_file_loader(fname_base.c_str(), tensors_map));
llama_model_loader(const std::string & fname_base, bool use_mmap, const llama_model * model_for_logging) {
file_loader = std::unique_ptr<llama_file_loader>(new llama_file_loader(fname_base.c_str(), tensors_map, model_for_logging));
if (!llama_mmap::SUPPORTED) {
use_mmap = false;
}
@ -852,6 +868,8 @@ struct llama_context_params llama_context_default_params() {
/*.rope_freq_scale =*/ 1.0f,
/*.progress_callback =*/ nullptr,
/*.progress_callback_user_data =*/ nullptr,
/*.log_callback =*/ nullptr,
/*.log_callback_user_data =*/ nullptr,
/*.low_vram =*/ false,
/*.f16_kv =*/ true,
/*.logits_all =*/ false,
@ -985,7 +1003,7 @@ static void llama_model_load_internal(
model.t_start_us = ggml_time_us();
std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap));
std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap, &model));
vocab = std::move(ml->file_loader->vocab);
model.hparams = ml->file_loader->hparams;
@ -1017,19 +1035,19 @@ static void llama_model_load_internal(
const uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
{
fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version));
fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab);
fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx);
fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
fprintf(stderr, "%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base);
fprintf(stderr, "%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale);
fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
LLAMA_LOG_INFO(model, "%s: format = %s", __func__, llama_file_version_name(file_version));
LLAMA_LOG_INFO(model, "%s: n_vocab = %u", __func__, hparams.n_vocab);
LLAMA_LOG_INFO(model, "%s: n_ctx = %u", __func__, hparams.n_ctx);
LLAMA_LOG_INFO(model, "%s: n_embd = %u", __func__, hparams.n_embd);
LLAMA_LOG_INFO(model, "%s: n_mult = %u", __func__, hparams.n_mult);
LLAMA_LOG_INFO(model, "%s: n_head = %u", __func__, hparams.n_head);
LLAMA_LOG_INFO(model, "%s: n_layer = %u", __func__, hparams.n_layer);
LLAMA_LOG_INFO(model, "%s: n_rot = %u", __func__, hparams.n_rot);
LLAMA_LOG_INFO(model, "%s: freq_base = %.1f", __func__, hparams.rope_freq_base);
LLAMA_LOG_INFO(model, "%s: freq_scale = %g", __func__, hparams.rope_freq_scale);
LLAMA_LOG_INFO(model, "%s: ftype = %u (%s)", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
LLAMA_LOG_INFO(model, "%s: n_ff = %u", __func__, n_ff);
LLAMA_LOG_INFO(model, "%s: model size = %s", __func__, llama_model_type_name(model.type));
}
if (file_version < LLAMA_FILE_VERSION_GGJT_V2) {
@ -1057,7 +1075,7 @@ static void llama_model_load_internal(
size_t ctx_size;
size_t mmapped_size;
ml->calc_sizes(&ctx_size, &mmapped_size);
fprintf(stderr, "%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
LLAMA_LOG_INFO(model, "%s: ggml ctx size = %7.2f MB", __func__, ctx_size/1024.0/1024.0);
// create the ggml context
{
@ -1081,12 +1099,12 @@ static void llama_model_load_internal(
(void) main_gpu;
#if defined(GGML_USE_CUBLAS)
fprintf(stderr, "%s: using CUDA for GPU acceleration\n", __func__);
LLAMA_LOG_INFO(model, "%s: using CUDA for GPU acceleration", __func__);
ggml_cuda_set_main_device(main_gpu);
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
#elif defined(GGML_USE_CLBLAST)
fprintf(stderr, "%s: using OpenCL for GPU acceleration\n", __func__);
fprintf(stderr, "%s: using OpenCL for GPU acceleration", __func__);
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
#else
@ -1186,14 +1204,14 @@ static void llama_model_load_internal(
const size_t mem_required_state =
scale*MEM_REQ_KV_SELF().at(model.type);
fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
LLAMA_LOG_INFO(model, "%s: mem required = %7.2f MB (+ %7.2f MB per state)", __func__,
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
(void) vram_scratch;
(void) n_batch;
#ifdef GGML_USE_CUBLAS
if (low_vram) {
fprintf(stderr, "%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__);
LLAMA_LOG_INFO(model, "%s: not allocating a VRAM scratch buffer due to low VRAM option", __func__);
ggml_cuda_set_scratch_size(0); // disable scratch
} else {
const size_t vram_scratch_base = VRAM_REQ_SCRATCH_BASE().at(model.type);
@ -1201,7 +1219,7 @@ static void llama_model_load_internal(
vram_scratch = n_batch * (vram_scratch_base + n_ctx * vram_scratch_per_context);
ggml_cuda_set_scratch_size(vram_scratch);
if (n_gpu_layers > 0) {
fprintf(stderr, "%s: allocating batch_size x (%zd kB + n_ctx x %zd B) = %zd MB VRAM for the scratch buffer\n",
LLAMA_LOG_INFO(model, "%s: allocating batch_size x (%zd kB + n_ctx x %zd B) = %zd MB VRAM for the scratch buffer",
__func__, vram_scratch_base / kB, vram_scratch_per_context,
(vram_scratch + MB - 1) / MB); // round up
}
@ -1211,9 +1229,9 @@ static void llama_model_load_internal(
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
fprintf(stderr, "%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
LLAMA_LOG_INFO(model, "%s: offloading %d repeating layers to GPU", __func__, n_gpu);
if (n_gpu_layers > (int) hparams.n_layer) {
fprintf(stderr, "%s: offloading non-repeating layers to GPU\n", __func__);
LLAMA_LOG_INFO(model, "%s: offloading non-repeating layers to GPU", __func__);
}
size_t vram_kv_cache = 0;
@ -1222,17 +1240,17 @@ static void llama_model_load_internal(
const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3;
if (n_gpu_layers > (int) hparams.n_layer + 1) {
if (low_vram) {
fprintf(stderr, "%s: cannot offload v cache to GPU due to low VRAM option\n", __func__);
LLAMA_LOG_INFO(model, "%s: cannot offload v cache to GPU due to low VRAM option", __func__);
} else {
fprintf(stderr, "%s: offloading v cache to GPU\n", __func__);
LLAMA_LOG_INFO(model, "%s: offloading v cache to GPU", __func__);
vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2;
}
}
if (n_gpu_layers > (int) hparams.n_layer + 2) {
if (low_vram) {
fprintf(stderr, "%s: cannot offload k cache to GPU due to low VRAM option\n", __func__);
LLAMA_LOG_WARN(model, "%s: cannot offload k cache to GPU due to low VRAM option", __func__);
} else {
fprintf(stderr, "%s: offloading k cache to GPU\n", __func__);
LLAMA_LOG_INFO(model, "%s: offloading k cache to GPU", __func__);
vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2;
}
}
@ -1241,9 +1259,9 @@ static void llama_model_load_internal(
const int max_offloadable_layers = hparams.n_layer + 1;
#endif // GGML_USE_CUBLAS
fprintf(stderr, "%s: offloaded %d/%d layers to GPU\n",
LLAMA_LOG_INFO(model, "%s: offloaded %d/%d layers to GPU",
__func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
fprintf(stderr, "%s: total VRAM used: %zu MB\n",
LLAMA_LOG_INFO(model, "%s: total VRAM used: %zu MB",
__func__, (vram_weights + vram_scratch + vram_kv_cache + MB - 1) / MB); // round up
#else
(void) n_gpu_layers;
@ -1298,7 +1316,7 @@ static bool llama_model_load(
use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
return true;
} catch (const std::exception & err) {
fprintf(stderr, "error loading model: %s\n", err.what());
LLAMA_LOG_ERROR(model, "error loading model: %s", err.what());
return false;
}
}
@ -2465,7 +2483,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
nthread = std::thread::hardware_concurrency();
}
std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false));
std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false, nullptr));
llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loader.get(), params->ftype);
#ifdef GGML_USE_K_QUANTS
@ -2690,14 +2708,17 @@ struct llama_model * llama_load_model_from_file(
llama_model * model = new llama_model;
model->log_callback = params.log_callback ? params.log_callback : llama_log_callback_default;
model->log_callback_user_data = params.log_callback_user_data;
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gpu_layers,
params.main_gpu, params.tensor_split, params.rope_freq_base, params.rope_freq_scale,params.low_vram,
memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback,
params.progress_callback_user_data)) {
LLAMA_LOG_ERROR(*model, "%s: failed to load model", __func__);
delete model;
fprintf(stderr, "%s: failed to load model\n", __func__);
return nullptr;
}
@ -2747,14 +2768,14 @@ struct llama_context * llama_new_context_with_model(
// reserve memory for context buffers
if (!params.vocab_only) {
if (!kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) {
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
LLAMA_LOG_ERROR(*model, "%s: kv_cache_init() failed for self-attention cache", __func__);
llama_free(ctx);
return nullptr;
}
{
const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
LLAMA_LOG_INFO(*model, "%s: kv self size = %7.2f MB", __func__, memory_size / 1024.0 / 1024.0);
}
const auto & hparams = ctx->model.hparams;
@ -2798,7 +2819,7 @@ struct llama_context * llama_new_context_with_model(
#define LLAMA_METAL_CHECK_BUF(result) \
if (!(result)) { \
fprintf(stderr, "%s: failed to add buffer\n", __func__); \
LLAMA_LOG_ERROR(*model, "%s: failed to add buffer", __func__); \
llama_free(ctx); \
return NULL; \
}
@ -2863,13 +2884,13 @@ int llama_model_quantize(
}
int llama_apply_lora_from_file_internal(const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads) {
fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
LLAMA_LOG_INFO(model, "%s: applying lora adapter from '%s' - please wait ...", __func__, path_lora);
const int64_t t_start_lora_us = ggml_time_us();
auto fin = std::ifstream(path_lora, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora);
LLAMA_LOG_ERROR(model, "%s: failed to open '%s'", __func__, path_lora);
return 1;
}
@ -2878,14 +2899,14 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
uint32_t magic;
fin.read((char *) &magic, sizeof(magic));
if (magic != LLAMA_FILE_MAGIC_GGLA) {
fprintf(stderr, "%s: bad file magic\n", __func__);
LLAMA_LOG_ERROR(model, "%s: bad file magic", __func__);
return 1;
}
uint32_t format_version;
fin.read((char *) &format_version, sizeof(format_version));
if (format_version != 1) {
fprintf(stderr, "%s: unsupported file version\n", __func__ );
LLAMA_LOG_ERROR(model, "%s: unsupported file version", __func__ );
return 1;
}
}
@ -2896,7 +2917,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
fin.read((char *) &lora_alpha, sizeof(lora_alpha));
float scaling = (float)lora_alpha / (float)lora_r;
fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
LLAMA_LOG_INFO(model, "%s: r = %d, alpha = %d, scaling = %.2f", __func__, lora_r, lora_alpha, scaling);
// create a temporary ggml context to store the lora tensors
@ -2922,8 +2943,8 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
ggml_context * base_ctx = NULL;
llama_buffer base_buf;
if (path_base_model) {
fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model);
model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true));
LLAMA_LOG_INFO(model, "%s: loading base model from '%s'", __func__, path_base_model);
model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, &model));
size_t ctx_size;
size_t mmapped_size;
@ -2979,17 +3000,17 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
const std::string lora_suffix = ".lora";
size_t pos = name.rfind(lora_suffix);
if (pos == std::string::npos) {
fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
LLAMA_LOG_ERROR(model, "%s: error: '%s' is not a lora tensor", __func__, name.c_str());
return 1;
}
std::string lora_type = name.substr(pos + lora_suffix.length());
std::string base_name = name;
base_name.erase(pos);
// fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
// LLAMA_LOG_INFO(model, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
if (model_tensors.find(base_name) == model_tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
LLAMA_LOG_ERROR(model, "%s: unknown tensor '%s' in lora adapter", __func__, name.data());
return 1;
}
@ -3000,7 +3021,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
case 1: wtype = GGML_TYPE_F16; break;
default:
{
fprintf(stderr, "%s: invalid tensor data type '%d'\n",
LLAMA_LOG_ERROR(model, "%s: invalid tensor data type '%d'",
__func__, ftype);
return false;
}
@ -3010,7 +3031,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
}
else {
fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims);
LLAMA_LOG_ERROR(model, "%s: unsupported tensor dimension %d", __func__, n_dims);
return 1;
}
ggml_set_name(lora_tensor, "lora_tensor");
@ -3048,7 +3069,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
if (model_loader) {
// load from base model
if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) {
fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
LLAMA_LOG_ERROR(model, "%s: error: tensor '%s' not found in base model", __func__, base_name.c_str());
return 1;
}
size_t idx = model_loader->tensors_map.name_to_idx[base_name];
@ -3064,8 +3085,8 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
if (ggml_is_quantized(base_t->type)) {
if (!warned) {
fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, "
"use a f16 or f32 base model with --lora-base\n", __func__);
LLAMA_LOG_WARN(model, "%s: warning: using a lora adapter with a quantized model may result in poor quality, "
"use a f16 or f32 base model with --lora-base", __func__);
warned = true;
}
}
@ -3079,8 +3100,8 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
ggml_set_name(loraB, "loraB");
if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
" are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
LLAMA_LOG_ERROR(model, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
" are you sure that this adapter is for this model?", __func__, base_t->ne[0], loraA->ne[1]);
return 1;
}
@ -3137,7 +3158,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
}
const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0);
LLAMA_LOG_INFO(model, " done (%.2f ms)", t_lora_us / 1000.0);
return 0;
}
@ -3146,7 +3167,7 @@ int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lor
try {
return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads);
} catch (const std::exception & err) {
fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
LLAMA_LOG_ERROR(ctx->model, "%s: failed to apply lora adapter: %s", __func__, err.what());
return 1;
}
}
@ -3155,7 +3176,7 @@ int llama_model_apply_lora_from_file(const struct llama_model * model, const cha
try {
return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads);
} catch (const std::exception & err) {
fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
LLAMA_LOG_ERROR(*model, "%s: failed to apply lora adapter: %s", __func__, err.what());
return 1;
}
}
@ -3418,7 +3439,7 @@ static bool llama_load_session_file_internal(struct llama_context * ctx, const c
const uint32_t version = file.read_u32();
if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
LLAMA_LOG_ERROR(ctx->model, "%s : unknown (magic, version) for session file: %08x, %08x", __func__, magic, version);
return false;
}
@ -3426,7 +3447,7 @@ static bool llama_load_session_file_internal(struct llama_context * ctx, const c
file.read_raw(&session_hparams, sizeof(llama_hparams));
if (session_hparams != ctx->model.hparams) {
fprintf(stderr, "%s : model hparams didn't match from session file!\n", __func__);
LLAMA_LOG_INFO(ctx->model, "%s : model hparams didn't match from session file!", __func__);
return false;
}
}
@ -3436,7 +3457,7 @@ static bool llama_load_session_file_internal(struct llama_context * ctx, const c
const uint32_t n_token_count = file.read_u32();
if (n_token_count > n_token_capacity) {
fprintf(stderr, "%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
LLAMA_LOG_ERROR(ctx->model, "%s : token count in session file exceeded capacity! %u > %zu", __func__, n_token_count, n_token_capacity);
return false;
}
@ -3450,7 +3471,7 @@ static bool llama_load_session_file_internal(struct llama_context * ctx, const c
const size_t n_state_size_max = llama_get_state_size(ctx);
if (n_state_size_cur > n_state_size_max) {
fprintf(stderr, "%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
LLAMA_LOG_ERROR(ctx->model, "%s : the state size in session file is too big! max %zu, got %zu", __func__, n_state_size_max, n_state_size_cur);
return false;
}
@ -3467,7 +3488,7 @@ bool llama_load_session_file(struct llama_context * ctx, const char * path_sessi
try {
return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
} catch (const std::exception & err) {
fprintf(stderr, "error loading session file: %s\n", err.what());
LLAMA_LOG_ERROR(ctx->model, "error loading session file: %s", err.what());
return false;
}
}
@ -3504,7 +3525,7 @@ int llama_eval(
int n_past,
int n_threads) {
if (!llama_eval_internal(*ctx, tokens, nullptr, n_tokens, n_past, n_threads, nullptr)) {
fprintf(stderr, "%s: failed to eval\n", __func__);
LLAMA_LOG_ERROR(ctx->model, "%s: failed to eval", __func__);
return 1;
}
@ -3526,7 +3547,7 @@ int llama_eval_embd(
int n_past,
int n_threads) {
if (!llama_eval_internal(*ctx, nullptr, embd, n_tokens, n_past, n_threads, nullptr)) {
fprintf(stderr, "%s: failed to eval\n", __func__);
LLAMA_LOG_ERROR(ctx->model, "%s: failed to eval", __func__);
return 1;
}
@ -3547,7 +3568,7 @@ int llama_eval_export(struct llama_context * ctx, const char * fname) {
const std::vector<llama_token> tmp(n_batch, llama_token_bos());
if (!llama_eval_internal(*ctx, tmp.data(), nullptr, tmp.size(), n_ctx, 1, fname)) {
fprintf(stderr, "%s: failed to eval\n", __func__);
LLAMA_LOG_ERROR(ctx->model, "%s: failed to eval", __func__);
return 1;
}
@ -3563,7 +3584,7 @@ int llama_tokenize_with_model(
auto res = llama_tokenize(model->vocab, text, add_bos);
if (n_max_tokens < (int) res.size()) {
fprintf(stderr, "%s: too many tokens\n", __func__);
LLAMA_LOG_ERROR(*model, "%s: too many tokens", __func__);
return -((int) res.size());
}
@ -3680,15 +3701,15 @@ struct llama_timings llama_get_timings(struct llama_context * ctx) {
void llama_print_timings(struct llama_context * ctx) {
const llama_timings timings = llama_get_timings(ctx);
fprintf(stderr, "\n");
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, timings.t_load_ms);
fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
LLAMA_LOG_INFO(ctx->model, "");
LLAMA_LOG_INFO(ctx->model, "%s: load time = %8.2f ms", __func__, timings.t_load_ms);
LLAMA_LOG_INFO(ctx->model, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
__func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
LLAMA_LOG_INFO(ctx->model, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
__func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
LLAMA_LOG_INFO(ctx->model, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
__func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms));
LLAMA_LOG_INFO(ctx->model, "%s: total time = %8.2f ms", __func__, (timings.t_end_ms - timings.t_start_ms));
}
void llama_reset_timings(struct llama_context * ctx) {
@ -3724,3 +3745,35 @@ const char * llama_print_system_info(void) {
const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
return ctx->model.tensors_by_name;
}
#if defined(_MSC_VER) && !defined(vsnprintf)
#define vsnprintf _vsnprintf
#endif
void llama_log_internal_v(llama_log_callback log_callback, void * log_callback_user_data, int level, const char * format, va_list args) {
va_list args_copy;
va_copy(args_copy, args);
char buffer[128];
int len = vsnprintf(buffer, 128, format, args);
if (len < 128) {
log_callback(level, buffer, log_callback_user_data);
} else {
char* buffer2 = new char[len+1];
vsnprintf(buffer2, len+1, format, args_copy);
buffer2[len] = 0;
log_callback(level, buffer2, log_callback_user_data);
delete[] buffer2;
}
va_end(args_copy);
}
void llama_log_internal(llama_log_callback log_callback, void * log_callback_user_data, int level, const char * format, ...) {
va_list args;
va_start(args, format);
llama_log_internal_v(log_callback, log_callback_user_data, level, format, args);
va_end(args);
}
void llama_log_callback_default(int level, const char * text, void *ctx) {
fprintf(stderr, "%s\n", text);
}

11
llama.h
View file

@ -82,6 +82,11 @@ extern "C" {
typedef void (*llama_progress_callback)(float progress, void *ctx);
typedef void (*llama_log_callback)(int level, const char* text, void *ctx);
#define LLAMA_LOG_LEVEL_ERROR 2
#define LLAMA_LOG_LEVEL_WARN 3
#define LLAMA_LOG_LEVEL_INFO 4
struct llama_context_params {
uint32_t seed; // RNG seed, -1 for random
int32_t n_ctx; // text context
@ -99,6 +104,12 @@ extern "C" {
// context pointer passed to the progress callback
void * progress_callback_user_data;
// Called for every error, warning and information.
// If this is NULL, everything is output on stderr.
llama_log_callback log_callback;
// context pointer passed to the log callback
void * log_callback_user_data;
// Keep the booleans together to avoid misalignment during copy-by-value.
bool low_vram; // if true, reduce VRAM usage at the cost of performance
bool f16_kv; // use fp16 for KV cache