Merge remote-tracking branch 'origin/master' into sl/custom-tensor-offload
This commit is contained in:
commit
2e54433a9d
122 changed files with 11294 additions and 4576 deletions
4
.github/workflows/build.yml
vendored
4
.github/workflows/build.yml
vendored
|
@ -10,10 +10,10 @@ on:
|
|||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['.github/workflows/build.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal']
|
||||
paths: ['.github/workflows/build.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['.github/workflows/build.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal']
|
||||
paths: ['.github/workflows/build.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
|
|
2
.github/workflows/close-issue.yml
vendored
2
.github/workflows/close-issue.yml
vendored
|
@ -17,7 +17,7 @@ jobs:
|
|||
steps:
|
||||
- uses: actions/stale@v5
|
||||
with:
|
||||
exempt-issue-labels: "refactor,help wanted,good first issue,research,bug"
|
||||
exempt-issue-labels: "refactor,help wanted,good first issue,research,bug,roadmap"
|
||||
days-before-issue-stale: 30
|
||||
days-before-issue-close: 14
|
||||
stale-issue-label: "stale"
|
||||
|
|
25
.github/workflows/server.yml
vendored
25
.github/workflows/server.yml
vendored
|
@ -81,13 +81,36 @@ jobs:
|
|||
with:
|
||||
node-version: '22.11.0'
|
||||
|
||||
- name: WebUI - Install dependencies
|
||||
id: webui_lint
|
||||
run: |
|
||||
cd examples/server/webui
|
||||
npm ci
|
||||
|
||||
- name: WebUI - Check code format
|
||||
id: webui_format
|
||||
run: |
|
||||
git config --global --add safe.directory $(realpath .)
|
||||
cd examples/server/webui
|
||||
git status
|
||||
|
||||
npm run format
|
||||
git status
|
||||
modified_files="$(git status -s)"
|
||||
echo "Modified files: ${modified_files}"
|
||||
if [ -n "${modified_files}" ]; then
|
||||
echo "Files do not follow coding style. To fix: npm run format"
|
||||
echo "${modified_files}"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
- name: Verify bundled index.html
|
||||
id: verify_server_index_html
|
||||
run: |
|
||||
git config --global --add safe.directory $(realpath .)
|
||||
cd examples/server/webui
|
||||
git status
|
||||
npm ci
|
||||
|
||||
npm run build
|
||||
git status
|
||||
modified_files="$(git status -s)"
|
||||
|
|
83
AUTHORS
83
AUTHORS
|
@ -1,4 +1,4 @@
|
|||
# date: Thu Nov 28 20:46:15 EET 2024
|
||||
# date: Tue Feb 4 13:04:05 EET 2025
|
||||
# this file is auto-generated by scripts/gen-authors.sh
|
||||
|
||||
0cc4m <picard12@live.de>
|
||||
|
@ -20,6 +20,8 @@ Adithya Balaji <adithya.b94@gmail.com>
|
|||
AdithyanI <adithyan.i4internet@gmail.com>
|
||||
Adrian <smith.adriane@gmail.com>
|
||||
Adrian Hesketh <a-h@users.noreply.github.com>
|
||||
Adrien Gallouët <adrien@gallouet.fr>
|
||||
Adrien Gallouët <angt@huggingface.co>
|
||||
Ahmad Tameem <113388789+Tameem-10xE@users.noreply.github.com>
|
||||
Ahmet Zeer <ahmed.zeer@std.yildiz.edu.tr>
|
||||
AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
|
||||
|
@ -55,6 +57,7 @@ Ananta Bastola <anantarajbastola@gmail.com>
|
|||
Anas Ahouzi <112881240+aahouzi@users.noreply.github.com>
|
||||
András Salamon <ott2@users.noreply.github.com>
|
||||
Andreas (Andi) Kunar <andreask@msn.com>
|
||||
Andreas Kieslinger <47689530+aendk@users.noreply.github.com>
|
||||
Andrei <abetlen@gmail.com>
|
||||
Andrew Canis <andrew.canis@gmail.com>
|
||||
Andrew Downing <andrew2085@gmail.com>
|
||||
|
@ -91,13 +94,17 @@ Ben Siraphob <bensiraphob@gmail.com>
|
|||
Ben Williams <ben@719ben.com>
|
||||
Benjamin Findley <39356821+Kartoffelsaft@users.noreply.github.com>
|
||||
Benjamin Lecaillon <84293038+blecaillon@users.noreply.github.com>
|
||||
Benson Wong <mostlygeek@gmail.com>
|
||||
Bernat Vadell <hounter.caza@gmail.com>
|
||||
Bernhard M. Wiedemann <githubbmwprimary@lsmod.de>
|
||||
Bert Wagner <github@bertwagner.com>
|
||||
Billel Mokeddem <billel.mokeddem.ml@gmail.com>
|
||||
Bingan <70050083+binganao@users.noreply.github.com>
|
||||
Bjarke Viksøe <164612031+bviksoe@users.noreply.github.com>
|
||||
Bodo Graumann <mail@bodograumann.de>
|
||||
Bono Lv <lvscar@users.noreply.github.com>
|
||||
Borislav Stanimirov <b.stanimirov@abv.bg>
|
||||
Borislav Stanimirov <b@ibob.bg>
|
||||
Branden Butler <bwtbutler@hotmail.com>
|
||||
Brandon Squizzato <35474886+bsquizz@users.noreply.github.com>
|
||||
Brian <mofosyne@gmail.com>
|
||||
|
@ -117,6 +124,7 @@ Casey Primozic <casey@cprimozic.net>
|
|||
Casey Primozic <me@ameo.link>
|
||||
CausalLM <148736309+CausalLM@users.noreply.github.com>
|
||||
Cebtenzzre <cebtenzzre@gmail.com>
|
||||
CentricStorm <CentricStorm@users.noreply.github.com>
|
||||
Chad Brewbaker <crb002@gmail.com>
|
||||
Changyeon Kim <cyzero.kim@samsung.com>
|
||||
Chao Jiang <jc19chaoj@zoho.com>
|
||||
|
@ -131,12 +139,15 @@ Chris Kuehl <ckuehl@ckuehl.me>
|
|||
Christian Demsar <christian@github.email.demsar.us>
|
||||
Christian Demsar <crasm@git.vczf.us>
|
||||
Christian Falch <875252+chrfalch@users.noreply.github.com>
|
||||
Christian Kastner <ckk@kvr.at>
|
||||
Christian Kögler <ck3d@gmx.de>
|
||||
Christian Köhnenkamp <cvk5@me.com>
|
||||
Christian Zhou-Zheng <59622928+christianazinn@users.noreply.github.com>
|
||||
Christopher Nielsen <62156882+mascguy@users.noreply.github.com>
|
||||
Clark Saben <76020733+csaben@users.noreply.github.com>
|
||||
Clint Herron <hanclinto@gmail.com>
|
||||
Conrad Kramer <conrad@conradkramer.com>
|
||||
Corentin REGAL <corentin.regal@gmail.com>
|
||||
CrispStrobe <154636388+CrispStrobe@users.noreply.github.com>
|
||||
Csaba Kecskemeti <csaba.kecskemeti@gmail.com>
|
||||
Cuong Trinh Manh <nguoithichkhampha@gmail.com>
|
||||
|
@ -176,6 +187,7 @@ Dibakar Gope <dibakar.gope@arm.com>
|
|||
Didzis Gosko <didzis@users.noreply.github.com>
|
||||
Diego Devesa <slarengh@gmail.com>
|
||||
Diogo Teles Sant'Anna <diogoteles@google.com>
|
||||
Djip007 <3705339+Djip007@users.noreply.github.com>
|
||||
Djip007 <djip.perois@free.fr>
|
||||
Don Mahurin <dmahurin@users.noreply.github.com>
|
||||
DooWoong Lee (David) <manics99@naver.com>
|
||||
|
@ -193,6 +205,7 @@ Edward Taylor <edeetee@gmail.com>
|
|||
Elaine <elaine.zosa@gmail.com>
|
||||
Elbios <141279586+Elbios@users.noreply.github.com>
|
||||
Elton Kola <eltonkola@gmail.com>
|
||||
Emreerdog <34742675+Emreerdog@users.noreply.github.com>
|
||||
Engininja2 <139037756+Engininja2@users.noreply.github.com>
|
||||
Equim <sayaka@ekyu.moe>
|
||||
Eric Curtin <ecurtin@redhat.com>
|
||||
|
@ -233,6 +246,7 @@ Fred Douglas <43351173+fredlas@users.noreply.github.com>
|
|||
Frederik Vogel <Schaltfehler@users.noreply.github.com>
|
||||
Gabe Goodhart <gabe.l.hart@gmail.com>
|
||||
Gabe Goodhart <ghart@us.ibm.com>
|
||||
Gaetan Bisson <gaetan@fenua.org>
|
||||
GainLee <perfecter.gen@gmail.com>
|
||||
Galunid <karolek1231456@gmail.com>
|
||||
Gary Linscott <glinscott@gmail.com>
|
||||
|
@ -249,6 +263,7 @@ Guillaume "Vermeille" Sanchez <Guillaume.V.Sanchez@gmail.com>
|
|||
Guillaume Wenzek <gwenzek@users.noreply.github.com>
|
||||
Guoliang Hua <32868157+nbcsm@users.noreply.github.com>
|
||||
Guoteng <32697156+SolenoidWGT@users.noreply.github.com>
|
||||
Guspan Tanadi <36249910+guspan-tanadi@users.noreply.github.com>
|
||||
Gustavo Rocha Dias <91472747+gustrd@users.noreply.github.com>
|
||||
Haggai Nuchi <h.nuchi@gmail.com>
|
||||
Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com>
|
||||
|
@ -259,11 +274,13 @@ Haoxiang Fei <tonyfettes@tonyfettes.com>
|
|||
Harald Fernengel <harald.fernengel@here.com>
|
||||
Hatsune Miku <129688334+at8u@users.noreply.github.com>
|
||||
HatsuneMikuUwU33 <173229399+HatsuneMikuUwU33@users.noreply.github.com>
|
||||
Haus1 <haus.xda@gmail.com>
|
||||
Henk Poley <HenkPoley@gmail.com>
|
||||
Henri Vasserman <henv@hot.ee>
|
||||
Henrik Forstén <henrik.forsten@gmail.com>
|
||||
Herman Semenov <GermanAizek@yandex.ru>
|
||||
Hesen Peng <hesen.peng@gmail.com>
|
||||
HimariO <dsfhe49854@gmail.com>
|
||||
Hoang Nguyen <hugo53@users.noreply.github.com>
|
||||
Hong Bo PENG <penghb@cn.ibm.com>
|
||||
Hongyu Ouyang <96765450+casavaca@users.noreply.github.com>
|
||||
|
@ -280,6 +297,7 @@ Icecream95 <the.real.icecream95@gmail.com>
|
|||
Ido S <ido.pluto@gmail.com>
|
||||
IgnacioFDM <ignaciofdm@gmail.com>
|
||||
Igor Okulist <okigan@gmail.com>
|
||||
Ihar Hrachyshka <ihrachys@redhat.com>
|
||||
Ikko Eltociear Ashimine <eltociear@gmail.com>
|
||||
Ilya Kurdyukov <59548320+ilyakurdyukov@users.noreply.github.com>
|
||||
Ionoclast Laboratories <brigham@ionoclast.com>
|
||||
|
@ -289,12 +307,14 @@ Ivan <nekotekina@gmail.com>
|
|||
Ivan Filipov <159561759+vanaka11@users.noreply.github.com>
|
||||
Ivan Komarov <Ivan.Komarov@dfyz.info>
|
||||
Ivan Stepanov <ivanstepanovftw@gmail.com>
|
||||
JFLFY2255 <JFLFY2255@163.com>
|
||||
JH23X <165871467+JH23X@users.noreply.github.com>
|
||||
Jack Mousseau <jack@software.inc>
|
||||
Jack Mousseau <jmousseau@users.noreply.github.com>
|
||||
JackJollimore <130917767+JackJollimore@users.noreply.github.com>
|
||||
Jaeden Amero <jaeden@patater.com>
|
||||
Jaemin Son <woalsdnd@gmail.com>
|
||||
Jafar Uruç <jafar.uruc@gmail.com>
|
||||
Jag Chadha <jagtesh@gmail.com>
|
||||
Jakub N <jakubniemczyk97@gmail.com>
|
||||
James A Capozzoli <157492257+jac-jim@users.noreply.github.com>
|
||||
|
@ -315,6 +335,7 @@ Jeffrey Morgan <jmorganca@gmail.com>
|
|||
Jeffrey Quesnelle <emozilla@nousresearch.com>
|
||||
Jeroen Mostert <jeroen.mostert@cm.com>
|
||||
Jesse Jojo Johnson <williamsaintgeorge@gmail.com>
|
||||
Jett Janiak <jettjaniak@gmail.com>
|
||||
Jeximo <jeximo@gmail.com>
|
||||
Jhen-Jie Hong <iainst0409@gmail.com>
|
||||
Jiahao Li <liplus17@163.com>
|
||||
|
@ -343,6 +364,7 @@ Josh Ramer <josh.ramer@icloud.com>
|
|||
Joyce <joycebrum@google.com>
|
||||
Juan Calderon-Perez <835733+gaby@users.noreply.github.com>
|
||||
Judd <foldl@users.noreply.github.com>
|
||||
Juk Armstrong <69222624+jukofyork@users.noreply.github.com>
|
||||
Julius Arkenberg <arki05@users.noreply.github.com>
|
||||
Jun Hee Yoo <contact.jhyoo@gmail.com>
|
||||
Jun Jie <71215065+junnjiee16@users.noreply.github.com>
|
||||
|
@ -357,6 +379,7 @@ Justine Tunney <jtunney@mozilla.com>
|
|||
Juuso Alasuutari <juuso.alasuutari@gmail.com>
|
||||
KASR <karim.asrih@gmail.com>
|
||||
Kamil Tomšík <info@tomsik.cz>
|
||||
Karol Kontny <82021046+kkontny@users.noreply.github.com>
|
||||
Karsten Weiss <knweiss@gmail.com>
|
||||
Karthick <j.karthic2004@gmail.com>
|
||||
Karthik Kumar Viswanathan <195178+guilt@users.noreply.github.com>
|
||||
|
@ -376,6 +399,7 @@ Kolen Cheung <ickc@users.noreply.github.com>
|
|||
Konstantin Herud <konstantin.herud@denkbares.com>
|
||||
Konstantin Zhuravlyov <konstantin.zhuravlyov@amd.com>
|
||||
Kunshang Ji <kunshang.ji@intel.com>
|
||||
Kyle Bruene <KyleBruene@users.noreply.github.com>
|
||||
Kyle Liang <liangmanlai@gmail.com>
|
||||
Kyle Mistele <kyle@mistele.com>
|
||||
Kylin <56434533+KyL0N@users.noreply.github.com>
|
||||
|
@ -394,6 +418,7 @@ Liu Jia <jia3.liu@intel.com>
|
|||
LoganDark <github@logandark.mozmail.com>
|
||||
Loïc Carrère <loic.carrere@gmail.com>
|
||||
LostRuins <39025047+LostRuins@users.noreply.github.com>
|
||||
LostRuins Concedo <39025047+LostRuins@users.noreply.github.com>
|
||||
Luciano <lucianostrika44@gmail.com>
|
||||
Luo Tian <lt@basecity.com>
|
||||
Lyle Dean <dean@lyle.dev>
|
||||
|
@ -423,6 +448,7 @@ MasterYi1024 <39848311+MasterYi1024@users.noreply.github.com>
|
|||
Mateusz Charytoniuk <mateusz.charytoniuk@protonmail.com>
|
||||
Matheus C. França <matheus-catarino@hotmail.com>
|
||||
Matheus Gabriel Alves Silva <matheusgasource@gmail.com>
|
||||
Mathieu Baudier <mbaudier@argeo.org>
|
||||
Mathieu Geli <mathieu.geli@gmail.com>
|
||||
Mathieu Nayrolles <MathieuNls@users.noreply.github.com>
|
||||
Mathijs Henquet <mathijs.henquet@gmail.com>
|
||||
|
@ -444,6 +470,7 @@ Meng, Hengyu <hengyu.meng@intel.com>
|
|||
Mengqing Cao <cmq0113@163.com>
|
||||
Merrick Christensen <merrick.christensen@gmail.com>
|
||||
Michael Coppola <m18coppola@gmail.com>
|
||||
Michael Engel <mengel@redhat.com>
|
||||
Michael Francis <edude03@gmail.com>
|
||||
Michael Hueschen <m@mhueschen.dev>
|
||||
Michael Kesper <mkesper@schokokeks.org>
|
||||
|
@ -452,7 +479,9 @@ Michael Podvitskiy <podvitskiymichael@gmail.com>
|
|||
Michael Potter <NanoTekGuy@Gmail.com>
|
||||
Michael de Gans <michael.john.degans@gmail.com>
|
||||
Michaël de Vries <vriesdemichael@gmail.com>
|
||||
Michał Moskal <michal@moskal.me>
|
||||
Michał Tuszyński <srgtuszy@gmail.com>
|
||||
Michelle Tan <41475767+MichelleTanPY@users.noreply.github.com>
|
||||
Mihai <mihai.chirculescu@yahoo.com>
|
||||
Mike <ytianhui2004@gmail.com>
|
||||
Mikko Juola <mikjuo@gmail.com>
|
||||
|
@ -477,6 +506,7 @@ Neo Zhang <14088817+arthw@users.noreply.github.com>
|
|||
Neo Zhang <zhang.jianyu@outlook.com>
|
||||
Neo Zhang Jianyu <jianyu.zhang@intel.com>
|
||||
Neuman Vong <neuman.vong@gmail.com>
|
||||
NeverLucky <92274250+nvrxq@users.noreply.github.com>
|
||||
Nexes the Old <124105151+Nexesenex@users.noreply.github.com>
|
||||
Nexesenex <124105151+Nexesenex@users.noreply.github.com>
|
||||
Niall Coates <1349685+Niall-@users.noreply.github.com>
|
||||
|
@ -484,11 +514,15 @@ Nicholai Tukanov <nicholaitukanov@gmail.com>
|
|||
Nico Bosshard <nico@bosshome.ch>
|
||||
Nicolai Weitkemper <kontakt@nicolaiweitkemper.de>
|
||||
Nicolás Pérez <nicolas_perez@brown.edu>
|
||||
Nicolò Scipione <nicolo.scipione@codeplay.com>
|
||||
Nigel Bosch <pnigelb@gmail.com>
|
||||
Nikita Sarychev <42014488+sARY77@users.noreply.github.com>
|
||||
Niklas Korz <niklas@niklaskorz.de>
|
||||
NikolaiLyssogor <59844691+NikolaiLyssogor@users.noreply.github.com>
|
||||
Nikolaos Pothitos <pothitos@di.uoa.gr>
|
||||
Nikolas <127742645+nneubacher@users.noreply.github.com>
|
||||
Nindaleth <Nindaleth@users.noreply.github.com>
|
||||
Nuno <rare-magma@posteo.eu>
|
||||
OSecret <135510162+OLSecret@users.noreply.github.com>
|
||||
Oleksandr Nikitin <oleksandr@tvori.info>
|
||||
Oleksii Maryshchenko <oleksii.maryshchenko@gmail.com>
|
||||
|
@ -504,6 +538,7 @@ Pavel Zloi <github.com@drteam.rocks>
|
|||
Pavol Rusnak <pavol@rusnak.io>
|
||||
Paweł Wodnicki <151604+32bitmicro@users.noreply.github.com>
|
||||
Pedro Cuenca <pedro@huggingface.co>
|
||||
Peter <peter277@users.noreply.github.com>
|
||||
Peter Sugihara <peter@campsh.com>
|
||||
Phil H <5756783+phiharri@users.noreply.github.com>
|
||||
Philip Taron <philip.taron@gmail.com>
|
||||
|
@ -529,9 +564,12 @@ Rand Xie <randxiexyy29@gmail.com>
|
|||
Randall Fitzgerald <randall@dasaku.net>
|
||||
Random Fly <renfei8@live.cn>
|
||||
Reinforce-II <fate@eastal.com>
|
||||
Rémy Oudompheng <oudomphe@phare.normalesup.org>
|
||||
Ren Xuancheng <jklj077@users.noreply.github.com>
|
||||
Rene Leonhardt <65483435+reneleonhardt@users.noreply.github.com>
|
||||
Reza Kakhki <rezakakhki.de@gmail.com>
|
||||
RhinoDevel <RhinoDevel@users.noreply.github.com>
|
||||
Riccardo Orlando <Riccorl@users.noreply.github.com>
|
||||
Riceball LEE <snowyu.lee@gmail.com>
|
||||
Rich Dougherty <rich@rd.nz>
|
||||
Richard Kiss <him@richardkiss.com>
|
||||
|
@ -544,6 +582,8 @@ Riley Stewart <ristew@users.noreply.github.com>
|
|||
Rinne <AsakusaRinne@gmail.com>
|
||||
Rinne <liu_yaohui1998@126.com>
|
||||
Robert Brisita <986796+rbrisita@users.noreply.github.com>
|
||||
Robert Collins <roberto.tomas.cuentas@gmail.com>
|
||||
Robert Ormandi <52251610+ormandi@users.noreply.github.com>
|
||||
Robert Sung-wook Shin <edp1096@users.noreply.github.com>
|
||||
Robey Holderith <robey@flaminglunchbox.net>
|
||||
Robyn <robyngraf@users.noreply.github.com>
|
||||
|
@ -559,7 +599,9 @@ Roni <sulpher@gmx.net>
|
|||
Ronny Brendel <ronnybrendel@gmail.com>
|
||||
Ronsor <ronsor@ronsor.pw>
|
||||
Rowan Hart <rowanbhart@gmail.com>
|
||||
Ruan <47767371+ruanych@users.noreply.github.com>
|
||||
Ruchira Hasaranga <ruchira66@gmail.com>
|
||||
Rudi Servo <rudiservo@gmail.com>
|
||||
Ruixin Huang <18860020911@163.com>
|
||||
Rune <43761327+Rune-AI@users.noreply.github.com>
|
||||
RunningLeon <maningsheng@sensetime.com>
|
||||
|
@ -623,12 +665,14 @@ Steven Roussey <sroussey@gmail.com>
|
|||
Steward Garcia <57494570+FSSRepo@users.noreply.github.com>
|
||||
StrangeBytesDev <141275258+StrangeBytesDev@users.noreply.github.com>
|
||||
Suaj Carrot <72162667+SuajCarrot@users.noreply.github.com>
|
||||
Sukriti Sharma <Ssukriti@users.noreply.github.com>
|
||||
SuperUserNameMan <yoann@terminajones.com>
|
||||
Sutou Kouhei <kou@cozmixng.org>
|
||||
Tai Duc Nguyen <taiducnguyen.drexel@gmail.com>
|
||||
Taikono-Himazin <kazu@po.harenet.ne.jp>
|
||||
Tameem <113388789+AhmadTameem@users.noreply.github.com>
|
||||
Tamotsu Takahashi <ttakah+github@gmail.com>
|
||||
Tei Home <taiteitonghome@proton.me>
|
||||
Thái Hoàng Tâm <75922889+RoyalHeart@users.noreply.github.com>
|
||||
Thatcher Chamberlin <j.thatcher.c@gmail.com>
|
||||
Theia Vogel <theia@vgel.me>
|
||||
|
@ -640,6 +684,7 @@ Tim Miller <drasticactions@users.noreply.github.com>
|
|||
Tim Wang <overocean@gmail.com>
|
||||
Timmy Knight <r2d2fish@gmail.com>
|
||||
Timothy Cronin <40186632+4imothy@users.noreply.github.com>
|
||||
Ting Lou <louting@189.cn>
|
||||
Ting Lou <ting.lou@gmail.com>
|
||||
Ting Sun <suntcrick@gmail.com>
|
||||
Tobias Lütke <tobi@shopify.com>
|
||||
|
@ -661,6 +706,7 @@ Uzo Nweke <uzoechi@gmail.com>
|
|||
Vaibhav Srivastav <vaibhavs10@gmail.com>
|
||||
Val Kharitonov <mail@kharvd.com>
|
||||
Valentin Konovalov <valle.ketsujin@gmail.com>
|
||||
Valentin Mamedov <45292985+Inf1delis@users.noreply.github.com>
|
||||
Valentyn Bezshapkin <61702053+valentynbez@users.noreply.github.com>
|
||||
Vali Malinoiu <0x4139@gmail.com>
|
||||
Victor Nogueira <felladrin@gmail.com>
|
||||
|
@ -673,13 +719,17 @@ Vladimir Malyutin <first-leon@yandex.ru>
|
|||
Vladimir Zorin <vladimir@deviant.guru>
|
||||
VoidIsVoid <343750470@qq.com>
|
||||
Volodymyr Vitvitskyi <72226+signalpillar@users.noreply.github.com>
|
||||
Wang Qin <37098874+wangqin0@users.noreply.github.com>
|
||||
Wang Ran (汪然) <wangr@smail.nju.edu.cn>
|
||||
WangHaoranRobin <56047610+WangHaoranRobin@users.noreply.github.com>
|
||||
Weird Constructor <weirdconstructor@gmail.com>
|
||||
Welby Seely <welbyseely@gmail.com>
|
||||
Wentai Zhang <rchardx@gmail.com>
|
||||
WillCorticesAI <150854901+WillCorticesAI@users.noreply.github.com>
|
||||
William Tambellini <william.tambellini@gmail.com>
|
||||
William Tambellini <wtambellini@sdl.com>
|
||||
Willy Tarreau <w@1wt.eu>
|
||||
Woof Dog <197125663+woof-dog@users.noreply.github.com>
|
||||
Wouter <9594229+DifferentialityDevelopment@users.noreply.github.com>
|
||||
Wu Jian Ping <wujjpp@hotmail.com>
|
||||
Wu Jian Ping <wujp@greatld.com>
|
||||
|
@ -692,6 +742,7 @@ Xie Yanbo <xieyanbo@gmail.com>
|
|||
Xingchen Song(宋星辰) <xingchensong1996@163.com>
|
||||
Xinpeng Dou <81913537+Dou-Git@users.noreply.github.com>
|
||||
Xuan Son Nguyen <thichthat@gmail.com>
|
||||
Xuan-Son Nguyen <thichthat@gmail.com>
|
||||
Yaiko <elyaiko@hotmail.com>
|
||||
Yann Follet <131855179+YannFollet@users.noreply.github.com>
|
||||
Yaroslav <yaroslav.yashin@me.com>
|
||||
|
@ -702,7 +753,9 @@ Yoshi Suhara <y.suhara@gmail.com>
|
|||
Yoshi Suhara <ysuhara@nvidia.com>
|
||||
Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
|
||||
Yueh-Po Peng <94939112+y10ab1@users.noreply.github.com>
|
||||
Yüg <eugeniosegalaweb@gmail.com>
|
||||
Yui <dev@sleepyyui.com>
|
||||
Yun Dou <dixyes@gmail.com>
|
||||
Yuri Khrustalev <ykhrustalev@users.noreply.github.com>
|
||||
Yusuf Kağan Hanoğlu <hanoglu@yahoo.com>
|
||||
Yuval Peled <31162840+Yuval-Peled@users.noreply.github.com>
|
||||
|
@ -714,18 +767,23 @@ Zhang Peiyuan <a1286225768@gmail.com>
|
|||
Zheng.Deng <32841220+dengzheng-cloud@users.noreply.github.com>
|
||||
Zhenwei Jin <109658203+kylo5aby@users.noreply.github.com>
|
||||
Zhiyuan Li <lizhiyuan@uniartisan.com>
|
||||
Zhiyuan Li <uniartisan2017@gmail.com>
|
||||
ZhouYuChen <zhouyuchen@naver.com>
|
||||
Ziad Ben Hadj-Alouane <zied.benhadjalouane@gmail.com>
|
||||
Ziang Wu <97337387+ZiangWu-77@users.noreply.github.com>
|
||||
Zsapi <martin1.zsapka@gmail.com>
|
||||
a-n-n-a-l-e-e <150648636+a-n-n-a-l-e-e@users.noreply.github.com>
|
||||
a3sh <38979186+A3shTnT@users.noreply.github.com>
|
||||
adel boussaken <netdur@gmail.com>
|
||||
afrideva <95653597+afrideva@users.noreply.github.com>
|
||||
ag2s20150909 <19373730+ag2s20150909@users.noreply.github.com>
|
||||
agray3 <agray3@users.noreply.github.com>
|
||||
akawrykow <142945436+akawrykow@users.noreply.github.com>
|
||||
alek3y <44779186+alek3y@users.noreply.github.com>
|
||||
alexpinel <93524949+alexpinel@users.noreply.github.com>
|
||||
alonfaraj <alonfaraj@gmail.com>
|
||||
alwqx <kenan3015@gmail.com>
|
||||
amd-dwang <dong.wang@amd.com>
|
||||
amd-lalithnc <lalithnc@amd.com>
|
||||
amritahs-ibm <amritahs@linux.vnet.ibm.com>
|
||||
andrijdavid <david@geek.mg>
|
||||
|
@ -737,6 +795,7 @@ arch-btw <57669023+arch-btw@users.noreply.github.com>
|
|||
arcrank <arcrank@gmail.com>
|
||||
ardfork <134447697+ardfork@users.noreply.github.com>
|
||||
arlo-phoenix <140345165+arlo-phoenix@users.noreply.github.com>
|
||||
aryantandon01 <80969509+aryantandon01@users.noreply.github.com>
|
||||
at8u <129688334+at8u@users.noreply.github.com>
|
||||
automaticcat <daogiatuank54@gmail.com>
|
||||
awatuna <23447591+awatuna@users.noreply.github.com>
|
||||
|
@ -751,12 +810,14 @@ bryanSwk <93190252+bryanSwk@users.noreply.github.com>
|
|||
bsilvereagle <bsilvereagle@users.noreply.github.com>
|
||||
bssrdf <merlintiger@hotmail.com>
|
||||
byte-6174 <88070277+byte-6174@users.noreply.github.com>
|
||||
cduk <19917266+cduk@users.noreply.github.com>
|
||||
cebtenzzre <cebtenzzre@gmail.com>
|
||||
chaihahaha <chai836275709@gmail.com>
|
||||
chiranko <96988916+chiranko@users.noreply.github.com>
|
||||
clibdev <52199778+clibdev@users.noreply.github.com>
|
||||
clyang <clyang@clyang.net>
|
||||
cocktailpeanut <121128867+cocktailpeanut@users.noreply.github.com>
|
||||
codezjx <code.zjx@gmail.com>
|
||||
coezbek <c.oezbek@gmail.com>
|
||||
comex <comexk@gmail.com>
|
||||
compilade <113953597+compilade@users.noreply.github.com>
|
||||
|
@ -780,14 +841,17 @@ drbh <david.richard.holtz@gmail.com>
|
|||
ds5t5 <145942675+ds5t5@users.noreply.github.com>
|
||||
dylan <canardleteer@users.noreply.github.com>
|
||||
eastriver <lee@eastriver.dev>
|
||||
ebraminio <ebrahim@gnu.org>
|
||||
ebraminio <ebraminio@gmail.com>
|
||||
eiery <19350831+eiery@users.noreply.github.com>
|
||||
eric8607242 <e0928021388@gmail.com>
|
||||
fairydreaming <166155368+fairydreaming@users.noreply.github.com>
|
||||
fengerhu1 <2748250768@qq.com>
|
||||
fj-y-saito <85871716+fj-y-saito@users.noreply.github.com>
|
||||
fraxy-v <65565042+fraxy-v@users.noreply.github.com>
|
||||
github-actions[bot] <github-actions[bot]@users.noreply.github.com>
|
||||
gliptic <gliptic@users.noreply.github.com>
|
||||
gn64 <yukikaze.jp@gmail.com>
|
||||
goerch <jhr.walter@t-online.de>
|
||||
grahameth <96447521+grahameth@users.noreply.github.com>
|
||||
gtygo <gtydoit@gmail.com>
|
||||
|
@ -812,10 +876,12 @@ icppWorld <124377669+icppWorld@users.noreply.github.com>
|
|||
igarnier <igarnier@protonmail.com>
|
||||
intelmatt <61025942+intelmatt@users.noreply.github.com>
|
||||
iohub <rickyang.pro@gmail.com>
|
||||
issixx <46835150+issixx@users.noreply.github.com>
|
||||
jacobi petrucciani <8117202+jpetrucciani@users.noreply.github.com>
|
||||
jaime-m-p <167997752+jaime-m-p@users.noreply.github.com>
|
||||
jameswu2014 <545426914@qq.com>
|
||||
jdomke <28772296+jdomke@users.noreply.github.com>
|
||||
jiahao su <damow890@gmail.com>
|
||||
jiez <373447296@qq.com>
|
||||
jneem <joeneeman@gmail.com>
|
||||
joecryptotoo <80373433+joecryptotoo@users.noreply.github.com>
|
||||
|
@ -828,6 +894,7 @@ junchao-loongson <68935141+junchao-loongson@users.noreply.github.com>
|
|||
jwj7140 <32943891+jwj7140@users.noreply.github.com>
|
||||
k.h.lai <adrian.k.h.lai@outlook.com>
|
||||
kaizau <kaizau@users.noreply.github.com>
|
||||
kallewoof <kalle.alm@gmail.com>
|
||||
kalomaze <66376113+kalomaze@users.noreply.github.com>
|
||||
kang <tpdns9032100@gmail.com>
|
||||
katsu560 <118887472+katsu560@users.noreply.github.com>
|
||||
|
@ -835,6 +902,7 @@ kchro3 <62481661+kchro3@users.noreply.github.com>
|
|||
khimaros <me@khimaros.com>
|
||||
kiltyj <kiltyj@gmail.com>
|
||||
klosax <131523366+klosax@users.noreply.github.com>
|
||||
krystiancha <krystian@krystianch.com>
|
||||
kunal-vaishnavi <115581922+kunal-vaishnavi@users.noreply.github.com>
|
||||
kunnis <kunnis@users.noreply.github.com>
|
||||
kuronekosaiko <EvanChanJ@163.com>
|
||||
|
@ -847,6 +915,8 @@ ldwang <ftgreat@163.com>
|
|||
le.chang <cljs118@126.com>
|
||||
leejet <leejet714@gmail.com>
|
||||
leo-pony <nengjunma@outlook.com>
|
||||
lexasub <lexakopp2212@gmail.com>
|
||||
lhez <quic_lih@quicinc.com>
|
||||
limitedAtonement <limitedAtonement@users.noreply.github.com>
|
||||
liuwei-git <14815172+liuwei-git@users.noreply.github.com>
|
||||
lon <114724657+longregen@users.noreply.github.com>
|
||||
|
@ -855,10 +925,13 @@ ltoniazzi <61414566+ltoniazzi@users.noreply.github.com>
|
|||
luoyu-intel <yu.luo@intel.com>
|
||||
m3ndax <adrian.goessl@outlook.com>
|
||||
maddes8cht <55592906+maddes8cht@users.noreply.github.com>
|
||||
mahorozte <41834471+mahorozte@users.noreply.github.com>
|
||||
makomk <makosoft@googlemail.com>
|
||||
manikbhandari <mbbhandarimanik2@gmail.com>
|
||||
maor-ps <154728172+maor-ps@users.noreply.github.com>
|
||||
mashdragon <122402293+mashdragon@users.noreply.github.com>
|
||||
matiaslin <45382001+matiaslin@users.noreply.github.com>
|
||||
matt23654 <matthew.webber@protonmail.com>
|
||||
matteo <matteogeniaccio@yahoo.it>
|
||||
mdrokz <mohammadmunshi@gmail.com>
|
||||
mgroeber9110 <45620825+mgroeber9110@users.noreply.github.com>
|
||||
|
@ -868,6 +941,7 @@ mmyjona <jonathan.gonse@gmail.com>
|
|||
momonga <115213907+mmnga@users.noreply.github.com>
|
||||
momonga <146910567+mmngays@users.noreply.github.com>
|
||||
moritzbrantner <31051084+moritzbrantner@users.noreply.github.com>
|
||||
musoles <135031143+musoles@users.noreply.github.com>
|
||||
mzcu <milos.cubrilo@gmail.com>
|
||||
nanahi <130121847+na-na-hi@users.noreply.github.com>
|
||||
ngc92 <7938269+ngc92@users.noreply.github.com>
|
||||
|
@ -885,6 +959,7 @@ oobabooga <112222186+oobabooga@users.noreply.github.com>
|
|||
opparco <parco.opaai@gmail.com>
|
||||
ostix360 <55257054+ostix360@users.noreply.github.com>
|
||||
pculliton <phillipculliton@gmail.com>
|
||||
peidaqi <peidaqi@gmail.com>
|
||||
pengxin99 <pengxin.yuan@intel.com>
|
||||
perserk <perserk@gmail.com>
|
||||
piDack <104877312+piDack@users.noreply.github.com>
|
||||
|
@ -892,10 +967,12 @@ pmysl <piotr.myslinski@outlook.com>
|
|||
postmasters <namnguyen@google.com>
|
||||
pudepiedj <pudepiedj@gmail.com>
|
||||
qingfengfenga <41416092+qingfengfenga@users.noreply.github.com>
|
||||
qingy1337 <qxli2@students.everettcc.edu>
|
||||
qouoq <qouoq@fastmail.com>
|
||||
qunash <anzoria@gmail.com>
|
||||
rabidcopy <rabidcopy@yahoo.com>
|
||||
rankaiyx <rankaiyx@rankaiyx.com>
|
||||
redbeard <bharrington@alticon.net>
|
||||
rhjdvsgsgks <26178113+rhjdvsgsgks@users.noreply.github.com>
|
||||
rhuddleston <ryan.huddleston@percona.com>
|
||||
rimoliga <53384203+rimoliga@users.noreply.github.com>
|
||||
|
@ -912,6 +989,7 @@ sjxx <63994076+ylsdamxssjxxdd@users.noreply.github.com>
|
|||
slaren <2141330+slaren@users.noreply.github.com>
|
||||
slaren <slarengh@gmail.com>
|
||||
snadampal <87143774+snadampal@users.noreply.github.com>
|
||||
someone13574 <81528246+someone13574@users.noreply.github.com>
|
||||
standby24x7 <standby24x7@gmail.com>
|
||||
staviq <staviq@gmail.com>
|
||||
stduhpf <stephduh@live.fr>
|
||||
|
@ -931,6 +1009,7 @@ uint256_t <konndennsa@gmail.com>
|
|||
uint256_t <maekawatoshiki1017@gmail.com>
|
||||
unbounded <haakon@likedan.net>
|
||||
uvos <devnull@uvos.xyz>
|
||||
uvos <philipp@uvos.xyz>
|
||||
valiray <133289098+valiray@users.noreply.github.com>
|
||||
vb <vaibhavs10@gmail.com>
|
||||
vik <vikhyatk@gmail.com>
|
||||
|
@ -951,6 +1030,7 @@ xaedes <xaedes@googlemail.com>
|
|||
xctan <axunlei@gmail.com>
|
||||
xloem <0xloem@gmail.com>
|
||||
yangli2 <yangli2@gmail.com>
|
||||
ymcki <84055651+ymcki@users.noreply.github.com>
|
||||
yuiseki <yuiseki@gmail.com>
|
||||
yuri@FreeBSD <yurivict@users.noreply.github.com>
|
||||
zakkor <edward.partenie@gmail.com>
|
||||
|
@ -963,4 +1043,5 @@ zrm <trustiosity.zrm@gmail.com>
|
|||
杨朱 · Kiki <baofa.fan@daocloud.io>
|
||||
源文雨 <41315874+fumiama@users.noreply.github.com>
|
||||
蕭澧邦 <45505768+shou692199@users.noreply.github.com>
|
||||
谢乃闻 <sienaiwun@users.noreply.github.com>
|
||||
Нияз Гарифзянов <112617865+garrnizon@users.noreply.github.com>
|
||||
|
|
|
@ -233,4 +233,4 @@ configure_file(cmake/llama.pc.in
|
|||
@ONLY)
|
||||
|
||||
install(FILES "${CMAKE_CURRENT_BINARY_DIR}/llama.pc"
|
||||
DESTINATION lib/pkgconfig)
|
||||
DESTINATION ${CMAKE_INSTALL_LIBDIR}/pkgconfig)
|
||||
|
|
2
Makefile
2
Makefile
|
@ -596,7 +596,7 @@ ifdef GGML_RPC
|
|||
OBJ_GGML_EXT += ggml/src/ggml-rpc.o
|
||||
endif # GGML_RPC
|
||||
|
||||
OBJ_CUDA_TMPL = $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/template-instances/fattn-wmma*.cu))
|
||||
OBJ_CUDA_TMPL = $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/template-instances/fattn-mma*.cu))
|
||||
OBJ_CUDA_TMPL += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/template-instances/mmq*.cu))
|
||||
|
||||
ifdef GGML_CUDA_FA_ALL_QUANTS
|
||||
|
|
|
@ -136,6 +136,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
|||
- Rust (more features): [edgenai/llama_cpp-rs](https://github.com/edgenai/llama_cpp-rs)
|
||||
- Rust (nicer API): [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp)
|
||||
- Rust (more direct bindings): [utilityai/llama-cpp-rs](https://github.com/utilityai/llama-cpp-rs)
|
||||
- Rust (automated build from crates.io): [ShelbyJenkins/llm_client](https://github.com/ShelbyJenkins/llm_client)
|
||||
- C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp)
|
||||
- C#/VB.NET (more features - community license): [LM-Kit.NET](https://docs.lm-kit.com/lm-kit-net/index.html)
|
||||
- Scala 3: [donderom/llm4s](https://github.com/donderom/llm4s)
|
||||
|
@ -188,6 +189,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
|||
- [ramalama](https://github.com/containers/ramalama) (MIT)
|
||||
- [semperai/amica](https://github.com/semperai/amica) (MIT)
|
||||
- [withcatai/catai](https://github.com/withcatai/catai) (MIT)
|
||||
- [Autopen](https://github.com/blackhole89/autopen) (GPL)
|
||||
|
||||
</details>
|
||||
|
||||
|
|
|
@ -1,10 +1,10 @@
|
|||
prefix=@CMAKE_INSTALL_PREFIX@
|
||||
exec_prefix=${prefix}
|
||||
libdir=${exec_prefix}/lib
|
||||
includedir=${prefix}/include
|
||||
exec_prefix=@CMAKE_INSTALL_PREFIX@
|
||||
libdir=@CMAKE_INSTALL_FULL_LIBDIR@
|
||||
includedir=@CMAKE_INSTALL_FULL_INCLUDEDIR@
|
||||
|
||||
Name: llama
|
||||
Description: Port of Facebook's LLaMA model in C/C++
|
||||
Version: @PROJECT_VERSION@
|
||||
Libs: -L${libdir} -lggml -lggml-base -lllama
|
||||
Version: @LLAMA_INSTALL_VERSION@
|
||||
Libs: -L${libdir} -lggml -lggml-base -lllama
|
||||
Cflags: -I${includedir}
|
||||
|
|
|
@ -1470,15 +1470,28 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
{"--list-devices"},
|
||||
"print list of available devices and exit",
|
||||
[](common_params &) {
|
||||
printf("Available devices:\n");
|
||||
std::vector<ggml_backend_dev_t> rpc_devices;
|
||||
std::vector<ggml_backend_dev_t> all_devices;
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
|
||||
auto * dev = ggml_backend_dev_get(i);
|
||||
if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_GPU) {
|
||||
size_t free, total;
|
||||
ggml_backend_dev_memory(dev, &free, &total);
|
||||
printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024);
|
||||
ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
|
||||
if (ggml_backend_reg_name(reg) == std::string("RPC")) {
|
||||
rpc_devices.push_back(dev);
|
||||
} else {
|
||||
all_devices.push_back(dev);
|
||||
}
|
||||
}
|
||||
}
|
||||
// insert RPC devices in front
|
||||
all_devices.insert(all_devices.begin(), rpc_devices.begin(), rpc_devices.end());
|
||||
printf("Available devices:\n");
|
||||
for (size_t i = 0; i < all_devices.size(); ++i) {
|
||||
auto * dev = all_devices[i];
|
||||
size_t free, total;
|
||||
ggml_backend_dev_memory(dev, &free, &total);
|
||||
printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024);
|
||||
}
|
||||
exit(0);
|
||||
}
|
||||
));
|
||||
|
@ -2351,5 +2364,47 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
}
|
||||
).set_examples({LLAMA_EXAMPLE_TTS}));
|
||||
|
||||
add_opt(common_arg(
|
||||
{"--embd-bge-small-en-default"},
|
||||
string_format("use default bge-small-en-v1.5 model (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "ggml-org/bge-small-en-v1.5-Q8_0-GGUF";
|
||||
params.hf_file = "bge-small-en-v1.5-q8_0.gguf";
|
||||
params.pooling_type = LLAMA_POOLING_TYPE_NONE;
|
||||
params.embd_normalize = 2;
|
||||
params.n_ctx = 512;
|
||||
params.verbose_prompt = true;
|
||||
params.embedding = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
|
||||
|
||||
add_opt(common_arg(
|
||||
{"--embd-e5-small-en-default"},
|
||||
string_format("use default e5-small-v2 model (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "ggml-org/e5-small-v2-Q8_0-GGUF";
|
||||
params.hf_file = "e5-small-v2-q8_0.gguf";
|
||||
params.pooling_type = LLAMA_POOLING_TYPE_NONE;
|
||||
params.embd_normalize = 2;
|
||||
params.n_ctx = 512;
|
||||
params.verbose_prompt = true;
|
||||
params.embedding = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
|
||||
|
||||
add_opt(common_arg(
|
||||
{"--embd-gte-small-default"},
|
||||
string_format("use default gte-small model (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "ggml-org/gte-small-Q8_0-GGUF";
|
||||
params.hf_file = "gte-small-q8_0.gguf";
|
||||
params.pooling_type = LLAMA_POOLING_TYPE_NONE;
|
||||
params.embd_normalize = 2;
|
||||
params.n_ctx = 512;
|
||||
params.verbose_prompt = true;
|
||||
params.embedding = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
|
||||
|
||||
return ctx_arg;
|
||||
}
|
||||
|
|
|
@ -33,6 +33,29 @@ struct chat_template_caps {
|
|||
bool requires_typed_content = false;
|
||||
};
|
||||
|
||||
struct chat_template_inputs {
|
||||
nlohmann::ordered_json messages;
|
||||
nlohmann::ordered_json tools;
|
||||
bool add_generation_prompt = true;
|
||||
nlohmann::ordered_json extra_context;
|
||||
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();
|
||||
};
|
||||
|
||||
struct chat_template_options {
|
||||
bool apply_polyfills = true;
|
||||
bool use_bos_token = true;
|
||||
bool use_eos_token = true;
|
||||
bool define_strftime_now = true;
|
||||
|
||||
bool polyfill_tools = true;
|
||||
bool polyfill_tool_call_examples = true;
|
||||
bool polyfill_tool_calls = true;
|
||||
bool polyfill_tool_responses = true;
|
||||
bool polyfill_system_role = true;
|
||||
bool polyfill_object_arguments = true;
|
||||
bool polyfill_typed_content = true;
|
||||
};
|
||||
|
||||
class chat_template {
|
||||
|
||||
private:
|
||||
|
@ -41,6 +64,7 @@ class chat_template {
|
|||
std::string bos_token_;
|
||||
std::string eos_token_;
|
||||
std::shared_ptr<minja::TemplateNode> template_root_;
|
||||
std::string tool_call_example_;
|
||||
|
||||
std::string try_raw_render(
|
||||
const nlohmann::ordered_json & messages,
|
||||
|
@ -49,7 +73,18 @@ class chat_template {
|
|||
const nlohmann::ordered_json & extra_context = nlohmann::ordered_json()) const
|
||||
{
|
||||
try {
|
||||
auto prompt = apply(messages, tools, add_generation_prompt, extra_context, /* adjust_inputs= */ false);
|
||||
chat_template_inputs inputs;
|
||||
inputs.messages = messages;
|
||||
inputs.tools = tools;
|
||||
inputs.add_generation_prompt = add_generation_prompt;
|
||||
inputs.extra_context = extra_context;
|
||||
// Use fixed date for tests
|
||||
inputs.now = std::chrono::system_clock::from_time_t(0);
|
||||
|
||||
chat_template_options opts;
|
||||
opts.apply_polyfills = false;
|
||||
|
||||
auto prompt = apply(inputs, opts);
|
||||
// fprintf(stderr, "try_raw_render: %s\n", prompt.c_str());
|
||||
return prompt;
|
||||
} catch (const std::exception & e) {
|
||||
|
@ -176,6 +211,58 @@ class chat_template {
|
|||
caps_.supports_tool_responses = contains(out, "Some response!");
|
||||
caps_.supports_tool_call_id = contains(out, "call_911_");
|
||||
}
|
||||
|
||||
try {
|
||||
if (!caps_.supports_tools) {
|
||||
const json user_msg {
|
||||
{"role", "user"},
|
||||
{"content", "Hey"},
|
||||
};
|
||||
const json args {
|
||||
{"arg1", "some_value"},
|
||||
};
|
||||
const json tool_call_msg {
|
||||
{"role", "assistant"},
|
||||
{"content", nullptr},
|
||||
{"tool_calls", json::array({
|
||||
{
|
||||
// TODO: detect if requires numerical id or fixed length == 6 like Nemo
|
||||
{"id", "call_1___"},
|
||||
{"type", "function"},
|
||||
{"function", {
|
||||
{"name", "tool_name"},
|
||||
{"arguments", (caps_.requires_object_arguments ? args : json(minja::Value(args).dump(-1, /* to_json= */ true)))},
|
||||
}},
|
||||
},
|
||||
})},
|
||||
};
|
||||
std::string prefix, full;
|
||||
{
|
||||
chat_template_inputs inputs;
|
||||
inputs.messages = json::array({user_msg});
|
||||
inputs.add_generation_prompt = true;
|
||||
prefix = apply(inputs);
|
||||
}
|
||||
{
|
||||
chat_template_inputs inputs;
|
||||
inputs.messages = json::array({user_msg, tool_call_msg});
|
||||
inputs.add_generation_prompt = false;
|
||||
full = apply(inputs);
|
||||
}
|
||||
|
||||
if (full.find(prefix) != 0) {
|
||||
if (prefix.rfind(eos_token_) == prefix.size() - eos_token_.size()) {
|
||||
prefix = prefix.substr(0, prefix.size() - eos_token_.size());
|
||||
}
|
||||
}
|
||||
if (full.find(prefix) != 0) {
|
||||
fprintf(stderr, "Failed to infer a tool call example (possible template bug)\n");
|
||||
}
|
||||
tool_call_example_ = full.substr(prefix.size());
|
||||
}
|
||||
} catch (const std::exception & e) {
|
||||
fprintf(stderr, "Failed to generate tool call example: %s\n", e.what());
|
||||
}
|
||||
}
|
||||
|
||||
const std::string & source() const { return source_; }
|
||||
|
@ -183,28 +270,72 @@ class chat_template {
|
|||
const std::string & eos_token() const { return eos_token_; }
|
||||
const chat_template_caps & original_caps() const { return caps_; }
|
||||
|
||||
// Deprecated, please use the form with chat_template_inputs and chat_template_options
|
||||
std::string apply(
|
||||
const nlohmann::ordered_json & messages,
|
||||
const nlohmann::ordered_json & tools,
|
||||
bool add_generation_prompt,
|
||||
const nlohmann::ordered_json & extra_context = nlohmann::ordered_json(),
|
||||
bool adjust_inputs = true) const
|
||||
bool apply_polyfills = true)
|
||||
{
|
||||
fprintf(stderr, "[%s] Deprecated!\n", __func__);
|
||||
chat_template_inputs inputs;
|
||||
inputs.messages = messages;
|
||||
inputs.tools = tools;
|
||||
inputs.add_generation_prompt = add_generation_prompt;
|
||||
inputs.extra_context = extra_context;
|
||||
inputs.now = std::chrono::system_clock::now();
|
||||
|
||||
chat_template_options opts;
|
||||
opts.apply_polyfills = apply_polyfills;
|
||||
|
||||
return apply(inputs, opts);
|
||||
}
|
||||
|
||||
std::string apply(
|
||||
const chat_template_inputs & inputs,
|
||||
const chat_template_options & opts = chat_template_options()) const
|
||||
{
|
||||
json actual_messages;
|
||||
|
||||
auto needs_adjustments = adjust_inputs && (false
|
||||
|| !caps_.supports_system_role
|
||||
|| !caps_.supports_tools
|
||||
|| !caps_.supports_tool_responses
|
||||
|| !caps_.supports_tool_calls
|
||||
|| caps_.requires_object_arguments
|
||||
|| caps_.requires_typed_content
|
||||
auto has_tools = inputs.tools.is_array() && !inputs.tools.empty();
|
||||
auto has_tool_calls = false;
|
||||
auto has_tool_responses = false;
|
||||
auto has_string_content = false;
|
||||
for (const auto & message : inputs.messages) {
|
||||
if (message.contains("tool_calls") && !message["tool_calls"].is_null()) {
|
||||
has_tool_calls = true;
|
||||
}
|
||||
if (message.contains("role") && message["role"] == "tool") {
|
||||
has_tool_responses = true;
|
||||
}
|
||||
if (message.contains("content") && message["content"].is_string()) {
|
||||
has_string_content = true;
|
||||
}
|
||||
}
|
||||
|
||||
auto polyfill_system_role = opts.polyfill_system_role && !caps_.supports_system_role;
|
||||
auto polyfill_tools = opts.polyfill_tools && has_tools && !caps_.supports_tools;
|
||||
auto polyfill_tool_call_example = polyfill_tools && opts.polyfill_tool_call_examples;
|
||||
auto polyfill_tool_calls = opts.polyfill_tool_calls && has_tool_calls && !caps_.supports_tool_calls;
|
||||
auto polyfill_tool_responses = opts.polyfill_tool_responses && has_tool_responses && !caps_.supports_tool_responses;
|
||||
auto polyfill_object_arguments = opts.polyfill_object_arguments && has_tool_calls && caps_.requires_object_arguments;
|
||||
auto polyfill_typed_content = opts.polyfill_typed_content && has_string_content && caps_.requires_typed_content;
|
||||
|
||||
auto needs_polyfills = opts.apply_polyfills && (false
|
||||
|| polyfill_system_role
|
||||
|| polyfill_tools
|
||||
|| polyfill_tool_calls
|
||||
|| polyfill_tool_responses
|
||||
|| polyfill_object_arguments
|
||||
|| polyfill_typed_content
|
||||
);
|
||||
if (needs_adjustments) {
|
||||
|
||||
if (needs_polyfills) {
|
||||
actual_messages = json::array();
|
||||
|
||||
auto add_message = [&](const json & msg) {
|
||||
if (caps_.requires_typed_content && msg.contains("content") && !msg.at("content").is_null() && msg.at("content").is_string()) {
|
||||
if (polyfill_typed_content && msg.contains("content") && !msg.at("content").is_null() && msg.at("content").is_string()) {
|
||||
actual_messages.push_back({
|
||||
{"role", msg.at("role")},
|
||||
{"content", {{
|
||||
|
@ -227,9 +358,17 @@ class chat_template {
|
|||
pending_system.clear();
|
||||
}
|
||||
};
|
||||
auto needs_tools_in_system = !tools.is_null() && tools.size() > 0 && !caps_.supports_tools;
|
||||
|
||||
for (const auto & message_ : needs_tools_in_system ? add_system(messages, "Available tools: " + tools.dump(2)) : messages) {
|
||||
json adjusted_messages;
|
||||
if (polyfill_tools) {
|
||||
adjusted_messages = add_system(inputs.messages,
|
||||
"You can call any of the following tools to satisfy the user's requests: " + minja::Value(inputs.tools).dump(2, /* to_json= */ true) +
|
||||
(!polyfill_tool_call_example || tool_call_example_.empty() ? "" : "\n\nExample tool call syntax:\n\n" + tool_call_example_));
|
||||
} else {
|
||||
adjusted_messages = inputs.messages;
|
||||
}
|
||||
|
||||
for (const auto & message_ : adjusted_messages) {
|
||||
auto message = message_;
|
||||
if (!message.contains("role") || !message.contains("content")) {
|
||||
throw std::runtime_error("message must have 'role' and 'content' fields: " + message.dump());
|
||||
|
@ -237,7 +376,7 @@ class chat_template {
|
|||
std::string role = message.at("role");
|
||||
|
||||
if (message.contains("tool_calls")) {
|
||||
if (caps_.requires_object_arguments || !caps_.supports_tool_calls) {
|
||||
if (polyfill_object_arguments || polyfill_tool_calls) {
|
||||
for (auto & tool_call : message.at("tool_calls")) {
|
||||
if (tool_call["type"] == "function") {
|
||||
auto & function = tool_call.at("function");
|
||||
|
@ -252,7 +391,7 @@ class chat_template {
|
|||
}
|
||||
}
|
||||
}
|
||||
if (!caps_.supports_tool_calls) {
|
||||
if (polyfill_tool_calls) {
|
||||
auto content = message.at("content");
|
||||
auto tool_calls = json::array();
|
||||
for (const auto & tool_call : message.at("tool_calls")) {
|
||||
|
@ -279,7 +418,7 @@ class chat_template {
|
|||
message.erase("tool_calls");
|
||||
}
|
||||
}
|
||||
if (!caps_.supports_tool_responses && role == "tool") {
|
||||
if (polyfill_tool_responses && role == "tool") {
|
||||
message["role"] = "user";
|
||||
auto obj = json {
|
||||
{"tool_response", {
|
||||
|
@ -296,7 +435,7 @@ class chat_template {
|
|||
message.erase("name");
|
||||
}
|
||||
|
||||
if (!message["content"].is_null() && !caps_.supports_system_role) {
|
||||
if (!message["content"].is_null() && polyfill_system_role) {
|
||||
std::string content = message.at("content");
|
||||
if (role == "system") {
|
||||
if (!pending_system.empty()) pending_system += "\n";
|
||||
|
@ -315,28 +454,36 @@ class chat_template {
|
|||
}
|
||||
add_message(message);
|
||||
}
|
||||
if (!caps_.supports_system_role) {
|
||||
flush_sys();
|
||||
}
|
||||
flush_sys();
|
||||
} else {
|
||||
actual_messages = messages;
|
||||
actual_messages = inputs.messages;
|
||||
}
|
||||
|
||||
auto context = minja::Context::make(json({
|
||||
{"messages", actual_messages},
|
||||
{"add_generation_prompt", add_generation_prompt},
|
||||
{"bos_token", bos_token_},
|
||||
{"eos_token", eos_token_},
|
||||
{"add_generation_prompt", inputs.add_generation_prompt},
|
||||
}));
|
||||
context->set("bos_token", opts.use_bos_token ? bos_token_ : "");
|
||||
context->set("eos_token", opts.use_eos_token ? eos_token_ : "");
|
||||
if (opts.define_strftime_now) {
|
||||
auto now = inputs.now;
|
||||
context->set("strftime_now", Value::callable([now](const std::shared_ptr<minja::Context> &, minja::ArgumentsValue & args) {
|
||||
args.expectArgs("strftime_now", {1, 1}, {0, 0});
|
||||
auto format = args.args[0].get<std::string>();
|
||||
|
||||
if (!tools.is_null()) {
|
||||
auto tools_val = minja::Value(tools);
|
||||
context->set("tools", tools_val);
|
||||
auto time = std::chrono::system_clock::to_time_t(now);
|
||||
auto local_time = *std::localtime(&time);
|
||||
std::ostringstream ss;
|
||||
ss << std::put_time(&local_time, format.c_str());
|
||||
return ss.str();
|
||||
}));
|
||||
}
|
||||
if (!extra_context.is_null()) {
|
||||
for (auto & kv : extra_context.items()) {
|
||||
minja::Value val(kv.value());
|
||||
context->set(kv.key(), val);
|
||||
if (!inputs.tools.is_null()) {
|
||||
context->set("tools", minja::Value(inputs.tools));
|
||||
}
|
||||
if (!inputs.extra_context.is_null()) {
|
||||
for (auto & kv : inputs.extra_context.items()) {
|
||||
context->set(kv.key(), minja::Value(kv.value()));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -353,7 +500,7 @@ class chat_template {
|
|||
std::string existing_system = messages_with_system.at(0).at("content");
|
||||
messages_with_system[0] = json {
|
||||
{"role", "system"},
|
||||
{"content", existing_system + "\n" + system_prompt},
|
||||
{"content", existing_system + "\n\n" + system_prompt},
|
||||
};
|
||||
} else {
|
||||
messages_with_system.insert(messages_with_system.begin(), json {
|
||||
|
|
|
@ -163,6 +163,28 @@ static void foreach_function(const json & tools, const std::function<void(const
|
|||
}
|
||||
}
|
||||
|
||||
static std::string apply(
|
||||
const common_chat_template & tmpl,
|
||||
const nlohmann::ordered_json & messages,
|
||||
const nlohmann::ordered_json & tools,
|
||||
bool add_generation_prompt,
|
||||
const nlohmann::ordered_json & extra_context = nlohmann::ordered_json())
|
||||
{
|
||||
minja::chat_template_inputs tmpl_inputs;
|
||||
tmpl_inputs.messages = messages;
|
||||
tmpl_inputs.tools = tools;
|
||||
tmpl_inputs.add_generation_prompt = add_generation_prompt;
|
||||
tmpl_inputs.extra_context = extra_context;
|
||||
// TODO: add flag to control date/time, if only for testing purposes.
|
||||
// tmpl_inputs.now = std::chrono::system_clock::now();
|
||||
|
||||
minja::chat_template_options tmpl_opts;
|
||||
tmpl_opts.use_bos_token = false;
|
||||
tmpl_opts.use_eos_token = false;
|
||||
|
||||
return tmpl.apply(tmpl_inputs, tmpl_opts);
|
||||
}
|
||||
|
||||
static common_chat_params common_chat_params_init_generic(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
|
||||
common_chat_params data;
|
||||
|
||||
|
@ -244,7 +266,7 @@ static common_chat_params common_chat_params_init_generic(const common_chat_temp
|
|||
inputs.messages,
|
||||
"Respond in JSON format, either with `tool_call` (a request to call tools) or with `response` reply to the user's request");
|
||||
|
||||
data.prompt = tmpl.apply(tweaked_messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.prompt = apply(tmpl, tweaked_messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.format = COMMON_CHAT_FORMAT_GENERIC;
|
||||
return data;
|
||||
}
|
||||
|
@ -310,7 +332,7 @@ static common_chat_params common_chat_params_init_mistral_nemo(const common_chat
|
|||
builder.add_rule("root", "\"[TOOL_CALLS]\" " + builder.add_schema("tool_calls", schema));
|
||||
}, grammar_options);
|
||||
data.grammar_triggers.push_back({"[TOOL_CALLS]", /* .at_start = */ true});
|
||||
data.prompt = tmpl.apply(inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.format = COMMON_CHAT_FORMAT_MISTRAL_NEMO;
|
||||
return data;
|
||||
}
|
||||
|
@ -360,12 +382,12 @@ static common_chat_params common_chat_params_init_command_r7b(const common_chat_
|
|||
"<|END_THINKING|>",
|
||||
"<|END_ACTION|>",
|
||||
};
|
||||
data.prompt = tmpl.apply(inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.format = COMMON_CHAT_FORMAT_COMMAND_R7B;
|
||||
return data;
|
||||
}
|
||||
static common_chat_msg common_chat_parse_command_r7b(const std::string & input) {
|
||||
static std::regex response_regex("<\\|START_RESPONSE\\|>(.*?)<\\|END_RESPONSE\\|>");
|
||||
static std::regex response_regex("<\\|START_RESPONSE\\|>([\\s\\S\\n\\r]*?)<\\|END_RESPONSE\\|>");
|
||||
static std::regex thought_action_regex("<\\|START_THINKING\\|>([\\s\\S\\n\\r]*?)<\\|END_THINKING\\|><\\|START_ACTION\\|>([\\s\\S\\n\\r]*?)<\\|END_ACTION\\|>");
|
||||
std::smatch match;
|
||||
|
||||
|
@ -477,7 +499,7 @@ static common_chat_params common_chat_params_init_llama_3_1_tool_calls(const com
|
|||
builder.add_rule("root", string_join(tool_rules, " | "));
|
||||
}, grammar_options);
|
||||
data.additional_stops.push_back("<|eom_id|>");
|
||||
data.prompt = tmpl.apply(inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt, {
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt, {
|
||||
{"tools_in_user_message", false},
|
||||
{"builtin_tools", builtin_tools.empty() ? json() : builtin_tools},
|
||||
});
|
||||
|
@ -542,7 +564,8 @@ static common_chat_params common_chat_params_init_deepseek_r1(const common_chat_
|
|||
};
|
||||
builder.add_rule("root", "\"<|tool▁calls▁begin|>\" (" + string_join(tool_rules, " | ") + ")" + (inputs.parallel_tool_calls ? "*" : "") + " space");
|
||||
}, grammar_options);
|
||||
data.prompt = tmpl.apply(inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
auto prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.prompt = prompt;
|
||||
data.format = COMMON_CHAT_FORMAT_DEEPSEEK_R1;
|
||||
return data;
|
||||
}
|
||||
|
@ -556,10 +579,10 @@ static common_chat_msg common_chat_parse_deepseek_r1(const std::string & input)
|
|||
static common_chat_params common_chat_params_init_firefunction_v2(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
|
||||
fprintf(stderr, "%s\n", __func__);
|
||||
common_chat_params data;
|
||||
data.prompt = tmpl.apply(inputs.messages, /* tools= */ nullptr, inputs.add_generation_prompt, {
|
||||
data.prompt = apply(tmpl, inputs.messages, /* tools= */ nullptr, inputs.add_generation_prompt, {
|
||||
{"datetime", "Jan 29 2025 13:00:00 GMT"},
|
||||
{"functions", json(inputs.tools.empty() ? "" : inputs.tools.dump(2))},
|
||||
}, /* adjust_inputs= */ false);
|
||||
});
|
||||
if (!inputs.tools.is_null() && !inputs.tools.empty()) {
|
||||
data.grammar_lazy = inputs.tool_choice != "required";
|
||||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||||
|
@ -603,7 +626,7 @@ static common_chat_params common_chat_params_init_functionary_v3_2(const common_
|
|||
// >>>all\nlet's call functions>>>fn1\n{"arg1": 1...}\n>>>fn2\n{"arg1": 1...}...
|
||||
// Using ">>>f1\n", ">>>f2\n"... as trigger words for the grammar
|
||||
common_chat_params data;
|
||||
data.prompt = tmpl.apply(inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.format = COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2;
|
||||
if (!inputs.tools.is_null() && !inputs.tools.empty()) {
|
||||
data.grammar_lazy = inputs.tool_choice != "required";
|
||||
|
@ -730,7 +753,7 @@ static common_chat_params common_chat_params_init_functionary_v3_1_llama_3_1(con
|
|||
data.grammar_triggers.push_back({"<function=", /* .at_start = */ false});
|
||||
}, grammar_options);
|
||||
|
||||
data.prompt = tmpl.apply(inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
// TODO: if (has_raw_python)
|
||||
data.format = COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1;
|
||||
return data;
|
||||
|
@ -785,7 +808,7 @@ static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat
|
|||
data.preserved_tokens = { "</tool_call>" };
|
||||
}, grammar_options);
|
||||
|
||||
data.prompt = tmpl.apply(inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.format = COMMON_CHAT_FORMAT_HERMES_2_PRO;
|
||||
return data;
|
||||
}
|
||||
|
@ -846,7 +869,7 @@ static common_chat_msg common_chat_parse_hermes_2_pro(const std::string & input)
|
|||
|
||||
static common_chat_params common_chat_params_init_without_tools(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
|
||||
common_chat_params data;
|
||||
data.prompt = tmpl.apply(inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||||
data.grammar_lazy = false;
|
||||
if (!inputs.json_schema.is_null()) {
|
||||
|
|
|
@ -1879,11 +1879,19 @@ std::string common_chat_format_example(const common_chat_template & tmpl, bool u
|
|||
return common_chat_apply_template(tmpl, msgs, true, use_jinja);
|
||||
}
|
||||
|
||||
#define CHATML_TEMPLATE_SRC \
|
||||
"{%- for message in messages -%}\n" \
|
||||
" {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>\n' -}}\n" \
|
||||
"{%- endfor -%}\n" \
|
||||
"{%- if add_generation_prompt -%}\n" \
|
||||
" {{- '<|im_start|>assistant\n' -}}\n" \
|
||||
"{%- endif -%}"
|
||||
|
||||
common_chat_templates common_chat_templates_from_model(const struct llama_model * model, const std::string & chat_template_override)
|
||||
{
|
||||
auto vocab = llama_model_get_vocab(model);
|
||||
std::string default_template_src = chat_template_override;
|
||||
std::string template_tool_use_src = chat_template_override;
|
||||
std::string default_template_src;
|
||||
std::string template_tool_use_src;
|
||||
|
||||
bool has_explicit_template = !chat_template_override.empty();
|
||||
if (chat_template_override.empty()) {
|
||||
auto str = llama_model_chat_template(model, /* name */ nullptr);
|
||||
|
@ -1896,21 +1904,17 @@ common_chat_templates common_chat_templates_from_model(const struct llama_model
|
|||
template_tool_use_src = str;
|
||||
has_explicit_template = true;
|
||||
}
|
||||
} else {
|
||||
default_template_src = chat_template_override;
|
||||
}
|
||||
if (default_template_src.empty() || default_template_src == "chatml") {
|
||||
if (!template_tool_use_src.empty()) {
|
||||
default_template_src = template_tool_use_src;
|
||||
} else {
|
||||
default_template_src = R"(
|
||||
{%- for message in messages -%}
|
||||
{{- "<|im_start|>" + message.role + "\n" + message.content + "<|im_end|>\n" -}}
|
||||
{%- endfor -%}
|
||||
{%- if add_generation_prompt -%}
|
||||
{{- "<|im_start|>assistant\n" -}}
|
||||
{%- endif -%}
|
||||
)";
|
||||
default_template_src = CHATML_TEMPLATE_SRC;
|
||||
}
|
||||
}
|
||||
auto vocab = llama_model_get_vocab(model);
|
||||
const auto get_token = [&](llama_token token, const char * name, const char * jinja_variable_name) {
|
||||
if (token == LLAMA_TOKEN_NULL) {
|
||||
if (default_template_src.find(jinja_variable_name) != std::string::npos
|
||||
|
@ -1924,13 +1928,22 @@ common_chat_templates common_chat_templates_from_model(const struct llama_model
|
|||
};
|
||||
auto token_bos = get_token(llama_vocab_bos(vocab), "BOS", "bos_token");
|
||||
auto token_eos = get_token(llama_vocab_eos(vocab), "EOS", "eos_token");
|
||||
return {
|
||||
has_explicit_template,
|
||||
std::make_unique<minja::chat_template>(default_template_src, token_bos, token_eos),
|
||||
template_tool_use_src.empty()
|
||||
? nullptr
|
||||
: std::make_unique<minja::chat_template>(template_tool_use_src, token_bos, token_eos)
|
||||
};
|
||||
try {
|
||||
return {
|
||||
has_explicit_template,
|
||||
std::make_unique<minja::chat_template>(default_template_src, token_bos, token_eos),
|
||||
template_tool_use_src.empty()
|
||||
? nullptr
|
||||
: std::make_unique<minja::chat_template>(template_tool_use_src, token_bos, token_eos),
|
||||
};
|
||||
} catch (const std::exception & e) {
|
||||
LOG_ERR("%s: failed to parse chat template: %s\n", __func__, e.what());
|
||||
return {
|
||||
has_explicit_template,
|
||||
std::make_unique<minja::chat_template>(CHATML_TEMPLATE_SRC, token_bos, token_eos),
|
||||
nullptr,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
|
|
|
@ -254,10 +254,10 @@ llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab, const char * g
|
|||
};
|
||||
}
|
||||
|
||||
return new llama_sampler{
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_llg_i,
|
||||
/* .ctx = */ ctx,
|
||||
};
|
||||
/* .ctx = */ ctx
|
||||
);
|
||||
}
|
||||
|
||||
#else
|
||||
|
|
|
@ -2194,7 +2194,7 @@ private:
|
|||
}
|
||||
|
||||
TemplateTokenVector tokenize() {
|
||||
static std::regex comment_tok(R"(\{#([-~]?)(.*?)([-~]?)#\})");
|
||||
static std::regex comment_tok(R"(\{#([-~]?)([\s\S\r\n]*?)([-~]?)#\})");
|
||||
static std::regex expr_open_regex(R"(\{\{([-~])?)");
|
||||
static std::regex block_open_regex(R"(^\{%([-~])?[\s\n\r]*)");
|
||||
static std::regex block_keyword_tok(R"((if|else|elif|endif|for|endfor|generation|endgeneration|set|endset|block|endblock|macro|endmacro|filter|endfilter|break|continue)\b)");
|
||||
|
@ -2615,6 +2615,7 @@ inline std::shared_ptr<Context> Context::builtins() {
|
|||
}));
|
||||
globals.set("join", simple_function("join", { "items", "d" }, [](const std::shared_ptr<Context> &, Value & args) {
|
||||
auto do_join = [](Value & items, const std::string & sep) {
|
||||
if (!items.is_array()) throw std::runtime_error("object is not iterable: " + items.dump());
|
||||
std::ostringstream oss;
|
||||
auto first = true;
|
||||
for (size_t i = 0, n = items.size(); i < n; ++i) {
|
||||
|
@ -2695,6 +2696,10 @@ inline std::shared_ptr<Context> Context::builtins() {
|
|||
return Value::callable([=](const std::shared_ptr<Context> & context, ArgumentsValue & args) {
|
||||
args.expectArgs(is_select ? "select" : "reject", {2, (std::numeric_limits<size_t>::max)()}, {0, 0});
|
||||
auto & items = args.args[0];
|
||||
if (items.is_null())
|
||||
return Value::array();
|
||||
if (!items.is_array()) throw std::runtime_error("object is not iterable: " + items.dump());
|
||||
|
||||
auto filter_fn = context->get(args.args[1]);
|
||||
if (filter_fn.is_null()) throw std::runtime_error("Undefined filter: " + args.args[1].dump());
|
||||
|
||||
|
@ -2772,6 +2777,7 @@ inline std::shared_ptr<Context> Context::builtins() {
|
|||
auto & items = args.args[0];
|
||||
if (items.is_null())
|
||||
return Value::array();
|
||||
if (!items.is_array()) throw std::runtime_error("object is not iterable: " + items.dump());
|
||||
auto attr_name = args.args[1].get<std::string>();
|
||||
|
||||
bool has_test = false;
|
||||
|
|
|
@ -125,21 +125,66 @@ For detailed info, please refer to [llama.cpp for SYCL](./backend/SYCL.md).
|
|||
|
||||
## CUDA
|
||||
|
||||
This provides GPU acceleration using an NVIDIA GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from the [NVIDIA developer site](https://developer.nvidia.com/cuda-downloads).
|
||||
This provides GPU acceleration using an NVIDIA GPU. Make sure to have the [CUDA toolkit](https://developer.nvidia.com/cuda-toolkit) installed.
|
||||
|
||||
If you are using Fedora (using Fedora Workstation, or an 'Atomic' variant such as Silverblue), or would like to set up CUDA in a toolbox, please consider our [Fedora CUDA guide](./cuda-fedora.md). Unfortunately, the process is not as simple as one might expect.
|
||||
#### Download directly from NVIDIA
|
||||
You may find the official downloads here: [NVIDIA developer site](https://developer.nvidia.com/cuda-downloads).
|
||||
|
||||
- Using `CMake`:
|
||||
|
||||
```bash
|
||||
cmake -B build -DGGML_CUDA=ON
|
||||
cmake --build build --config Release
|
||||
```
|
||||
#### Compile and run inside a Fedora Toolbox Container
|
||||
We also have a [guide](./cuda-fedora.md) for setting up CUDA toolkit in a Fedora [toolbox container](https://containertoolbx.org/).
|
||||
|
||||
The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used.
|
||||
**Recommended for:**
|
||||
|
||||
- ***Particularly*** *convenient* for users of [Atomic Desktops for Fedora](https://fedoraproject.org/atomic-desktops/); such as: [Silverblue](https://fedoraproject.org/atomic-desktops/silverblue/) and [Kinoite](https://fedoraproject.org/atomic-desktops/kinoite/).
|
||||
- Toolbox is installed by default: [Fedora Workstation](https://fedoraproject.org/workstation/) or [Fedora KDE Plasma Desktop](https://fedoraproject.org/spins/kde).
|
||||
- *Optionally* toolbox packages are available: [Arch Linux](https://archlinux.org/), [Red Hat Enterprise Linux >= 8.5](https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux), or [Ubuntu](https://ubuntu.com/download)
|
||||
|
||||
|
||||
### Compilation
|
||||
```bash
|
||||
cmake -B build -DGGML_CUDA=ON
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
### Override Compute Capability Specifications
|
||||
|
||||
If `nvcc` cannot detect your gpu, you may get compile-warnings such as:
|
||||
```text
|
||||
nvcc warning : Cannot find valid GPU for '-arch=native', default arch is used
|
||||
```
|
||||
|
||||
To override the `native` GPU detection:
|
||||
|
||||
#### 1. Take note of the `Compute Capability` of your NVIDIA devices: ["CUDA: Your GPU Compute > Capability"](https://developer.nvidia.com/cuda-gpus).
|
||||
|
||||
```text
|
||||
GeForce RTX 4090 8.9
|
||||
GeForce RTX 3080 Ti 8.6
|
||||
GeForce RTX 3070 8.6
|
||||
```
|
||||
|
||||
#### 2. Manually list each varying `Compute Capability` in the `CMAKE_CUDA_ARCHITECTURES` list.
|
||||
|
||||
```bash
|
||||
cmake -B build -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES="86;89"
|
||||
```
|
||||
|
||||
### Runtime CUDA environmental variables
|
||||
|
||||
You may set the [cuda environmental variables](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) at runtime.
|
||||
|
||||
```bash
|
||||
# Use `CUDA_VISIBLE_DEVICES` to hide the first compute device.
|
||||
CUDA_VISIBLE_DEVICES="-0" ./build/bin/llama-server --model /srv/models/llama.gguf
|
||||
```
|
||||
|
||||
### Unified Memory
|
||||
|
||||
The environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1` can be used to enable unified memory in Linux. This allows swapping to system RAM instead of crashing when the GPU VRAM is exhausted. In Windows this setting is available in the NVIDIA control panel as `System Memory Fallback`.
|
||||
|
||||
### Performance Tuning
|
||||
|
||||
The following compilation options are also available to tweak performance:
|
||||
|
||||
| Option | Legal values | Default | Description |
|
||||
|
|
|
@ -1,17 +1,16 @@
|
|||
# Setting Up CUDA on Fedora
|
||||
|
||||
In this guide we setup [Nvidia CUDA](https://docs.nvidia.com/cuda/) in a toolbox container. This guide is applicable for:
|
||||
|
||||
- [Fedora Workstation](https://fedoraproject.org/workstation/)
|
||||
- [Atomic Desktops for Fedora](https://fedoraproject.org/atomic-desktops/)
|
||||
- [Fedora Spins](https://fedoraproject.org/spins)
|
||||
- [Other Distributions](https://containertoolbx.org/distros/), including `Red Hat Enterprise Linux >= 8.`, `Arch Linux`, and `Ubuntu`.
|
||||
|
||||
- [Other Distributions](https://containertoolbx.org/distros/), including `Red Hat Enterprise Linux >= 8.5`, `Arch Linux`, and `Ubuntu`.
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [Prerequisites](#prerequisites)
|
||||
- [Monitoring NVIDIA CUDA Repositories](#monitoring-nvidia-cuda-repositories)
|
||||
- [Using the Fedora 39 CUDA Repository](#using-the-fedora-39-cuda-repository)
|
||||
- [Using the Fedora 41 CUDA Repository](#using-the-fedora-41-cuda-repository)
|
||||
- [Creating a Fedora Toolbox Environment](#creating-a-fedora-toolbox-environment)
|
||||
- [Installing Essential Development Tools](#installing-essential-development-tools)
|
||||
- [Adding the CUDA Repository](#adding-the-cuda-repository)
|
||||
|
@ -29,44 +28,33 @@ In this guide we setup [Nvidia CUDA](https://docs.nvidia.com/cuda/) in a toolbox
|
|||
## Prerequisites
|
||||
|
||||
- **Toolbox Installed on the Host System** `Fedora Silverblue` and `Fedora Workstation` both have toolbox by default, other distributions may need to install the [toolbox package](https://containertoolbx.org/install/).
|
||||
- **NVIDIA Drivers and Graphics Card installed on Host System (optional)** To run CUDA program, such as `llama.cpp`, the host should be setup to access your NVIDIA hardware. Fedora Hosts can use the [RPM Fusion Repository](https://rpmfusion.org/Howto/NVIDIA).
|
||||
- **NVIDIA Drivers and Graphics Card installed on Host System (recommended)** To run CUDA program, such as `llama.cpp`, the host should be setup to access your NVIDIA hardware. Fedora Hosts can use the [RPM Fusion Repository](https://rpmfusion.org/Howto/NVIDIA).
|
||||
- **Internet connectivity** to download packages.
|
||||
|
||||
### Monitoring NVIDIA CUDA Repositories
|
||||
### Using the Fedora 41 CUDA Repository
|
||||
|
||||
Before proceeding, it is advisable to check if NVIDIA has updated their CUDA repositories for your Fedora version. NVIDIA's repositories can be found at:
|
||||
The latest release is 41.
|
||||
|
||||
- [Fedora 40 CUDA Repository](https://developer.download.nvidia.com/compute/cuda/repos/fedora40/x86_64/)
|
||||
- [Fedora 41 CUDA Repository](https://developer.download.nvidia.com/compute/cuda/repos/fedora41/x86_64/)
|
||||
|
||||
As of the latest update, these repositories do not contain the `cuda` meta-package or are missing essential components.
|
||||
|
||||
### Using the Fedora 39 CUDA Repository
|
||||
|
||||
Since the newer repositories are incomplete, we'll use the Fedora 39 repository:
|
||||
|
||||
- [Fedora 39 CUDA Repository](https://developer.download.nvidia.com/compute/cuda/repos/fedora39/x86_64/)
|
||||
|
||||
**Note:** Fedora 39 is no longer maintained, so we recommend using a toolbox environment to prevent system conflicts.
|
||||
**Note:** We recommend using a toolbox environment to prevent system conflicts.
|
||||
|
||||
## Creating a Fedora Toolbox Environment
|
||||
|
||||
This guide focuses on Fedora hosts, but with small adjustments, it can work for other hosts. Using a Fedora 39 toolbox allows us to install the necessary packages without affecting the host system.
|
||||
This guide focuses on Fedora hosts, but with small adjustments, it can work for other hosts. Using the Fedora Toolbox allows us to install the necessary packages without affecting the host system.
|
||||
|
||||
**Note:** Toolbox is available for other systems, and even without Toolbox, it is possible to use Podman or Docker.
|
||||
|
||||
We do not recommend installing on the host system, as Fedora 39 is out-of-maintenance, and instead you should upgrade to a maintained version of Fedora for your host.
|
||||
|
||||
1. **Create a Fedora 39 Toolbox:**
|
||||
1. **Create a Fedora 41 Toolbox:**
|
||||
|
||||
```bash
|
||||
toolbox create --image registry.fedoraproject.org/fedora-toolbox:39 --container fedora-toolbox-39-cuda
|
||||
toolbox create --image registry.fedoraproject.org/fedora-toolbox:41 --container fedora-toolbox-41-cuda
|
||||
```
|
||||
|
||||
2. **Enter the Toolbox:**
|
||||
|
||||
```bash
|
||||
toolbox enter --container fedora-toolbox-39-cuda
|
||||
toolbox enter --container fedora-toolbox-41-cuda
|
||||
```
|
||||
|
||||
Inside the toolbox, you have root privileges and can install packages without affecting the host system.
|
||||
|
@ -85,7 +73,7 @@ We do not recommend installing on the host system, as Fedora 39 is out-of-mainte
|
|||
sudo dnf install vim-default-editor --allowerasing
|
||||
```
|
||||
|
||||
The `--allowerasing` flag resolves any package conflicts.
|
||||
The `--allowerasing` flag will allow the removal of the conflicting `nano-default-editor` package.
|
||||
|
||||
3. **Install Development Tools and Libraries:**
|
||||
|
||||
|
@ -100,7 +88,7 @@ We do not recommend installing on the host system, as Fedora 39 is out-of-mainte
|
|||
Add the NVIDIA CUDA repository to your DNF configuration:
|
||||
|
||||
```bash
|
||||
sudo dnf config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/fedora39/x86_64/cuda-fedora39.repo
|
||||
sudo dnf config-manager addrepo --from-repofile=https://developer.download.nvidia.com/compute/cuda/repos/fedora41/x86_64/cuda-fedora41.repo
|
||||
```
|
||||
|
||||
After adding the repository, synchronize the package manager again:
|
||||
|
@ -109,106 +97,62 @@ After adding the repository, synchronize the package manager again:
|
|||
sudo dnf distro-sync
|
||||
```
|
||||
|
||||
## Installing `nvidia-driver-libs`
|
||||
## Installing `nvidia-driver-libs` and `nvidia-driver-cuda-libs`
|
||||
|
||||
Attempt to install `nvidia-driver-libs`:
|
||||
We need to detect if the host is supplying the [NVIDIA driver libraries into the toolbox](https://github.com/containers/toolbox/blob/main/src/pkg/nvidia/nvidia.go).
|
||||
|
||||
```bash
|
||||
sudo dnf install nvidia-driver-libs
|
||||
ls -la /usr/lib64/libcuda.so.1
|
||||
```
|
||||
|
||||
**Explanation:**
|
||||
|
||||
- `nvidia-driver-libs` contains necessary NVIDIA driver libraries required by CUDA.
|
||||
- This step might fail due to conflicts with existing NVIDIA drivers on the host system.
|
||||
- `nvidia-driver-libs` and `nvidia-driver-cuda-libs` contains necessary NVIDIA driver libraries required by CUDA,
|
||||
on hosts with NVIDIA drivers installed the Fedora Container will supply the host libraries.
|
||||
|
||||
## Manually Resolving Package Conflicts
|
||||
### Install Nvidia Driver Libraries on Guest (if `libcuda.so.1` was NOT found).
|
||||
|
||||
```bash
|
||||
sudo dnf install nvidia-driver-libs nvidia-driver-cuda-libs
|
||||
```
|
||||
|
||||
### Manually Updating the RPM database for host-supplied NVIDIA drivers (if `libcuda.so.1` was found).
|
||||
|
||||
If the installation fails due to conflicts, we'll manually download and install the required packages, excluding conflicting files.
|
||||
|
||||
### 1. Download the `nvidia-driver-libs` RPM
|
||||
#### 1. Download `nvidia-driver-libs` and `nvidia-driver-cuda-libs` RPM's (with dependencies)
|
||||
|
||||
```bash
|
||||
sudo dnf download --arch x86_64 nvidia-driver-libs
|
||||
sudo dnf download --destdir=/tmp/nvidia-driver-libs --resolve --arch x86_64 nvidia-driver-libs nvidia-driver-cuda-libs
|
||||
```
|
||||
|
||||
You should see a file similar to:
|
||||
|
||||
```
|
||||
nvidia-driver-libs-560.35.05-1.fc39.x86_64.rpm
|
||||
```
|
||||
|
||||
### 2. Attempt to Install the RPM
|
||||
#### 2. Update the RPM database to assume the installation of these packages.
|
||||
|
||||
```bash
|
||||
sudo dnf install nvidia-driver-libs-560.35.05-1.fc39.x86_64.rpm
|
||||
```
|
||||
|
||||
**Expected Error:**
|
||||
|
||||
Installation may fail with errors pointing to conflicts with `egl-gbm` and `egl-wayland`.
|
||||
|
||||
**Note: It is important to carefully read the error messages to identify the exact paths that need to be excluded.**
|
||||
|
||||
### 3. Download Dependencies
|
||||
|
||||
```bash
|
||||
sudo dnf download --arch x86_64 egl-gbm egl-wayland
|
||||
```
|
||||
|
||||
### 4. Install `egl-gbm` with Excluded Paths
|
||||
|
||||
Exclude conflicting files during installation:
|
||||
|
||||
```bash
|
||||
sudo rpm --install --verbose --hash \
|
||||
--excludepath=/usr/lib64/libnvidia-egl-gbm.so.1.1.2 \
|
||||
--excludepath=/usr/share/egl/egl_external_platform.d/15_nvidia_gbm.json \
|
||||
egl-gbm-1.1.2^20240919gitb24587d-3.fc39.x86_64.rpm
|
||||
```
|
||||
|
||||
**Explanation:**
|
||||
|
||||
- The `--excludepath` option skips installing files that conflict with existing files.
|
||||
- Adjust the paths based on the error messages you receive.
|
||||
|
||||
### 5. Install `egl-wayland` with Excluded Paths
|
||||
|
||||
```bash
|
||||
sudo rpm --install --verbose --hash \
|
||||
--excludepath=/usr/share/egl/egl_external_platform.d/10_nvidia_wayland.json \
|
||||
egl-wayland-1.1.17^20241118giteeb29e1-5.fc39.x86_64.rpm
|
||||
```
|
||||
|
||||
### 6. Install `nvidia-driver-libs` with Excluded Paths
|
||||
|
||||
```bash
|
||||
sudo rpm --install --verbose --hash \
|
||||
--excludepath=/usr/share/glvnd/egl_vendor.d/10_nvidia.json \
|
||||
--excludepath=/usr/share/nvidia/nvoptix.bin \
|
||||
nvidia-driver-libs-560.35.05-1.fc39.x86_64.rpm
|
||||
sudo rpm --install --verbose --hash --justdb /tmp/nvidia-driver-libs/*
|
||||
```
|
||||
|
||||
**Note:**
|
||||
|
||||
- Replace the paths with the ones causing conflicts in your installation if they differ.
|
||||
- The `--verbose` and `--hash` options provide detailed output during installation.
|
||||
- The `--justdb` option only updates the RPM database, without touching the filesystem.
|
||||
|
||||
## Finalizing the Installation of `nvidia-driver-libs`
|
||||
#### Finalizing the Installation of `nvidia-driver-libs` and `nvidia-driver-cuda-libs`
|
||||
|
||||
After manually installing the dependencies, run:
|
||||
|
||||
```bash
|
||||
sudo dnf install nvidia-driver-libs
|
||||
sudo dnf install nvidia-driver-libs nvidia-driver-cuda-libs
|
||||
```
|
||||
|
||||
You should receive a message indicating the package is already installed:
|
||||
|
||||
```
|
||||
Package nvidia-driver-libs-3:560.35.05-1.fc39.x86_64 is already installed.
|
||||
Dependencies resolved.
|
||||
Updating and loading repositories:
|
||||
Repositories loaded.
|
||||
Package "nvidia-driver-libs-3:570.86.10-1.fc41.x86_64" is already installed.
|
||||
Package "nvidia-driver-cuda-libs-3:570.86.10-1.fc41.x86_64" is already installed.
|
||||
|
||||
Nothing to do.
|
||||
Complete!
|
||||
```
|
||||
|
||||
## Installing the CUDA Meta-Package
|
||||
|
@ -233,7 +177,7 @@ To use CUDA, add its binary directory to your system's `PATH`.
|
|||
|
||||
**Explanation:**
|
||||
|
||||
- We add to `/etc/profile.d/` as the `/etc/` folder is unique to this particular container, and is not shared with other containers or the host system.
|
||||
- We add to `/etc/profile.d/` as the `/etc/` folder is unique to this particular container, and is not shared with other containers or the host system.
|
||||
- The backslash `\` before `$PATH` ensures the variable is correctly written into the script.
|
||||
|
||||
2. **Make the Script Executable:**
|
||||
|
@ -262,26 +206,33 @@ You should see output similar to:
|
|||
|
||||
```
|
||||
nvcc: NVIDIA (R) Cuda compiler driver
|
||||
Copyright (c) 2005-2024 NVIDIA Corporation
|
||||
Built on Tue_Oct_29_23:50:19_PDT_2024
|
||||
Cuda compilation tools, release 12.6, V12.6.85
|
||||
Build cuda_12.6.r12.6/compiler.35059454_0
|
||||
Copyright (c) 2005-2025 NVIDIA Corporation
|
||||
Built on Wed_Jan_15_19:20:09_PST_2025
|
||||
Cuda compilation tools, release 12.8, V12.8.61
|
||||
Build cuda_12.8.r12.8/compiler.35404655_0
|
||||
```
|
||||
|
||||
This output confirms that the CUDA compiler is accessible and indicates the installed version.
|
||||
|
||||
## Conclusion
|
||||
|
||||
You have successfully set up CUDA on Fedora within a toolbox environment using the Fedora 39 CUDA repository. By manually resolving package conflicts and configuring the environment, you can develop CUDA applications without affecting your host system.
|
||||
You have successfully set up CUDA on Fedora within a toolbox environment using the Fedora 41 CUDA repository. By manually updating the RPM db and configuring the environment, you can develop CUDA applications without affecting your host system.
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
- **Installation Failures:**
|
||||
- If you encounter errors during installation, carefully read the error messages. They often indicate conflicting files or missing dependencies.
|
||||
- Use the `--excludepath` option with `rpm` to exclude conflicting files during manual installations.
|
||||
|
||||
- **Driver Conflicts:**
|
||||
- Since the host system may already have NVIDIA drivers installed, conflicts can arise. Using the toolbox environment helps isolate these issues.
|
||||
- If you encounter errors during installation, carefully read the error messages. They often indicate conflicting files or missing dependencies.
|
||||
- You may use the `--excludepath` option with `rpm` to exclude conflicting files during manual RPM installations.
|
||||
|
||||
- **Rebooting the Container:**
|
||||
|
||||
- Sometimes there may be a bug in the NVIDIA driver host passthrough (such as missing a shared library). Rebooting the container may solve this issue:
|
||||
|
||||
```bash
|
||||
# on the host system
|
||||
podman container restart --all
|
||||
```
|
||||
|
||||
- **Environment Variables Not Set:**
|
||||
- If `nvcc` is not found after installation, ensure that `/usr/local/cuda/bin` is in your `PATH`.
|
||||
|
@ -291,10 +242,12 @@ You have successfully set up CUDA on Fedora within a toolbox environment using t
|
|||
## Additional Notes
|
||||
|
||||
- **Updating CUDA in the Future:**
|
||||
|
||||
- Keep an eye on the official NVIDIA repositories for updates to your Fedora version.
|
||||
- When an updated repository becomes available, adjust your `dnf` configuration accordingly.
|
||||
|
||||
- **Building `llama.cpp`:**
|
||||
|
||||
- With CUDA installed, you can follow these [build instructions for `llama.cpp`](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md) to compile it with CUDA support.
|
||||
- Ensure that any CUDA-specific build flags or paths are correctly set in your build configuration.
|
||||
|
||||
|
|
|
@ -31,6 +31,11 @@ defer {
|
|||
llama_model_free(model)
|
||||
}
|
||||
|
||||
guard let vocab = llama_model_get_vocab(model) else {
|
||||
print("Failed to get vocab")
|
||||
exit(1)
|
||||
}
|
||||
|
||||
var tokens = tokenize(text: prompt, add_bos: true)
|
||||
|
||||
let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel)
|
||||
|
@ -41,7 +46,7 @@ context_params.n_batch = UInt32(max(n_len, n_parallel))
|
|||
context_params.n_threads = 8
|
||||
context_params.n_threads_batch = 8
|
||||
|
||||
let context = llama_new_context_with_model(model, context_params)
|
||||
let context = llama_init_from_model(model, context_params)
|
||||
guard context != nil else {
|
||||
print("Failed to initialize context")
|
||||
exit(1)
|
||||
|
@ -141,7 +146,7 @@ while n_cur <= n_len {
|
|||
let new_token_id = llama_sampler_sample(smpl, context, i_batch[i])
|
||||
|
||||
// is it an end of stream? -> mark the stream as finished
|
||||
if llama_vocab_is_eog(model, new_token_id) || n_cur == n_len {
|
||||
if llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_len {
|
||||
i_batch[i] = -1
|
||||
// print("")
|
||||
if n_parallel > 1 {
|
||||
|
@ -207,7 +212,7 @@ private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
|
|||
let utf8Count = text.utf8.count
|
||||
let n_tokens = utf8Count + (add_bos ? 1 : 0)
|
||||
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
|
||||
let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, /*special tokens*/ false)
|
||||
let tokenCount = llama_tokenize(vocab, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, /*special tokens*/ false)
|
||||
var swiftTokens: [llama_token] = []
|
||||
for i in 0 ..< tokenCount {
|
||||
swiftTokens.append(tokens[Int(i)])
|
||||
|
@ -218,12 +223,12 @@ private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
|
|||
|
||||
private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? {
|
||||
var result = [CChar](repeating: 0, count: 8)
|
||||
let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count), 0, false)
|
||||
let nTokens = llama_token_to_piece(vocab, token, &result, Int32(result.count), 0, false)
|
||||
if nTokens < 0 {
|
||||
let actualTokensCount = -Int(nTokens)
|
||||
result = .init(repeating: 0, count: actualTokensCount)
|
||||
let check = llama_token_to_piece(
|
||||
model,
|
||||
vocab,
|
||||
token,
|
||||
&result,
|
||||
Int32(result.count),
|
||||
|
|
|
@ -24,6 +24,7 @@ func llama_batch_add(_ batch: inout llama_batch, _ id: llama_token, _ pos: llama
|
|||
actor LlamaContext {
|
||||
private var model: OpaquePointer
|
||||
private var context: OpaquePointer
|
||||
private var vocab: OpaquePointer
|
||||
private var sampling: UnsafeMutablePointer<llama_sampler>
|
||||
private var batch: llama_batch
|
||||
private var tokens_list: [llama_token]
|
||||
|
@ -47,6 +48,7 @@ actor LlamaContext {
|
|||
self.sampling = llama_sampler_chain_init(sparams)
|
||||
llama_sampler_chain_add(self.sampling, llama_sampler_init_temp(0.4))
|
||||
llama_sampler_chain_add(self.sampling, llama_sampler_init_dist(1234))
|
||||
vocab = llama_model_get_vocab(model)
|
||||
}
|
||||
|
||||
deinit {
|
||||
|
@ -79,7 +81,7 @@ actor LlamaContext {
|
|||
ctx_params.n_threads = Int32(n_threads)
|
||||
ctx_params.n_threads_batch = Int32(n_threads)
|
||||
|
||||
let context = llama_new_context_with_model(model, ctx_params)
|
||||
let context = llama_init_from_model(model, ctx_params)
|
||||
guard let context else {
|
||||
print("Could not load context!")
|
||||
throw LlamaError.couldNotInitializeContext
|
||||
|
@ -151,7 +153,7 @@ actor LlamaContext {
|
|||
|
||||
new_token_id = llama_sampler_sample(sampling, context, batch.n_tokens - 1)
|
||||
|
||||
if llama_vocab_is_eog(model, new_token_id) || n_cur == n_len {
|
||||
if llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_len {
|
||||
print("\n")
|
||||
is_done = true
|
||||
let new_token_str = String(cString: temporary_invalid_cchars + [0])
|
||||
|
@ -297,7 +299,7 @@ actor LlamaContext {
|
|||
let utf8Count = text.utf8.count
|
||||
let n_tokens = utf8Count + (add_bos ? 1 : 0) + 1
|
||||
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
|
||||
let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, false)
|
||||
let tokenCount = llama_tokenize(vocab, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, false)
|
||||
|
||||
var swiftTokens: [llama_token] = []
|
||||
for i in 0..<tokenCount {
|
||||
|
@ -316,7 +318,7 @@ actor LlamaContext {
|
|||
defer {
|
||||
result.deallocate()
|
||||
}
|
||||
let nTokens = llama_token_to_piece(model, token, result, 8, 0, false)
|
||||
let nTokens = llama_token_to_piece(vocab, token, result, 8, 0, false)
|
||||
|
||||
if nTokens < 0 {
|
||||
let newResult = UnsafeMutablePointer<Int8>.allocate(capacity: Int(-nTokens))
|
||||
|
@ -324,7 +326,7 @@ actor LlamaContext {
|
|||
defer {
|
||||
newResult.deallocate()
|
||||
}
|
||||
let nNewTokens = llama_token_to_piece(model, token, newResult, -nTokens, 0, false)
|
||||
let nNewTokens = llama_token_to_piece(vocab, token, newResult, -nTokens, 0, false)
|
||||
let bufferPointer = UnsafeBufferPointer(start: newResult, count: Int(nNewTokens))
|
||||
return Array(bufferPointer)
|
||||
} else {
|
||||
|
|
|
@ -50,3 +50,10 @@ set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-qwen2vl-cli)
|
|||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
|
||||
set(TARGET llama-llava-clip-quantize-cli)
|
||||
add_executable(${TARGET} clip-quantize-cli.cpp)
|
||||
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-llava-clip-quantize-cli)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
|
|
44
examples/llava/README-quantize.md
Normal file
44
examples/llava/README-quantize.md
Normal file
|
@ -0,0 +1,44 @@
|
|||
# Quantizing CLIP Visual Projector
|
||||
|
||||
This is the tool for quantizing the CLIP visual projector model. Quantization reduces the precision of the model's weights, which can significantly decrease the model size and improve inference speed, often with minimal impact on performance.
|
||||
|
||||
## Usage
|
||||
|
||||
To quantize a CLIP visual projector model, use the following command:
|
||||
|
||||
```sh
|
||||
./bin/llama-llava-clip-quantize-cli /path/to/ggml-model-f32.gguf /path/to/ggml-model-quantized.gguf <type>
|
||||
```
|
||||
|
||||
After the quantization, the visual projector can be used freely with the existing LLAVA cli (LLAVA, Qwen2VL, etc).
|
||||
|
||||
### Arguments
|
||||
|
||||
- `/path/to/ggml-model-f32.gguf`: The path to the input model file in FP32 or FP16 format.
|
||||
- `/path/to/ggml-model-quantized.gguf`: The path where the quantized model will be saved.
|
||||
- `<type>`: The quantization type to apply. This should be an integer corresponding to one of the quantization types defined in the `enum ggml_type`.
|
||||
|
||||
### Quantization Types
|
||||
|
||||
The following quantization types are supported, based on the `enum ggml_type` definition:
|
||||
|
||||
- `2` - `q4_0`: 4-bit quantization with a single scale value.
|
||||
- `3` - `q4_1`: 4-bit quantization with a separate scale value for each block.
|
||||
- `6` - `q5_0`: 5-bit quantization with a single scale value.
|
||||
- `7` - `q5_1`: 5-bit quantization with a separate scale value for each block.
|
||||
- `8` - `q8_0`: 8-bit quantization with a single scale value.
|
||||
|
||||
### Example
|
||||
|
||||
To quantize a model using the `q4_0` quantization type, you would run:
|
||||
|
||||
```sh
|
||||
./bin/llama-llava-clip-quantize-cli /path/to/ggml-model-f32.gguf /path/to/ggml-model-quantized.gguf 2
|
||||
```
|
||||
|
||||
This command will generate a quantized model at `/path/to/ggml-model-quantized.gguf` using the `q4_0` quantization method.
|
||||
|
||||
## Notes
|
||||
|
||||
- Quantization can lead to a loss in model accuracy, depending on the chosen quantization type. It is recommended to evaluate the quantized model's performance on your specific task to ensure it meets your requirements.
|
||||
- The quantized model will typically be smaller in size and faster to run, making it more suitable for deployment in resource-constrained environments.
|
59
examples/llava/clip-quantize-cli.cpp
Normal file
59
examples/llava/clip-quantize-cli.cpp
Normal file
|
@ -0,0 +1,59 @@
|
|||
#include "arg.h"
|
||||
#include "base64.hpp"
|
||||
#include "log.h"
|
||||
#include "common.h"
|
||||
#include "sampling.h"
|
||||
#include "clip.h"
|
||||
#include "llava.h"
|
||||
#include "llama.h"
|
||||
#include "ggml.h"
|
||||
|
||||
static void print_usage(int argc, char ** argv) {
|
||||
(void) argc;
|
||||
|
||||
fprintf(stderr, "usage: %s /path/to/ggml-model-f32.gguf /path/to/ggml-model-quantized.gguf type\n", argv[0]);
|
||||
fprintf(stderr, " type = 2 - q4_0\n");
|
||||
fprintf(stderr, " type = 3 - q4_1\n");
|
||||
fprintf(stderr, " type = 6 - q5_0\n");
|
||||
fprintf(stderr, " type = 7 - q5_1\n");
|
||||
fprintf(stderr, " type = 8 - q8_0\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
if (argc != 4) {
|
||||
print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const std::string fname_inp = argv[1];
|
||||
const std::string fname_out = argv[2];
|
||||
|
||||
const int itype = atoi(argv[3]);
|
||||
|
||||
const int64_t t_main_start_us = ggml_time_us();
|
||||
|
||||
int64_t t_quantize_us = 0;
|
||||
|
||||
// load the model
|
||||
{
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
if (!clip_model_quantize(fname_inp.c_str(), fname_out.c_str(), itype)) {
|
||||
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
||||
t_quantize_us = ggml_time_us() - t_start_us;
|
||||
}
|
||||
|
||||
// report timing
|
||||
{
|
||||
const int64_t t_main_end_us = ggml_time_us();
|
||||
|
||||
printf("\n");
|
||||
printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us / 1000.0f);
|
||||
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us) / 1000.0f);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -2745,10 +2745,8 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||
}
|
||||
|
||||
bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
|
||||
ggml_type type = GGML_TYPE_Q4_1;
|
||||
|
||||
assert(itype < GGML_TYPE_COUNT);
|
||||
type = static_cast<ggml_type>(itype);
|
||||
ggml_type type = static_cast<ggml_type>(itype);
|
||||
|
||||
auto * ctx_clip = clip_model_load(fname_inp, 2);
|
||||
|
||||
|
@ -2801,8 +2799,8 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
|||
}
|
||||
}
|
||||
|
||||
// quantize only 2D tensors
|
||||
quantize &= (ggml_n_dims(cur) == 2);
|
||||
// quantize only 2D tensors and bigger than block size
|
||||
quantize &= (ggml_n_dims(cur) == 2) && cur->ne[0] > ggml_blck_size(type);
|
||||
|
||||
if (quantize) {
|
||||
new_type = type;
|
||||
|
|
|
@ -346,7 +346,7 @@ class HttpClient {
|
|||
if (!output_file.empty()) {
|
||||
output_file_partial = output_file + ".partial";
|
||||
if (!out.open(output_file_partial, "ab")) {
|
||||
printe("Failed to open file\n");
|
||||
printe("Failed to open file for writing\n");
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
@ -848,7 +848,15 @@ static int apply_chat_template(const common_chat_template & tmpl, LlamaData & ll
|
|||
});
|
||||
}
|
||||
try {
|
||||
auto result = tmpl.apply(messages, /* tools= */ json(), append);
|
||||
minja::chat_template_inputs tmpl_inputs;
|
||||
tmpl_inputs.messages = messages;
|
||||
tmpl_inputs.add_generation_prompt = append;
|
||||
|
||||
minja::chat_template_options tmpl_opts;
|
||||
tmpl_opts.use_bos_token = false;
|
||||
tmpl_opts.use_eos_token = false;
|
||||
|
||||
auto result = tmpl.apply(tmpl_inputs, tmpl_opts);
|
||||
llama_data.fmtted.resize(result.size() + 1);
|
||||
memcpy(llama_data.fmtted.data(), result.c_str(), result.size() + 1);
|
||||
return result.size();
|
||||
|
|
|
@ -220,7 +220,7 @@ services:
|
|||
The project includes a web-based user interface that enables interaction with the model through the `/chat/completions` endpoint.
|
||||
|
||||
The web UI is developed using:
|
||||
- `vue` framework for frontend development
|
||||
- `react` framework for frontend development
|
||||
- `tailwindcss` and `daisyui` for styling
|
||||
- `vite` for build tooling
|
||||
|
||||
|
|
Binary file not shown.
|
@ -334,24 +334,24 @@ struct server_task {
|
|||
if (data.contains("json_schema") && !data.contains("grammar")) {
|
||||
try {
|
||||
auto schema = json_value(data, "json_schema", json::object());
|
||||
LOG_DBG("JSON schema: %s\n", schema.dump(2).c_str());
|
||||
SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
|
||||
params.sampling.grammar = json_schema_to_grammar(schema);
|
||||
LOG_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
|
||||
SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
|
||||
} catch (const std::exception & e) {
|
||||
throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
|
||||
}
|
||||
} else {
|
||||
params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
|
||||
LOG_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
|
||||
SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
|
||||
params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
|
||||
LOG_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
|
||||
SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
|
||||
}
|
||||
|
||||
{
|
||||
auto it = data.find("chat_format");
|
||||
if (it != data.end()) {
|
||||
params.oaicompat_chat_format = static_cast<common_chat_format>(it->get<int>());
|
||||
LOG_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_format).c_str());
|
||||
SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_format).c_str());
|
||||
} else {
|
||||
params.oaicompat_chat_format = defaults.oaicompat_chat_format;
|
||||
}
|
||||
|
@ -367,12 +367,12 @@ struct server_task {
|
|||
|
||||
auto ids = common_tokenize(vocab, trigger.word, /* add_special= */ false, /* parse_special= */ true);
|
||||
if (ids.size() == 1) {
|
||||
LOG_DBG("Grammar trigger token: %d (`%s`)\n", ids[0], trigger.word.c_str());
|
||||
SRV_DBG("Grammar trigger token: %d (`%s`)\n", ids[0], trigger.word.c_str());
|
||||
params.sampling.grammar_trigger_tokens.push_back(ids[0]);
|
||||
params.sampling.preserved_tokens.insert(ids[0]);
|
||||
continue;
|
||||
}
|
||||
LOG_DBG("Grammar trigger word: `%s`\n", trigger.word.c_str());
|
||||
SRV_DBG("Grammar trigger word: `%s`\n", trigger.word.c_str());
|
||||
params.sampling.grammar_trigger_words.push_back(trigger);
|
||||
}
|
||||
}
|
||||
|
@ -381,11 +381,11 @@ struct server_task {
|
|||
for (const auto & t : *preserved_tokens) {
|
||||
auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
|
||||
if (ids.size() == 1) {
|
||||
LOG_DBG("Preserved token: %d\n", ids[0]);
|
||||
SRV_DBG("Preserved token: %d\n", ids[0]);
|
||||
params.sampling.preserved_tokens.insert(ids[0]);
|
||||
} else {
|
||||
// This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
|
||||
LOG_WRN("Not preserved because more than 1 token (wrong chat template override?): %s\n", t.get<std::string>().c_str());
|
||||
SRV_WRN("Not preserved because more than 1 token (wrong chat template override?): %s\n", t.get<std::string>().c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -717,7 +717,7 @@ struct server_task_result_cmpl_final : server_task_result {
|
|||
std::string finish_reason = "length";
|
||||
common_chat_msg msg;
|
||||
if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
|
||||
LOG_DBG("Parsing chat message: %s\n", content.c_str());
|
||||
SRV_DBG("Parsing chat message: %s\n", content.c_str());
|
||||
msg = common_chat_parse(content, oaicompat_chat_format);
|
||||
finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
|
||||
} else {
|
||||
|
@ -1885,7 +1885,7 @@ struct server_context {
|
|||
}
|
||||
|
||||
if (params_base.chat_template.empty() && !validate_builtin_chat_template(params.use_jinja)) {
|
||||
LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
|
||||
SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
|
||||
chat_templates = common_chat_templates_from_model(model, "chatml");
|
||||
} else {
|
||||
chat_templates = common_chat_templates_from_model(model, params_base.chat_template);
|
||||
|
@ -3353,10 +3353,12 @@ static void log_server_request(const httplib::Request & req, const httplib::Resp
|
|||
return;
|
||||
}
|
||||
|
||||
LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
|
||||
// reminder: this function is not covered by httplib's exception handler; if someone does more complicated stuff, think about wrapping it in try-catch
|
||||
|
||||
LOG_DBG("request: %s\n", req.body.c_str());
|
||||
LOG_DBG("response: %s\n", res.body.c_str());
|
||||
SRV_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
|
||||
|
||||
SRV_DBG("request: %s\n", req.body.c_str());
|
||||
SRV_DBG("response: %s\n", res.body.c_str());
|
||||
}
|
||||
|
||||
std::function<void(int)> shutdown_handler;
|
||||
|
@ -3439,9 +3441,13 @@ int main(int argc, char ** argv) {
|
|||
message = "Unknown Exception";
|
||||
}
|
||||
|
||||
json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
|
||||
LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
|
||||
res_error(res, formatted_error);
|
||||
try {
|
||||
json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
|
||||
LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
|
||||
res_error(res, formatted_error);
|
||||
} catch (const std::exception & e) {
|
||||
LOG_ERR("got another exception: %s | while hanlding exception: %s\n", e.what(), message.c_str());
|
||||
}
|
||||
});
|
||||
|
||||
svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
|
||||
|
@ -3854,7 +3860,9 @@ int main(int argc, char ** argv) {
|
|||
|
||||
try {
|
||||
const auto & prompt = data.at("prompt");
|
||||
LOG_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
|
||||
// TODO: this log can become very long, put it behind a flag or think about a more compact format
|
||||
//SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
|
||||
|
||||
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
|
||||
tasks.reserve(tokenized_prompts.size());
|
||||
for (size_t i = 0; i < tokenized_prompts.size(); i++) {
|
||||
|
@ -4370,6 +4378,9 @@ int main(int argc, char ** argv) {
|
|||
res.set_content("Error: gzip is not supported by this browser", "text/plain");
|
||||
} else {
|
||||
res.set_header("Content-Encoding", "gzip");
|
||||
// COEP and COOP headers, required by pyodide (python interpreter)
|
||||
res.set_header("Cross-Origin-Embedder-Policy", "require-corp");
|
||||
res.set_header("Cross-Origin-Opener-Policy", "same-origin");
|
||||
res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
|
||||
}
|
||||
return false;
|
||||
|
|
|
@ -13,9 +13,12 @@ def create_server():
|
|||
@pytest.mark.parametrize(
|
||||
"model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,finish_reason,jinja,chat_template",
|
||||
[
|
||||
(None, "Book", "Hey", 8, "But she couldn't", 69, 8, "length", False, None),
|
||||
(None, "Book", "Hey", 8, "But she couldn't", 69, 8, "length", True, None),
|
||||
(None, "Book", "What is the best book", 8, "(Suddenly)+|\\{ \" Sarax.", 77, 8, "length", False, None),
|
||||
(None, "Book", "What is the best book", 8, "(Suddenly)+|\\{ \" Sarax.", 77, 8, "length", True, None),
|
||||
(None, "Book", "What is the best book", 8, "^ blue", 23, 8, "length", True, "This is not a chat template, it is"),
|
||||
(None, "Book", "What is the best book", 8, "(Suddenly)+|\\{ \" Sarax.", 77, 8, "length", True, None),
|
||||
(None, "Book", "What is the best book", 8, "(Suddenly)+|\\{ \" Sarax.", 77, 8, "length", True, 'chatml'),
|
||||
(None, "Book", "What is the best book", 8, "^ blue", 23, 8, "length", True, "This is not a chat template, it is"),
|
||||
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length", False, None),
|
||||
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length", True, None),
|
||||
]
|
||||
|
|
|
@ -67,8 +67,8 @@ WEATHER_TOOL = {
|
|||
|
||||
|
||||
def do_test_completion_with_required_tool_tiny(template_name: str, tool: dict, argument_key: str | None):
|
||||
n_predict = 512
|
||||
global server
|
||||
n_predict = 512
|
||||
# server = ServerPreset.stories15m_moe()
|
||||
server.jinja = True
|
||||
server.n_predict = n_predict
|
||||
|
@ -139,29 +139,49 @@ def test_completion_with_required_tool_tiny_slow(template_name: str, tool: dict,
|
|||
@pytest.mark.parametrize("tool,argument_key,hf_repo,template_override", [
|
||||
(TEST_TOOL, "success", "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
# Note: gemma-2-2b-it knows itself as "model", not "assistant", so we don't test the ill-suited chatml on it.
|
||||
(TEST_TOOL, "success", "bartowski/gemma-2-2b-it-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/gemma-2-2b-it-GGUF:Q4_K_M", None),
|
||||
|
||||
(TEST_TOOL, "success", "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(TEST_TOOL, "success", "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(TEST_TOOL, "success", "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
|
||||
(PYTHON_TOOL, "code", "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
|
||||
(PYTHON_TOOL, "code", "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(TEST_TOOL, "success", "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-3-Llama-3.1-8B", "tool_use")),
|
||||
(PYTHON_TOOL, "code", "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-3-Llama-3.1-8B", "tool_use")),
|
||||
(PYTHON_TOOL, "code", "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(TEST_TOOL, "success", "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", None),
|
||||
(TEST_TOOL, "success", "bartowski/functionary-small-v3.2-GGUF:Q8_0", ("meetkai/functionary-medium-v3.2", None)),
|
||||
(PYTHON_TOOL, "code", "bartowski/functionary-small-v3.2-GGUF:Q8_0", ("meetkai/functionary-medium-v3.2", None)),
|
||||
(PYTHON_TOOL, "code", "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(TEST_TOOL, "success", "bartowski/functionary-small-v3.2-GGUF:Q4_K_M", ("meetkai/functionary-medium-v3.2", None)),
|
||||
(PYTHON_TOOL, "code", "bartowski/functionary-small-v3.2-GGUF:Q4_K_M", ("meetkai/functionary-medium-v3.2", None)),
|
||||
(PYTHON_TOOL, "code", "bartowski/functionary-small-v3.2-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(TEST_TOOL, "success", "bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", ("meta-llama/Llama-3.2-3B-Instruct", None)),
|
||||
(PYTHON_TOOL, "code", "bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", ("meta-llama/Llama-3.2-3B-Instruct", None)),
|
||||
(PYTHON_TOOL, "code", "bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(TEST_TOOL, "success", "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", ("meta-llama/Llama-3.2-3B-Instruct", None)),
|
||||
(PYTHON_TOOL, "code", "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", ("meta-llama/Llama-3.2-3B-Instruct", None)),
|
||||
(PYTHON_TOOL, "code", "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
# TODO: fix these
|
||||
# (TEST_TOOL, "success", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
# (PYTHON_TOOL, "code", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
])
|
||||
def test_completion_with_required_tool_real_model(tool: dict, argument_key: str | None, hf_repo: str, template_override: Tuple[str, str | None] | None):
|
||||
def test_completion_with_required_tool_real_model(tool: dict, argument_key: str | None, hf_repo: str, template_override: str | Tuple[str, str | None] | None):
|
||||
global server
|
||||
n_predict = 512
|
||||
server.n_slots = 1
|
||||
server.jinja = True
|
||||
|
@ -169,10 +189,12 @@ def test_completion_with_required_tool_real_model(tool: dict, argument_key: str
|
|||
server.n_predict = n_predict
|
||||
server.model_hf_repo = hf_repo
|
||||
server.model_hf_file = None
|
||||
if template_override:
|
||||
if isinstance(template_override, tuple):
|
||||
(template_hf_repo, template_variant) = template_override
|
||||
server.chat_template_file = f"../../../models/templates/{template_hf_repo.replace('/', '-') + ('-' + template_variant if template_variant else '')}.jinja"
|
||||
assert os.path.exists(server.chat_template_file), f"Template file {server.chat_template_file} does not exist. Run `python scripts/get_chat_template.py {template_hf_repo} {template_variant} > {server.chat_template_file}` to download the template."
|
||||
elif isinstance(template_override, str):
|
||||
server.chat_template = template_override
|
||||
server.start(timeout_seconds=TIMEOUT_SERVER_START)
|
||||
res = server.make_request("POST", "/chat/completions", data={
|
||||
"max_tokens": n_predict,
|
||||
|
@ -251,33 +273,55 @@ def test_completion_without_tool_call_slow(template_name: str, n_predict: int, t
|
|||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.parametrize("hf_repo,template_override", [
|
||||
("bartowski/c4ai-command-r7b-12-2024-GGUF:Q4_K_M", ("CohereForAI/c4ai-command-r7b-12-2024", "tool_use")),
|
||||
("bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
|
||||
("bartowski/gemma-2-2b-it-GGUF:Q4_K_M", None),
|
||||
("bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
("bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
|
||||
("bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
("bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
|
||||
("bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
|
||||
("bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-3-Llama-3.1-8B", "tool_use")),
|
||||
("bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
("bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
|
||||
("bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
("bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-3-Llama-3.1-8B", "tool_use")),
|
||||
("bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
("bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", None),
|
||||
("bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
("bartowski/functionary-small-v3.2-GGUF:Q8_0", ("meetkai/functionary-medium-v3.2", None)),
|
||||
("bartowski/functionary-small-v3.2-GGUF:Q8_0", "chatml"),
|
||||
|
||||
("bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", ("meta-llama/Llama-3.2-3B-Instruct", None)),
|
||||
("bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
# Note: gemma-2-2b-it knows itself as "model", not "assistant", so we don't test the ill-suited chatml on it.
|
||||
("bartowski/gemma-2-2b-it-GGUF:Q4_K_M", None),
|
||||
|
||||
# ("bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", ("meta-llama/Llama-3.2-3B-Instruct", None)),
|
||||
# ("bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
])
|
||||
def test_weather_tool_call(hf_repo: str, template_override: Tuple[str, str | None] | None):
|
||||
def test_weather(hf_repo: str, template_override: Tuple[str, str | None] | None):
|
||||
global server
|
||||
n_predict = 512
|
||||
server.n_slots = 1
|
||||
server.jinja = True
|
||||
server.n_ctx = 8192
|
||||
server.n_predict = 512
|
||||
server.n_predict = n_predict
|
||||
server.model_hf_repo = hf_repo
|
||||
server.model_hf_file = None
|
||||
if template_override:
|
||||
if isinstance(template_override, tuple):
|
||||
(template_hf_repo, template_variant) = template_override
|
||||
server.chat_template_file = f"../../../models/templates/{template_hf_repo.replace('/', '-') + ('-' + template_variant if template_variant else '')}.jinja"
|
||||
assert os.path.exists(server.chat_template_file), f"Template file {server.chat_template_file} does not exist. Run `python scripts/get_chat_template.py {template_hf_repo} {template_variant} > {server.chat_template_file}` to download the template."
|
||||
elif isinstance(template_override, str):
|
||||
server.chat_template = template_override
|
||||
server.start(timeout_seconds=TIMEOUT_SERVER_START)
|
||||
res = server.make_request("POST", "/chat/completions", data={
|
||||
"max_tokens": 256,
|
||||
"max_tokens": n_predict,
|
||||
"messages": [
|
||||
{"role": "user", "content": "What is the weather in Istanbul?"},
|
||||
],
|
||||
|
@ -298,19 +342,39 @@ def test_weather_tool_call(hf_repo: str, template_override: Tuple[str, str | Non
|
|||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.parametrize("expected_arguments_override,hf_repo,template_override", [
|
||||
(None, "bartowski/gemma-2-2b-it-GGUF:Q4_K_M", None),
|
||||
(None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
|
||||
(None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(None, "bartowski/functionary-small-v3.2-GGUF:Q8_0", ("meetkai-functionary-medium-v3.2", None)),
|
||||
('{"code":"print("}', "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
|
||||
(None, "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", ("meta-llama-Llama-3.2-3B-Instruct", None)),
|
||||
(None, "bartowski/functionary-small-v3.2-GGUF:Q8_0", "chatml"),
|
||||
|
||||
(None, "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
|
||||
('{"code":"print("}', "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
('{"code":"print("}', "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", ("meta-llama-Llama-3.2-3B-Instruct", None)),
|
||||
(None, "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
('{"code":"print("}', "bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", ("meta-llama-Llama-3.2-3B-Instruct", None)),
|
||||
('{"code":"print("}', "bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(None, "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
|
||||
(None, "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
|
||||
(None, "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch-Hermes-3-Llama-3.1-8B", "tool_use")),
|
||||
(None, "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(None, "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
|
||||
(None, "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(None, "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch-Hermes-3-Llama-3.1-8B", "tool_use")),
|
||||
(None, "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(None, "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", None),
|
||||
(None, "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
# Note: gemma-2-2b-it knows itself as "model", not "assistant", so we don't test the ill-suited chatml on it.
|
||||
(None, "bartowski/gemma-2-2b-it-GGUF:Q4_K_M", None),
|
||||
|
||||
# (None, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
])
|
||||
def test_hello_world_tool_call(expected_arguments_override: str | None, hf_repo: str, template_override: Tuple[str, str | None] | None):
|
||||
def test_hello_world_tool_call(expected_arguments_override: str | None, hf_repo: str, template_override: str | Tuple[str, str | None] | None):
|
||||
global server
|
||||
server.n_slots = 1
|
||||
server.jinja = True
|
||||
|
@ -318,10 +382,12 @@ def test_hello_world_tool_call(expected_arguments_override: str | None, hf_repo:
|
|||
server.n_predict = 128
|
||||
server.model_hf_repo = hf_repo
|
||||
server.model_hf_file = None
|
||||
if template_override:
|
||||
if isinstance(template_override, tuple):
|
||||
(template_hf_repo, template_variant) = template_override
|
||||
server.chat_template_file = f"../../../models/templates/{template_hf_repo.replace('/', '-') + ('-' + template_variant if template_variant else '')}.jinja"
|
||||
assert os.path.exists(server.chat_template_file), f"Template file {server.chat_template_file} does not exist. Run `python scripts/get_chat_template.py {template_hf_repo} {template_variant} > {server.chat_template_file}` to download the template."
|
||||
elif isinstance(template_override, str):
|
||||
server.chat_template = template_override
|
||||
server.start(timeout_seconds=TIMEOUT_SERVER_START)
|
||||
res = server.make_request("POST", "/chat/completions", data={
|
||||
"max_tokens": 256,
|
||||
|
|
|
@ -5,10 +5,6 @@
|
|||
#include "llama.h"
|
||||
#include "common/base64.hpp"
|
||||
|
||||
#ifndef NDEBUG
|
||||
// crash the server in debug mode, otherwise send an http 500 error
|
||||
#define CPPHTTPLIB_NO_EXCEPTIONS 1
|
||||
#endif
|
||||
// increase max payload length to allow use of larger context size
|
||||
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
|
||||
#include "httplib.h"
|
||||
|
|
24
examples/server/webui/.gitignore
vendored
Normal file
24
examples/server/webui/.gitignore
vendored
Normal file
|
@ -0,0 +1,24 @@
|
|||
# Logs
|
||||
logs
|
||||
*.log
|
||||
npm-debug.log*
|
||||
yarn-debug.log*
|
||||
yarn-error.log*
|
||||
pnpm-debug.log*
|
||||
lerna-debug.log*
|
||||
|
||||
node_modules
|
||||
dist
|
||||
dist-ssr
|
||||
*.local
|
||||
|
||||
# Editor directories and files
|
||||
.vscode/*
|
||||
!.vscode/extensions.json
|
||||
.idea
|
||||
.DS_Store
|
||||
*.suo
|
||||
*.ntvs*
|
||||
*.njsproj
|
||||
*.sln
|
||||
*.sw?
|
10
examples/server/webui/.prettierignore
Normal file
10
examples/server/webui/.prettierignore
Normal file
|
@ -0,0 +1,10 @@
|
|||
**/.vscode
|
||||
**/.github
|
||||
**/.git
|
||||
**/.svn
|
||||
**/.hg
|
||||
**/node_modules
|
||||
**/dist
|
||||
**/build
|
||||
|
||||
*.config.js
|
26
examples/server/webui/eslint.config.js
Normal file
26
examples/server/webui/eslint.config.js
Normal file
|
@ -0,0 +1,26 @@
|
|||
import js from '@eslint/js'
|
||||
import globals from 'globals'
|
||||
import reactHooks from 'eslint-plugin-react-hooks'
|
||||
import reactRefresh from 'eslint-plugin-react-refresh'
|
||||
import tseslint from 'typescript-eslint'
|
||||
|
||||
export default tseslint.config(
|
||||
{ ignores: ['dist'] },
|
||||
{
|
||||
extends: [js.configs.recommended, ...tseslint.configs.recommended],
|
||||
files: ['**/*.{ts,tsx}'],
|
||||
languageOptions: {
|
||||
ecmaVersion: 2020,
|
||||
globals: globals.browser,
|
||||
},
|
||||
plugins: {
|
||||
'react-hooks': reactHooks,
|
||||
'react-refresh': reactRefresh,
|
||||
},
|
||||
rules: {
|
||||
...reactHooks.configs.recommended.rules,
|
||||
'react-refresh/only-export-components': 'off',
|
||||
'@typescript-eslint/no-unused-vars': 'off',
|
||||
},
|
||||
},
|
||||
)
|
|
@ -1,343 +1,16 @@
|
|||
<!DOCTYPE html>
|
||||
<!doctype html>
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1" />
|
||||
<meta name="color-scheme" content="light dark">
|
||||
<title>🦙 llama.cpp - chat</title>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<div id="app" class="opacity-0"> <!-- opacity-0 will be removed on app mounted -->
|
||||
<div class="flex flex-row drawer lg:drawer-open">
|
||||
<input id="toggle-drawer" type="checkbox" class="drawer-toggle" checked />
|
||||
|
||||
<!-- sidebar -->
|
||||
<div class="drawer-side h-screen lg:h-screen z-50 lg:max-w-64">
|
||||
<label for="toggle-drawer" aria-label="close sidebar" class="drawer-overlay"></label>
|
||||
<div class="flex flex-col bg-base-200 min-h-full max-w-64 py-4 px-4">
|
||||
<div class="flex flex-row items-center justify-between mb-4 mt-4">
|
||||
<h2 class="font-bold ml-4">Conversations</h2>
|
||||
|
||||
<!-- close sidebar button -->
|
||||
<label for="toggle-drawer" class="btn btn-ghost lg:hidden">
|
||||
<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-arrow-bar-left" viewBox="0 0 16 16">
|
||||
<path fill-rule="evenodd" d="M12.5 15a.5.5 0 0 1-.5-.5v-13a.5.5 0 0 1 1 0v13a.5.5 0 0 1-.5.5M10 8a.5.5 0 0 1-.5.5H3.707l2.147 2.146a.5.5 0 0 1-.708.708l-3-3a.5.5 0 0 1 0-.708l3-3a.5.5 0 1 1 .708.708L3.707 7.5H9.5a.5.5 0 0 1 .5.5"/>
|
||||
</svg>
|
||||
</label>
|
||||
</div>
|
||||
|
||||
<!-- list of conversations -->
|
||||
<div :class="{
|
||||
'btn btn-ghost justify-start': true,
|
||||
'btn-active': messages.length === 0,
|
||||
}" @click="newConversation">
|
||||
+ New conversation
|
||||
</div>
|
||||
<div v-for="conv in conversations" :class="{
|
||||
'btn btn-ghost justify-start font-normal': true,
|
||||
'btn-active': conv.id === viewingConvId,
|
||||
}" @click="setViewingConv(conv.id)" dir="auto">
|
||||
<span class="truncate">{{ conv.messages[0].content }}</span>
|
||||
</div>
|
||||
<div class="text-center text-xs opacity-40 mt-auto mx-4">
|
||||
Conversations are saved to browser's localStorage
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- main view -->
|
||||
<div class="chat-screen drawer-content grow flex flex-col h-screen w-screen mx-auto px-4">
|
||||
<!-- header -->
|
||||
<div class="flex flex-row items-center mt-6 mb-6">
|
||||
<!-- open sidebar button -->
|
||||
<label for="toggle-drawer" class="btn btn-ghost lg:hidden">
|
||||
<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-list" viewBox="0 0 16 16">
|
||||
<path fill-rule="evenodd" d="M2.5 12a.5.5 0 0 1 .5-.5h10a.5.5 0 0 1 0 1H3a.5.5 0 0 1-.5-.5m0-4a.5.5 0 0 1 .5-.5h10a.5.5 0 0 1 0 1H3a.5.5 0 0 1-.5-.5m0-4a.5.5 0 0 1 .5-.5h10a.5.5 0 0 1 0 1H3a.5.5 0 0 1-.5-.5"/>
|
||||
</svg>
|
||||
</label>
|
||||
|
||||
<div class="grow text-2xl font-bold ml-2">llama.cpp</div>
|
||||
|
||||
<!-- action buttons (top right) -->
|
||||
<div class="flex items-center">
|
||||
<div v-if="messages.length > 0" class="dropdown dropdown-end">
|
||||
<!-- "..." button -->
|
||||
<button tabindex="0" role="button" class="btn m-1" :disabled="isGenerating">
|
||||
<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-three-dots-vertical" viewBox="0 0 16 16">
|
||||
<path d="M9.5 13a1.5 1.5 0 1 1-3 0 1.5 1.5 0 0 1 3 0m0-5a1.5 1.5 0 1 1-3 0 1.5 1.5 0 0 1 3 0m0-5a1.5 1.5 0 1 1-3 0 1.5 1.5 0 0 1 3 0"/>
|
||||
</svg>
|
||||
</button>
|
||||
<!-- "delete" dropdown menu -->
|
||||
<ul tabindex="0" class="dropdown-content menu bg-base-100 rounded-box z-[1] w-52 p-2 shadow">
|
||||
<li @click="downloadConv(viewingConvId)"><a>Download</a></li>
|
||||
<li class="text-error" @click="deleteConv(viewingConvId)"><a>Delete</a></li>
|
||||
</ul>
|
||||
</div>
|
||||
<div class="tooltip tooltip-bottom" data-tip="Settings">
|
||||
<button class="btn" @click="showConfigDialog = true" :disabled="isGenerating">
|
||||
<!-- settings button -->
|
||||
<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-gear" viewBox="0 0 16 16">
|
||||
<path d="M8 4.754a3.246 3.246 0 1 0 0 6.492 3.246 3.246 0 0 0 0-6.492M5.754 8a2.246 2.246 0 1 1 4.492 0 2.246 2.246 0 0 1-4.492 0"/>
|
||||
<path d="M9.796 1.343c-.527-1.79-3.065-1.79-3.592 0l-.094.319a.873.873 0 0 1-1.255.52l-.292-.16c-1.64-.892-3.433.902-2.54 2.541l.159.292a.873.873 0 0 1-.52 1.255l-.319.094c-1.79.527-1.79 3.065 0 3.592l.319.094a.873.873 0 0 1 .52 1.255l-.16.292c-.892 1.64.901 3.434 2.541 2.54l.292-.159a.873.873 0 0 1 1.255.52l.094.319c.527 1.79 3.065 1.79 3.592 0l.094-.319a.873.873 0 0 1 1.255-.52l.292.16c1.64.893 3.434-.902 2.54-2.541l-.159-.292a.873.873 0 0 1 .52-1.255l.319-.094c1.79-.527 1.79-3.065 0-3.592l-.319-.094a.873.873 0 0 1-.52-1.255l.16-.292c.893-1.64-.902-3.433-2.541-2.54l-.292.159a.873.873 0 0 1-1.255-.52zm-2.633.283c.246-.835 1.428-.835 1.674 0l.094.319a1.873 1.873 0 0 0 2.693 1.115l.291-.16c.764-.415 1.6.42 1.184 1.185l-.159.292a1.873 1.873 0 0 0 1.116 2.692l.318.094c.835.246.835 1.428 0 1.674l-.319.094a1.873 1.873 0 0 0-1.115 2.693l.16.291c.415.764-.42 1.6-1.185 1.184l-.291-.159a1.873 1.873 0 0 0-2.693 1.116l-.094.318c-.246.835-1.428.835-1.674 0l-.094-.319a1.873 1.873 0 0 0-2.692-1.115l-.292.16c-.764.415-1.6-.42-1.184-1.185l.159-.291A1.873 1.873 0 0 0 1.945 8.93l-.319-.094c-.835-.246-.835-1.428 0-1.674l.319-.094A1.873 1.873 0 0 0 3.06 4.377l-.16-.292c-.415-.764.42-1.6 1.185-1.184l.292.159a1.873 1.873 0 0 0 2.692-1.115z"/>
|
||||
</svg>
|
||||
</button>
|
||||
</div>
|
||||
|
||||
<!-- theme controller is copied from https://daisyui.com/components/theme-controller/ -->
|
||||
<div class="tooltip tooltip-bottom" data-tip="Themes">
|
||||
<div class="dropdown dropdown-end dropdown-bottom">
|
||||
<div tabindex="0" role="button" class="btn m-1">
|
||||
<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-palette2" viewBox="0 0 16 16">
|
||||
<path d="M0 .5A.5.5 0 0 1 .5 0h5a.5.5 0 0 1 .5.5v5.277l4.147-4.131a.5.5 0 0 1 .707 0l3.535 3.536a.5.5 0 0 1 0 .708L10.261 10H15.5a.5.5 0 0 1 .5.5v5a.5.5 0 0 1-.5.5H3a3 3 0 0 1-2.121-.879A3 3 0 0 1 0 13.044m6-.21 7.328-7.3-2.829-2.828L6 7.188zM4.5 13a1.5 1.5 0 1 0-3 0 1.5 1.5 0 0 0 3 0M15 15v-4H9.258l-4.015 4zM0 .5v12.495zm0 12.495V13z"/>
|
||||
</svg>
|
||||
</div>
|
||||
<ul tabindex="0" class="dropdown-content bg-base-300 rounded-box z-[1] w-52 p-2 shadow-2xl h-80 overflow-y-auto">
|
||||
<li>
|
||||
<button
|
||||
class="btn btn-sm btn-block btn-ghost justify-start"
|
||||
:class="{ 'btn-active': selectedTheme === 'auto' }"
|
||||
@click="setSelectedTheme('auto')">
|
||||
auto
|
||||
</button>
|
||||
</li>
|
||||
<li v-for="theme in themes">
|
||||
<input
|
||||
type="radio"
|
||||
name="theme-dropdown"
|
||||
class="theme-controller btn btn-sm btn-block btn-ghost justify-start"
|
||||
:aria-label="theme"
|
||||
:value="theme"
|
||||
:checked="selectedTheme === theme"
|
||||
@click="setSelectedTheme(theme)" />
|
||||
</li>
|
||||
</ul>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- chat messages -->
|
||||
<div id="messages-list" class="flex flex-col grow overflow-y-auto">
|
||||
<div class="mt-auto flex justify-center">
|
||||
<!-- placeholder to shift the message to the bottom -->
|
||||
{{ messages.length === 0 ? 'Send a message to start' : '' }}
|
||||
</div>
|
||||
<div v-for="msg in messages" class="group">
|
||||
<message-bubble
|
||||
:config="config"
|
||||
:msg="msg"
|
||||
:key="msg.id"
|
||||
:is-generating="isGenerating"
|
||||
:edit-user-msg-and-regenerate="editUserMsgAndRegenerate"
|
||||
:regenerate-msg="regenerateMsg"></message-bubble>
|
||||
</div>
|
||||
|
||||
<!-- pending (ongoing) assistant message -->
|
||||
<div id="pending-msg" class="group">
|
||||
<message-bubble
|
||||
v-if="pendingMsg"
|
||||
:config="config"
|
||||
:msg="pendingMsg"
|
||||
:key="pendingMsg.id"
|
||||
:is-generating="isGenerating"
|
||||
:show-thought-in-progress="config.showThoughtInProgress"
|
||||
:edit-user-msg-and-regenerate="() => {}"
|
||||
:regenerate-msg="() => {}"></message-bubble>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- chat input -->
|
||||
<div class="flex flex-row items-center mt-8 mb-6">
|
||||
<textarea
|
||||
class="textarea textarea-bordered w-full"
|
||||
placeholder="Type a message (Shift+Enter to add a new line)"
|
||||
v-model="inputMsg"
|
||||
@keydown.enter.exact.prevent="sendMessage"
|
||||
@keydown.enter.shift.exact.prevent="inputMsg += '\n'"
|
||||
:disabled="isGenerating"
|
||||
id="msg-input"
|
||||
dir="auto"
|
||||
></textarea>
|
||||
<button v-if="!isGenerating" class="btn btn-primary ml-2" @click="sendMessage" :disabled="inputMsg.length === 0">Send</button>
|
||||
<button v-else class="btn btn-neutral ml-2" @click="stopGeneration">Stop</button>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<!-- modal for editing config -->
|
||||
<dialog class="modal" :class="{'modal-open': showConfigDialog}">
|
||||
<div class="modal-box">
|
||||
<h3 class="text-lg font-bold mb-6">Settings</h3>
|
||||
<div class="h-[calc(90vh-12rem)] overflow-y-auto">
|
||||
<p class="opacity-40 mb-6">Settings below are saved in browser's localStorage</p>
|
||||
<settings-modal-short-input :config-key="'apiKey'" :config-default="configDefault" :config-info="configInfo" v-model="config.apiKey"></settings-modal-short-input>
|
||||
<label class="form-control mb-2">
|
||||
<div class="label">System Message</div>
|
||||
<textarea class="textarea textarea-bordered h-24" :placeholder="'Default: ' + configDefault.systemMessage" v-model="config.systemMessage"></textarea>
|
||||
</label>
|
||||
<template v-for="configKey in ['temperature', 'top_k', 'top_p', 'min_p', 'max_tokens']">
|
||||
<settings-modal-short-input :config-key="configKey" :config-default="configDefault" :config-info="configInfo" v-model="config[configKey]"></settings-modal-short-input>
|
||||
</template>
|
||||
<!-- TODO: add more sampling-related configs, please regroup them into different "collapse" sections -->
|
||||
<!-- Section: Other sampler settings -->
|
||||
<details class="collapse collapse-arrow bg-base-200 mb-2 overflow-visible">
|
||||
<summary class="collapse-title font-bold">Other sampler settings</summary>
|
||||
<div class="collapse-content">
|
||||
<!-- Samplers queue -->
|
||||
<settings-modal-short-input label="Samplers queue" :config-key="'samplers'" :config-default="configDefault" :config-info="configInfo" v-model="config.samplers"></settings-modal-short-input>
|
||||
<!-- Samplers -->
|
||||
<template v-for="configKey in ['dynatemp_range', 'dynatemp_exponent', 'typical_p', 'xtc_probability', 'xtc_threshold']">
|
||||
<settings-modal-short-input :config-key="configKey" :config-default="configDefault" :config-info="configInfo" v-model="config[configKey]"></settings-modal-short-input>
|
||||
</template>
|
||||
</div>
|
||||
</details>
|
||||
<!-- Section: Penalties settings -->
|
||||
<details class="collapse collapse-arrow bg-base-200 mb-2 overflow-visible">
|
||||
<summary class="collapse-title font-bold">Penalties settings</summary>
|
||||
<div class="collapse-content">
|
||||
<template v-for="configKey in ['repeat_last_n', 'repeat_penalty', 'presence_penalty', 'frequency_penalty', 'dry_multiplier', 'dry_base', 'dry_allowed_length', 'dry_penalty_last_n']">
|
||||
<settings-modal-short-input :config-key="configKey" :config-default="configDefault" :config-info="configInfo" v-model="config[configKey]"></settings-modal-short-input>
|
||||
</template>
|
||||
</div>
|
||||
</details>
|
||||
<!-- Section: Reasoning models -->
|
||||
<details class="collapse collapse-arrow bg-base-200 mb-2 overflow-visible">
|
||||
<summary class="collapse-title font-bold">Reasoning models</summary>
|
||||
<div class="collapse-content">
|
||||
<div class="flex flex-row items-center mb-2">
|
||||
<input type="checkbox" class="checkbox" v-model="config.showThoughtInProgress" />
|
||||
<span class="ml-4">Expand though process by default for generating message</span>
|
||||
</div>
|
||||
<div class="flex flex-row items-center mb-2">
|
||||
<input type="checkbox" class="checkbox" v-model="config.excludeThoughtOnReq" />
|
||||
<span class="ml-4">Exclude thought process when sending request to API (Recommended for DeepSeek-R1)</span>
|
||||
</div>
|
||||
</div>
|
||||
</details>
|
||||
<!-- Section: Advanced config -->
|
||||
<details class="collapse collapse-arrow bg-base-200 mb-2 overflow-visible">
|
||||
<summary class="collapse-title font-bold">Advanced config</summary>
|
||||
<div class="collapse-content">
|
||||
<div class="flex flex-row items-center mb-2" v-if="isDev">
|
||||
<!-- this button only shows in dev mode, used to import a demo conversation to test message rendering -->
|
||||
<button class="btn" @click="debugImportDemoConv()">(debug) Import demo conversation</button>
|
||||
</div>
|
||||
<div class="flex flex-row items-center mb-2">
|
||||
<input type="checkbox" class="checkbox" v-model="config.showTokensPerSecond" />
|
||||
<span class="ml-4">Show tokens per second</span>
|
||||
</div>
|
||||
<label class="form-control mb-2">
|
||||
<!-- Custom parameters input -->
|
||||
<div class="label inline">Custom JSON config (For more info, refer to <a class="underline" href="https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md" target="_blank" rel="noopener noreferrer">server documentation</a>)</div>
|
||||
<textarea class="textarea textarea-bordered h-24" placeholder="Example: { "mirostat": 1, "min_p": 0.1 }" v-model="config.custom"></textarea>
|
||||
</label>
|
||||
</div>
|
||||
</details>
|
||||
</div>
|
||||
|
||||
<!-- action buttons -->
|
||||
<div class="modal-action">
|
||||
<button class="btn" @click="resetConfigDialog">Reset to default</button>
|
||||
<button class="btn" @click="closeAndDiscardConfigDialog">Close</button>
|
||||
<button class="btn btn-primary" @click="closeAndSaveConfigDialog">Save</button>
|
||||
</div>
|
||||
</div>
|
||||
</dialog>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<!-- Template to be used as message bubble -->
|
||||
<template id="message-bubble">
|
||||
<div :class="{
|
||||
'chat': true,
|
||||
'chat-start': msg.role !== 'user',
|
||||
'chat-end': msg.role === 'user',
|
||||
}">
|
||||
<div :class="{
|
||||
'chat-bubble markdown': true,
|
||||
'chat-bubble-base-300': msg.role !== 'user',
|
||||
}">
|
||||
<!-- textarea for editing message -->
|
||||
<template v-if="editingContent !== null">
|
||||
<textarea
|
||||
dir="auto"
|
||||
class="textarea textarea-bordered bg-base-100 text-base-content w-[calc(90vw-8em)] lg:w-96"
|
||||
v-model="editingContent"></textarea>
|
||||
<br/>
|
||||
<button class="btn btn-ghost mt-2 mr-2" @click="editingContent = null">Cancel</button>
|
||||
<button class="btn mt-2" @click="editMsg()">Submit</button>
|
||||
</template>
|
||||
<template v-else>
|
||||
<!-- show loading dots for pending message -->
|
||||
<span v-if="msg.content === null" class="loading loading-dots loading-md"></span>
|
||||
<!-- render message as markdown -->
|
||||
<div v-else dir="auto">
|
||||
<details v-if="msg.role === 'assistant' && splitMsgContent.cot" class="collapse bg-base-200 collapse-arrow mb-4" :open="splitMsgContent.isThinking && showThoughtInProgress">
|
||||
<summary class="collapse-title">
|
||||
<span v-if="splitMsgContent.isThinking">
|
||||
<span v-if="isGenerating" class="loading loading-spinner loading-md mr-2" style="vertical-align: middle;"></span>
|
||||
<b>Thinking</b>
|
||||
</span>
|
||||
<b v-else>Thought Process</b>
|
||||
</summary>
|
||||
<vue-markdown :source="splitMsgContent.cot" dir="auto" class="collapse-content"></vue-markdown>
|
||||
</details>
|
||||
<vue-markdown :source="splitMsgContent.content"></vue-markdown>
|
||||
</div>
|
||||
<!-- render timings if enabled -->
|
||||
<div class="dropdown dropdown-hover dropdown-top mt-2" v-if="timings && config.showTokensPerSecond">
|
||||
<div tabindex="0" role="button" class="cursor-pointer font-semibold text-sm opacity-60">Speed: {{ timings.predicted_per_second.toFixed(1) }} t/s</div>
|
||||
<div class="dropdown-content bg-base-100 z-10 w-64 p-2 shadow mt-4">
|
||||
<b>Prompt</b><br/>
|
||||
- Tokens: {{ timings.prompt_n }}<br/>
|
||||
- Time: {{ timings.prompt_ms }} ms<br/>
|
||||
- Speed: {{ timings.prompt_per_second.toFixed(1) }} t/s<br/>
|
||||
<b>Generation</b><br/>
|
||||
- Tokens: {{ timings.predicted_n }}<br/>
|
||||
- Time: {{ timings.predicted_ms }} ms<br/>
|
||||
- Speed: {{ timings.predicted_per_second.toFixed(1) }} t/s<br/>
|
||||
</div>
|
||||
</div>
|
||||
</template>
|
||||
</div>
|
||||
</div>
|
||||
<!-- actions for each message -->
|
||||
<div :class="{'text-right': msg.role === 'user', 'opacity-0': isGenerating}" class="mx-4 mt-2 mb-2">
|
||||
<!-- user message -->
|
||||
<button v-if="msg.role === 'user'" class="badge btn-mini show-on-hover" @click="editingContent = msg.content" :disabled="isGenerating">
|
||||
✍️ Edit
|
||||
</button>
|
||||
<!-- assistant message -->
|
||||
<button v-if="msg.role === 'assistant'" class="badge btn-mini show-on-hover mr-2" @click="regenerateMsg(msg)" :disabled="isGenerating">
|
||||
🔄 Regenerate
|
||||
</button>
|
||||
<button v-if="msg.role === 'assistant'" class="badge btn-mini show-on-hover mr-2" @click="copyMsg()" :disabled="isGenerating">
|
||||
📋 Copy
|
||||
</button>
|
||||
</div>
|
||||
</template>
|
||||
|
||||
|
||||
<!-- Template to be used by settings modal -->
|
||||
<template id="settings-modal-short-input">
|
||||
<label class="input input-bordered join-item grow flex items-center gap-2 mb-2">
|
||||
<!-- Show help message on hovering on the input label -->
|
||||
<div class="dropdown dropdown-hover">
|
||||
<div tabindex="0" role="button" class="font-bold">{{ label || configKey }}</div>
|
||||
<div class="dropdown-content menu bg-base-100 rounded-box z-10 w-64 p-2 shadow mt-4">
|
||||
{{ configInfo[configKey] || '(no help message available)' }}
|
||||
</div>
|
||||
</div>
|
||||
<!-- Here we forward v-model from parent to child component, see: https://stackoverflow.com/questions/47311936/v-model-and-child-components -->
|
||||
<input type="text" class="grow" :placeholder="'Default: ' + (configDefault[configKey] || 'none')" :value="modelValue" @input="$emit('update:modelValue', $event.target.value)" />
|
||||
</label>
|
||||
</template>
|
||||
|
||||
<script type="module" src="/src/main.js"></script>
|
||||
</body>
|
||||
|
||||
<head>
|
||||
<meta charset="UTF-8" />
|
||||
<meta
|
||||
name="viewport"
|
||||
content="width=device-width, initial-scale=1, maximum-scale=1"
|
||||
/>
|
||||
<meta name="color-scheme" content="light dark" />
|
||||
<title>🦙 llama.cpp - chat</title>
|
||||
</head>
|
||||
<body>
|
||||
<div id="root"></div>
|
||||
<script type="module" src="/src/main.tsx"></script>
|
||||
</body>
|
||||
</html>
|
||||
|
|
6665
examples/server/webui/package-lock.json
generated
6665
examples/server/webui/package-lock.json
generated
File diff suppressed because it is too large
Load diff
|
@ -5,26 +5,55 @@
|
|||
"type": "module",
|
||||
"scripts": {
|
||||
"dev": "vite",
|
||||
"build": "vite build",
|
||||
"preview": "vite preview",
|
||||
"analyze": "ANALYZE=1 npx vite-bundle-visualizer"
|
||||
},
|
||||
"devDependencies": {
|
||||
"sass-embedded": "^1.83.0",
|
||||
"vite": "^5.4.10"
|
||||
"build": "tsc -b && vite build",
|
||||
"format": "eslint . && prettier --write .",
|
||||
"lint": "eslint .",
|
||||
"preview": "vite preview"
|
||||
},
|
||||
"dependencies": {
|
||||
"@heroicons/react": "^2.2.0",
|
||||
"@sec-ant/readable-stream": "^0.6.0",
|
||||
"@vscode/markdown-it-katex": "^1.1.1",
|
||||
"autoprefixer": "^10.4.20",
|
||||
"daisyui": "^4.12.14",
|
||||
"highlight.js": "^11.10.0",
|
||||
"katex": "^0.16.15",
|
||||
"markdown-it": "^14.1.0",
|
||||
"postcss": "^8.4.49",
|
||||
"react": "^18.3.1",
|
||||
"react-dom": "^18.3.1",
|
||||
"react-markdown": "^9.0.3",
|
||||
"react-router": "^7.1.5",
|
||||
"rehype-highlight": "^7.0.2",
|
||||
"rehype-katex": "^7.0.1",
|
||||
"remark-breaks": "^4.0.0",
|
||||
"remark-gfm": "^4.0.0",
|
||||
"remark-math": "^6.0.0",
|
||||
"tailwindcss": "^3.4.15",
|
||||
"textlinestream": "^1.1.1",
|
||||
"vite-plugin-singlefile": "^2.0.3",
|
||||
"vue": "^3.5.13"
|
||||
"vite-plugin-singlefile": "^2.0.3"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@eslint/js": "^9.17.0",
|
||||
"@types/markdown-it": "^14.1.2",
|
||||
"@types/node": "^22.13.1",
|
||||
"@types/react": "^18.3.18",
|
||||
"@types/react-dom": "^18.3.5",
|
||||
"@vitejs/plugin-react": "^4.3.4",
|
||||
"eslint": "^9.17.0",
|
||||
"eslint-plugin-react-hooks": "^5.0.0",
|
||||
"eslint-plugin-react-refresh": "^0.4.16",
|
||||
"globals": "^15.14.0",
|
||||
"prettier": "^3.4.2",
|
||||
"sass-embedded": "^1.83.4",
|
||||
"typescript": "~5.6.2",
|
||||
"typescript-eslint": "^8.18.2",
|
||||
"vite": "^6.0.5"
|
||||
},
|
||||
"prettier": {
|
||||
"trailingComma": "es5",
|
||||
"tabWidth": 2,
|
||||
"semi": true,
|
||||
"singleQuote": true,
|
||||
"bracketSameLine": false
|
||||
}
|
||||
}
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
{
|
||||
"id": 1734087548327,
|
||||
"role": "assistant",
|
||||
"content": "This is the formula:\n\n$\\frac{e^{x_i}}{\\sum_{j=1}^{n}e^{x_j}}$\n\nGiven an input vector \\(\\mathbf{x} = [x_1, x_2, \\ldots, x_n]\\)\n\n\\[\ny_i = \\frac{e^{x_i}}{\\sum_{j=1}^n e^{x_j}}\n\\]\n\nCode block latex:\n```latex\n\\frac{e^{x_i}}{\\sum_{j=1}^{n}e^{x_j}}\n```\n\nTest dollar sign: $1234 $4567\n\nInvalid latex syntax: $E = mc^$ and $$E = mc^$$",
|
||||
"content": "This is the formula:\n\n$\\frac{e^{x_i}}{\\sum_{j=1}^{n}e^{x_j}}$\n\nGiven an input vector \\(\\mathbf{x} = [x_1, x_2, \\ldots, x_n]\\)\n\n\\[\ny_i = \\frac{e^{x_i}}{\\sum_{j=1}^n e^{x_j}}\n\\]\n\n$2x + y = z$\n\nCode block latex:\n```latex\n\\frac{e^{x_i}}{\\sum_{j=1}^{n}e^{x_j}}\n```\n\nTest dollar sign: $1234 $4567\n\nInvalid latex syntax: $E = mc^$ and $$E = mc^$$",
|
||||
"timings": {
|
||||
"prompt_n": 1,
|
||||
"prompt_ms": 28.923,
|
||||
|
|
47
examples/server/webui/src/App.tsx
Normal file
47
examples/server/webui/src/App.tsx
Normal file
|
@ -0,0 +1,47 @@
|
|||
import { HashRouter, Outlet, Route, Routes } from 'react-router';
|
||||
import Header from './components/Header';
|
||||
import Sidebar from './components/Sidebar';
|
||||
import { AppContextProvider, useAppContext } from './utils/app.context';
|
||||
import ChatScreen from './components/ChatScreen';
|
||||
import SettingDialog from './components/SettingDialog';
|
||||
|
||||
function App() {
|
||||
return (
|
||||
<HashRouter>
|
||||
<div className="flex flex-row drawer lg:drawer-open">
|
||||
<AppContextProvider>
|
||||
<Routes>
|
||||
<Route element={<AppLayout />}>
|
||||
<Route path="/chat/:convId" element={<ChatScreen />} />
|
||||
<Route path="*" element={<ChatScreen />} />
|
||||
</Route>
|
||||
</Routes>
|
||||
</AppContextProvider>
|
||||
</div>
|
||||
</HashRouter>
|
||||
);
|
||||
}
|
||||
|
||||
function AppLayout() {
|
||||
const { showSettings, setShowSettings } = useAppContext();
|
||||
return (
|
||||
<>
|
||||
<Sidebar />
|
||||
<div
|
||||
className="drawer-content grow flex flex-col h-screen w-screen mx-auto px-4 overflow-auto"
|
||||
id="main-scroll"
|
||||
>
|
||||
<Header />
|
||||
<Outlet />
|
||||
</div>
|
||||
{
|
||||
<SettingDialog
|
||||
show={showSettings}
|
||||
onClose={() => setShowSettings(false)}
|
||||
/>
|
||||
}
|
||||
</>
|
||||
);
|
||||
}
|
||||
|
||||
export default App;
|
92
examples/server/webui/src/Config.ts
Normal file
92
examples/server/webui/src/Config.ts
Normal file
|
@ -0,0 +1,92 @@
|
|||
import daisyuiThemes from 'daisyui/src/theming/themes';
|
||||
import { isNumeric } from './utils/misc';
|
||||
|
||||
export const isDev = import.meta.env.MODE === 'development';
|
||||
|
||||
// constants
|
||||
export const BASE_URL = new URL('.', document.baseURI).href
|
||||
.toString()
|
||||
.replace(/\/$/, '');
|
||||
|
||||
export const CONFIG_DEFAULT = {
|
||||
// Note: in order not to introduce breaking changes, please keep the same data type (number, string, etc) if you want to change the default value. Do not use null or undefined for default value.
|
||||
// Do not use nested objects, keep it single level. Prefix the key if you need to group them.
|
||||
apiKey: '',
|
||||
systemMessage: 'You are a helpful assistant.',
|
||||
showTokensPerSecond: false,
|
||||
showThoughtInProgress: false,
|
||||
excludeThoughtOnReq: true,
|
||||
// make sure these default values are in sync with `common.h`
|
||||
samplers: 'edkypmxt',
|
||||
temperature: 0.8,
|
||||
dynatemp_range: 0.0,
|
||||
dynatemp_exponent: 1.0,
|
||||
top_k: 40,
|
||||
top_p: 0.95,
|
||||
min_p: 0.05,
|
||||
xtc_probability: 0.0,
|
||||
xtc_threshold: 0.1,
|
||||
typical_p: 1.0,
|
||||
repeat_last_n: 64,
|
||||
repeat_penalty: 1.0,
|
||||
presence_penalty: 0.0,
|
||||
frequency_penalty: 0.0,
|
||||
dry_multiplier: 0.0,
|
||||
dry_base: 1.75,
|
||||
dry_allowed_length: 2,
|
||||
dry_penalty_last_n: -1,
|
||||
max_tokens: -1,
|
||||
custom: '', // custom json-stringified object
|
||||
// experimental features
|
||||
pyIntepreterEnabled: false,
|
||||
};
|
||||
export const CONFIG_INFO: Record<string, string> = {
|
||||
apiKey: 'Set the API Key if you are using --api-key option for the server.',
|
||||
systemMessage: 'The starting message that defines how model should behave.',
|
||||
samplers:
|
||||
'The order at which samplers are applied, in simplified way. Default is "dkypmxt": dry->top_k->typ_p->top_p->min_p->xtc->temperature',
|
||||
temperature:
|
||||
'Controls the randomness of the generated text by affecting the probability distribution of the output tokens. Higher = more random, lower = more focused.',
|
||||
dynatemp_range:
|
||||
'Addon for the temperature sampler. The added value to the range of dynamic temperature, which adjusts probabilities by entropy of tokens.',
|
||||
dynatemp_exponent:
|
||||
'Addon for the temperature sampler. Smoothes out the probability redistribution based on the most probable token.',
|
||||
top_k: 'Keeps only k top tokens.',
|
||||
top_p:
|
||||
'Limits tokens to those that together have a cumulative probability of at least p',
|
||||
min_p:
|
||||
'Limits tokens based on the minimum probability for a token to be considered, relative to the probability of the most likely token.',
|
||||
xtc_probability:
|
||||
'XTC sampler cuts out top tokens; this parameter controls the chance of cutting tokens at all. 0 disables XTC.',
|
||||
xtc_threshold:
|
||||
'XTC sampler cuts out top tokens; this parameter controls the token probability that is required to cut that token.',
|
||||
typical_p:
|
||||
'Sorts and limits tokens based on the difference between log-probability and entropy.',
|
||||
repeat_last_n: 'Last n tokens to consider for penalizing repetition',
|
||||
repeat_penalty:
|
||||
'Controls the repetition of token sequences in the generated text',
|
||||
presence_penalty:
|
||||
'Limits tokens based on whether they appear in the output or not.',
|
||||
frequency_penalty:
|
||||
'Limits tokens based on how often they appear in the output.',
|
||||
dry_multiplier:
|
||||
'DRY sampling reduces repetition in generated text even across long contexts. This parameter sets the DRY sampling multiplier.',
|
||||
dry_base:
|
||||
'DRY sampling reduces repetition in generated text even across long contexts. This parameter sets the DRY sampling base value.',
|
||||
dry_allowed_length:
|
||||
'DRY sampling reduces repetition in generated text even across long contexts. This parameter sets the allowed length for DRY sampling.',
|
||||
dry_penalty_last_n:
|
||||
'DRY sampling reduces repetition in generated text even across long contexts. This parameter sets DRY penalty for the last n tokens.',
|
||||
max_tokens: 'The maximum number of token per output.',
|
||||
custom: '', // custom json-stringified object
|
||||
};
|
||||
// config keys having numeric value (i.e. temperature, top_k, top_p, etc)
|
||||
export const CONFIG_NUMERIC_KEYS = Object.entries(CONFIG_DEFAULT)
|
||||
.filter((e) => isNumeric(e[1]))
|
||||
.map((e) => e[0]);
|
||||
// list of themes supported by daisyui
|
||||
export const THEMES = ['light', 'dark']
|
||||
// make sure light & dark are always at the beginning
|
||||
.concat(
|
||||
Object.keys(daisyuiThemes).filter((t) => t !== 'light' && t !== 'dark')
|
||||
);
|
195
examples/server/webui/src/components/CanvasPyInterpreter.tsx
Normal file
195
examples/server/webui/src/components/CanvasPyInterpreter.tsx
Normal file
|
@ -0,0 +1,195 @@
|
|||
import { useEffect, useState } from 'react';
|
||||
import { useAppContext } from '../utils/app.context';
|
||||
import { OpenInNewTab, XCloseButton } from '../utils/common';
|
||||
import { CanvasType } from '../utils/types';
|
||||
import { PlayIcon, StopIcon } from '@heroicons/react/24/outline';
|
||||
import StorageUtils from '../utils/storage';
|
||||
|
||||
const canInterrupt = typeof SharedArrayBuffer === 'function';
|
||||
|
||||
// adapted from https://pyodide.org/en/stable/usage/webworker.html
|
||||
const WORKER_CODE = `
|
||||
importScripts("https://cdn.jsdelivr.net/pyodide/v0.27.2/full/pyodide.js");
|
||||
|
||||
let stdOutAndErr = [];
|
||||
|
||||
let pyodideReadyPromise = loadPyodide({
|
||||
stdout: (data) => stdOutAndErr.push(data),
|
||||
stderr: (data) => stdOutAndErr.push(data),
|
||||
});
|
||||
|
||||
let alreadySetBuff = false;
|
||||
|
||||
self.onmessage = async (event) => {
|
||||
stdOutAndErr = [];
|
||||
|
||||
// make sure loading is done
|
||||
const pyodide = await pyodideReadyPromise;
|
||||
const { id, python, context, interruptBuffer } = event.data;
|
||||
|
||||
if (interruptBuffer && !alreadySetBuff) {
|
||||
pyodide.setInterruptBuffer(interruptBuffer);
|
||||
alreadySetBuff = true;
|
||||
}
|
||||
|
||||
// Now load any packages we need, run the code, and send the result back.
|
||||
await pyodide.loadPackagesFromImports(python);
|
||||
|
||||
// make a Python dictionary with the data from content
|
||||
const dict = pyodide.globals.get("dict");
|
||||
const globals = dict(Object.entries(context));
|
||||
try {
|
||||
self.postMessage({ id, running: true });
|
||||
// Execute the python code in this context
|
||||
const result = pyodide.runPython(python, { globals });
|
||||
self.postMessage({ result, id, stdOutAndErr });
|
||||
} catch (error) {
|
||||
self.postMessage({ error: error.message, id });
|
||||
}
|
||||
interruptBuffer[0] = 0;
|
||||
};
|
||||
`;
|
||||
|
||||
let worker: Worker;
|
||||
const interruptBuffer = canInterrupt
|
||||
? new Uint8Array(new SharedArrayBuffer(1))
|
||||
: null;
|
||||
|
||||
const startWorker = () => {
|
||||
if (!worker) {
|
||||
worker = new Worker(
|
||||
URL.createObjectURL(new Blob([WORKER_CODE], { type: 'text/javascript' }))
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
if (StorageUtils.getConfig().pyIntepreterEnabled) {
|
||||
startWorker();
|
||||
}
|
||||
|
||||
const runCodeInWorker = (
|
||||
pyCode: string,
|
||||
callbackRunning: () => void
|
||||
): {
|
||||
donePromise: Promise<string>;
|
||||
interrupt: () => void;
|
||||
} => {
|
||||
startWorker();
|
||||
const id = Math.random() * 1e8;
|
||||
const context = {};
|
||||
if (interruptBuffer) {
|
||||
interruptBuffer[0] = 0;
|
||||
}
|
||||
|
||||
const donePromise = new Promise<string>((resolve) => {
|
||||
worker.onmessage = (event) => {
|
||||
const { error, stdOutAndErr, running } = event.data;
|
||||
if (id !== event.data.id) return;
|
||||
if (running) {
|
||||
callbackRunning();
|
||||
return;
|
||||
} else if (error) {
|
||||
resolve(error.toString());
|
||||
} else {
|
||||
resolve(stdOutAndErr.join('\n'));
|
||||
}
|
||||
};
|
||||
worker.postMessage({ id, python: pyCode, context, interruptBuffer });
|
||||
});
|
||||
|
||||
const interrupt = () => {
|
||||
console.log('Interrupting...');
|
||||
console.trace();
|
||||
if (interruptBuffer) {
|
||||
interruptBuffer[0] = 2;
|
||||
}
|
||||
};
|
||||
|
||||
return { donePromise, interrupt };
|
||||
};
|
||||
|
||||
export default function CanvasPyInterpreter() {
|
||||
const { canvasData, setCanvasData } = useAppContext();
|
||||
|
||||
const [code, setCode] = useState(canvasData?.content ?? ''); // copy to avoid direct mutation
|
||||
const [running, setRunning] = useState(false);
|
||||
const [output, setOutput] = useState('');
|
||||
const [interruptFn, setInterruptFn] = useState<() => void>();
|
||||
const [showStopBtn, setShowStopBtn] = useState(false);
|
||||
|
||||
const runCode = async (pycode: string) => {
|
||||
interruptFn?.();
|
||||
setRunning(true);
|
||||
setOutput('Loading Pyodide...');
|
||||
const { donePromise, interrupt } = runCodeInWorker(pycode, () => {
|
||||
setOutput('Running...');
|
||||
setShowStopBtn(canInterrupt);
|
||||
});
|
||||
setInterruptFn(() => interrupt);
|
||||
const out = await donePromise;
|
||||
setOutput(out);
|
||||
setRunning(false);
|
||||
setShowStopBtn(false);
|
||||
};
|
||||
|
||||
// run code on mount
|
||||
useEffect(() => {
|
||||
setCode(canvasData?.content ?? '');
|
||||
runCode(canvasData?.content ?? '');
|
||||
// eslint-disable-next-line react-hooks/exhaustive-deps
|
||||
}, [canvasData?.content]);
|
||||
|
||||
if (canvasData?.type !== CanvasType.PY_INTERPRETER) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<div className="card bg-base-200 w-full h-full shadow-xl">
|
||||
<div className="card-body">
|
||||
<div className="flex justify-between items-center mb-4">
|
||||
<span className="text-lg font-bold">Python Interpreter</span>
|
||||
<XCloseButton
|
||||
className="bg-base-100"
|
||||
onClick={() => setCanvasData(null)}
|
||||
/>
|
||||
</div>
|
||||
<div className="grid grid-rows-3 gap-4 h-full">
|
||||
<textarea
|
||||
className="textarea textarea-bordered w-full h-full font-mono"
|
||||
value={code}
|
||||
onChange={(e) => setCode(e.target.value)}
|
||||
></textarea>
|
||||
<div className="font-mono flex flex-col row-span-2">
|
||||
<div className="flex items-center mb-2">
|
||||
<button
|
||||
className="btn btn-sm bg-base-100"
|
||||
onClick={() => runCode(code)}
|
||||
disabled={running}
|
||||
>
|
||||
<PlayIcon className="h-6 w-6" /> Run
|
||||
</button>
|
||||
{showStopBtn && (
|
||||
<button
|
||||
className="btn btn-sm bg-base-100 ml-2"
|
||||
onClick={() => interruptFn?.()}
|
||||
>
|
||||
<StopIcon className="h-6 w-6" /> Stop
|
||||
</button>
|
||||
)}
|
||||
<span className="grow text-right text-xs">
|
||||
<OpenInNewTab href="https://github.com/ggerganov/llama.cpp/issues/11762">
|
||||
Report a bug
|
||||
</OpenInNewTab>
|
||||
</span>
|
||||
</div>
|
||||
<textarea
|
||||
className="textarea textarea-bordered h-full dark-color"
|
||||
value={output}
|
||||
readOnly
|
||||
></textarea>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
}
|
235
examples/server/webui/src/components/ChatMessage.tsx
Normal file
235
examples/server/webui/src/components/ChatMessage.tsx
Normal file
|
@ -0,0 +1,235 @@
|
|||
import { useMemo, useState } from 'react';
|
||||
import { useAppContext } from '../utils/app.context';
|
||||
import { Message, PendingMessage } from '../utils/types';
|
||||
import { classNames } from '../utils/misc';
|
||||
import MarkdownDisplay, { CopyButton } from './MarkdownDisplay';
|
||||
|
||||
interface SplitMessage {
|
||||
content: PendingMessage['content'];
|
||||
thought?: string;
|
||||
isThinking?: boolean;
|
||||
}
|
||||
|
||||
export default function ChatMessage({
|
||||
msg,
|
||||
id,
|
||||
scrollToBottom,
|
||||
isPending,
|
||||
}: {
|
||||
msg: Message | PendingMessage;
|
||||
id?: string;
|
||||
scrollToBottom: (requiresNearBottom: boolean) => void;
|
||||
isPending?: boolean;
|
||||
}) {
|
||||
const { viewingConversation, replaceMessageAndGenerate, config } =
|
||||
useAppContext();
|
||||
const [editingContent, setEditingContent] = useState<string | null>(null);
|
||||
const timings = useMemo(
|
||||
() =>
|
||||
msg.timings
|
||||
? {
|
||||
...msg.timings,
|
||||
prompt_per_second:
|
||||
(msg.timings.prompt_n / msg.timings.prompt_ms) * 1000,
|
||||
predicted_per_second:
|
||||
(msg.timings.predicted_n / msg.timings.predicted_ms) * 1000,
|
||||
}
|
||||
: null,
|
||||
[msg.timings]
|
||||
);
|
||||
|
||||
// for reasoning model, we split the message into content and thought
|
||||
// TODO: implement this as remark/rehype plugin in the future
|
||||
const { content, thought, isThinking }: SplitMessage = useMemo(() => {
|
||||
if (msg.content === null || msg.role !== 'assistant') {
|
||||
return { content: msg.content };
|
||||
}
|
||||
let actualContent = '';
|
||||
let thought = '';
|
||||
let isThinking = false;
|
||||
let thinkSplit = msg.content.split('<think>', 2);
|
||||
actualContent += thinkSplit[0];
|
||||
while (thinkSplit[1] !== undefined) {
|
||||
// <think> tag found
|
||||
thinkSplit = thinkSplit[1].split('</think>', 2);
|
||||
thought += thinkSplit[0];
|
||||
isThinking = true;
|
||||
if (thinkSplit[1] !== undefined) {
|
||||
// </think> closing tag found
|
||||
isThinking = false;
|
||||
thinkSplit = thinkSplit[1].split('<think>', 2);
|
||||
actualContent += thinkSplit[0];
|
||||
}
|
||||
}
|
||||
return { content: actualContent, thought, isThinking };
|
||||
}, [msg]);
|
||||
|
||||
if (!viewingConversation) return null;
|
||||
|
||||
const regenerate = async () => {
|
||||
replaceMessageAndGenerate(viewingConversation.id, msg.id, undefined, () =>
|
||||
scrollToBottom(true)
|
||||
);
|
||||
};
|
||||
|
||||
return (
|
||||
<div className="group" id={id}>
|
||||
<div
|
||||
className={classNames({
|
||||
chat: true,
|
||||
'chat-start': msg.role !== 'user',
|
||||
'chat-end': msg.role === 'user',
|
||||
})}
|
||||
>
|
||||
<div
|
||||
className={classNames({
|
||||
'chat-bubble markdown': true,
|
||||
'chat-bubble-base-300': msg.role !== 'user',
|
||||
})}
|
||||
>
|
||||
{/* textarea for editing message */}
|
||||
{editingContent !== null && (
|
||||
<>
|
||||
<textarea
|
||||
dir="auto"
|
||||
className="textarea textarea-bordered bg-base-100 text-base-content max-w-2xl w-[calc(90vw-8em)] h-24"
|
||||
value={editingContent}
|
||||
onChange={(e) => setEditingContent(e.target.value)}
|
||||
></textarea>
|
||||
<br />
|
||||
<button
|
||||
className="btn btn-ghost mt-2 mr-2"
|
||||
onClick={() => setEditingContent(null)}
|
||||
>
|
||||
Cancel
|
||||
</button>
|
||||
<button
|
||||
className="btn mt-2"
|
||||
onClick={() =>
|
||||
replaceMessageAndGenerate(
|
||||
viewingConversation.id,
|
||||
msg.id,
|
||||
editingContent
|
||||
)
|
||||
}
|
||||
>
|
||||
Submit
|
||||
</button>
|
||||
</>
|
||||
)}
|
||||
{/* not editing content, render message */}
|
||||
{editingContent === null && (
|
||||
<>
|
||||
{content === null ? (
|
||||
<>
|
||||
{/* show loading dots for pending message */}
|
||||
<span className="loading loading-dots loading-md"></span>
|
||||
</>
|
||||
) : (
|
||||
<>
|
||||
{/* render message as markdown */}
|
||||
<div dir="auto">
|
||||
{thought && (
|
||||
<details
|
||||
className="collapse bg-base-200 collapse-arrow mb-4"
|
||||
open={isThinking && config.showThoughtInProgress}
|
||||
>
|
||||
<summary className="collapse-title">
|
||||
{isPending && isThinking ? (
|
||||
<span>
|
||||
<span
|
||||
v-if="isGenerating"
|
||||
className="loading loading-spinner loading-md mr-2"
|
||||
style={{ verticalAlign: 'middle' }}
|
||||
></span>
|
||||
<b>Thinking</b>
|
||||
</span>
|
||||
) : (
|
||||
<b>Thought Process</b>
|
||||
)}
|
||||
</summary>
|
||||
<div className="collapse-content">
|
||||
<MarkdownDisplay
|
||||
content={thought}
|
||||
isGenerating={isPending}
|
||||
/>
|
||||
</div>
|
||||
</details>
|
||||
)}
|
||||
<MarkdownDisplay
|
||||
content={content}
|
||||
isGenerating={isPending}
|
||||
/>
|
||||
</div>
|
||||
</>
|
||||
)}
|
||||
{/* render timings if enabled */}
|
||||
{timings && config.showTokensPerSecond && (
|
||||
<div className="dropdown dropdown-hover dropdown-top mt-2">
|
||||
<div
|
||||
tabIndex={0}
|
||||
role="button"
|
||||
className="cursor-pointer font-semibold text-sm opacity-60"
|
||||
>
|
||||
Speed: {timings.predicted_per_second.toFixed(1)} t/s
|
||||
</div>
|
||||
<div className="dropdown-content bg-base-100 z-10 w-64 p-2 shadow mt-4">
|
||||
<b>Prompt</b>
|
||||
<br />- Tokens: {timings.prompt_n}
|
||||
<br />- Time: {timings.prompt_ms} ms
|
||||
<br />- Speed: {timings.prompt_per_second.toFixed(1)} t/s
|
||||
<br />
|
||||
<b>Generation</b>
|
||||
<br />- Tokens: {timings.predicted_n}
|
||||
<br />- Time: {timings.predicted_ms} ms
|
||||
<br />- Speed: {timings.predicted_per_second.toFixed(1)} t/s
|
||||
<br />
|
||||
</div>
|
||||
</div>
|
||||
)}
|
||||
</>
|
||||
)}
|
||||
</div>
|
||||
</div>
|
||||
|
||||
{/* actions for each message */}
|
||||
{msg.content !== null && (
|
||||
<div
|
||||
className={classNames({
|
||||
'mx-4 mt-2 mb-2': true,
|
||||
'text-right': msg.role === 'user',
|
||||
})}
|
||||
>
|
||||
{/* user message */}
|
||||
{msg.role === 'user' && (
|
||||
<button
|
||||
className="badge btn-mini show-on-hover"
|
||||
onClick={() => setEditingContent(msg.content)}
|
||||
disabled={msg.content === null}
|
||||
>
|
||||
✍️ Edit
|
||||
</button>
|
||||
)}
|
||||
{/* assistant message */}
|
||||
{msg.role === 'assistant' && (
|
||||
<>
|
||||
{!isPending && (
|
||||
<button
|
||||
className="badge btn-mini show-on-hover mr-2"
|
||||
onClick={regenerate}
|
||||
disabled={msg.content === null}
|
||||
>
|
||||
🔄 Regenerate
|
||||
</button>
|
||||
)}
|
||||
<CopyButton
|
||||
className="badge btn-mini show-on-hover mr-2"
|
||||
content={msg.content}
|
||||
/>
|
||||
</>
|
||||
)}
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
);
|
||||
}
|
146
examples/server/webui/src/components/ChatScreen.tsx
Normal file
146
examples/server/webui/src/components/ChatScreen.tsx
Normal file
|
@ -0,0 +1,146 @@
|
|||
import { useEffect, useState } from 'react';
|
||||
import { useAppContext } from '../utils/app.context';
|
||||
import StorageUtils from '../utils/storage';
|
||||
import { useNavigate } from 'react-router';
|
||||
import ChatMessage from './ChatMessage';
|
||||
import { CanvasType, PendingMessage } from '../utils/types';
|
||||
import { classNames } from '../utils/misc';
|
||||
import CanvasPyInterpreter from './CanvasPyInterpreter';
|
||||
|
||||
export default function ChatScreen() {
|
||||
const {
|
||||
viewingConversation,
|
||||
sendMessage,
|
||||
isGenerating,
|
||||
stopGenerating,
|
||||
pendingMessages,
|
||||
canvasData,
|
||||
} = useAppContext();
|
||||
const [inputMsg, setInputMsg] = useState('');
|
||||
const navigate = useNavigate();
|
||||
|
||||
const currConvId = viewingConversation?.id ?? '';
|
||||
const pendingMsg: PendingMessage | undefined = pendingMessages[currConvId];
|
||||
|
||||
const scrollToBottom = (requiresNearBottom: boolean) => {
|
||||
const mainScrollElem = document.getElementById('main-scroll');
|
||||
if (!mainScrollElem) return;
|
||||
const spaceToBottom =
|
||||
mainScrollElem.scrollHeight -
|
||||
mainScrollElem.scrollTop -
|
||||
mainScrollElem.clientHeight;
|
||||
if (!requiresNearBottom || spaceToBottom < 50) {
|
||||
setTimeout(
|
||||
() => mainScrollElem.scrollTo({ top: mainScrollElem.scrollHeight }),
|
||||
1
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
// scroll to bottom when conversation changes
|
||||
useEffect(() => {
|
||||
scrollToBottom(false);
|
||||
}, [viewingConversation?.id]);
|
||||
|
||||
const sendNewMessage = async () => {
|
||||
if (inputMsg.trim().length === 0 || isGenerating(currConvId)) return;
|
||||
const convId = viewingConversation?.id ?? StorageUtils.getNewConvId();
|
||||
const lastInpMsg = inputMsg;
|
||||
setInputMsg('');
|
||||
if (!viewingConversation) {
|
||||
// if user is creating a new conversation, redirect to the new conversation
|
||||
navigate(`/chat/${convId}`);
|
||||
}
|
||||
scrollToBottom(false);
|
||||
// auto scroll as message is being generated
|
||||
const onChunk = () => scrollToBottom(true);
|
||||
if (!(await sendMessage(convId, inputMsg, onChunk))) {
|
||||
// restore the input message if failed
|
||||
setInputMsg(lastInpMsg);
|
||||
}
|
||||
};
|
||||
|
||||
const hasCanvas = !!canvasData;
|
||||
|
||||
return (
|
||||
<div
|
||||
className={classNames({
|
||||
'grid lg:gap-8 grow transition-[300ms]': true,
|
||||
'grid-cols-[1fr_0fr] lg:grid-cols-[1fr_1fr]': hasCanvas, // adapted for mobile
|
||||
'grid-cols-[1fr_0fr]': !hasCanvas,
|
||||
})}
|
||||
>
|
||||
<div
|
||||
className={classNames({
|
||||
'flex flex-col w-full max-w-[900px] mx-auto': true,
|
||||
'hidden lg:flex': hasCanvas, // adapted for mobile
|
||||
flex: !hasCanvas,
|
||||
})}
|
||||
>
|
||||
{/* chat messages */}
|
||||
<div id="messages-list" className="grow">
|
||||
<div className="mt-auto flex justify-center">
|
||||
{/* placeholder to shift the message to the bottom */}
|
||||
{viewingConversation ? '' : 'Send a message to start'}
|
||||
</div>
|
||||
{viewingConversation?.messages.map((msg) => (
|
||||
<ChatMessage
|
||||
key={msg.id}
|
||||
msg={msg}
|
||||
scrollToBottom={scrollToBottom}
|
||||
/>
|
||||
))}
|
||||
|
||||
{pendingMsg && (
|
||||
<ChatMessage
|
||||
msg={pendingMsg}
|
||||
scrollToBottom={scrollToBottom}
|
||||
isPending
|
||||
id="pending-msg"
|
||||
/>
|
||||
)}
|
||||
</div>
|
||||
|
||||
{/* chat input */}
|
||||
<div className="flex flex-row items-center pt-8 pb-6 sticky bottom-0 bg-base-100">
|
||||
<textarea
|
||||
className="textarea textarea-bordered w-full"
|
||||
placeholder="Type a message (Shift+Enter to add a new line)"
|
||||
value={inputMsg}
|
||||
onChange={(e) => setInputMsg(e.target.value)}
|
||||
onKeyDown={(e) => {
|
||||
if (e.key === 'Enter' && e.shiftKey) return;
|
||||
if (e.key === 'Enter' && !e.shiftKey) {
|
||||
e.preventDefault();
|
||||
sendNewMessage();
|
||||
}
|
||||
}}
|
||||
id="msg-input"
|
||||
dir="auto"
|
||||
></textarea>
|
||||
{isGenerating(currConvId) ? (
|
||||
<button
|
||||
className="btn btn-neutral ml-2"
|
||||
onClick={() => stopGenerating(currConvId)}
|
||||
>
|
||||
Stop
|
||||
</button>
|
||||
) : (
|
||||
<button
|
||||
className="btn btn-primary ml-2"
|
||||
onClick={sendNewMessage}
|
||||
disabled={inputMsg.trim().length === 0}
|
||||
>
|
||||
Send
|
||||
</button>
|
||||
)}
|
||||
</div>
|
||||
</div>
|
||||
<div className="w-full sticky top-[7em] h-[calc(100vh-9em)]">
|
||||
{canvasData?.type === CanvasType.PY_INTERPRETER && (
|
||||
<CanvasPyInterpreter />
|
||||
)}
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
}
|
176
examples/server/webui/src/components/Header.tsx
Normal file
176
examples/server/webui/src/components/Header.tsx
Normal file
|
@ -0,0 +1,176 @@
|
|||
import { useEffect, useState } from 'react';
|
||||
import StorageUtils from '../utils/storage';
|
||||
import { useAppContext } from '../utils/app.context';
|
||||
import { classNames } from '../utils/misc';
|
||||
import daisyuiThemes from 'daisyui/src/theming/themes';
|
||||
import { THEMES } from '../Config';
|
||||
import { useNavigate } from 'react-router';
|
||||
|
||||
export default function Header() {
|
||||
const navigate = useNavigate();
|
||||
const [selectedTheme, setSelectedTheme] = useState(StorageUtils.getTheme());
|
||||
const { setShowSettings } = useAppContext();
|
||||
|
||||
const setTheme = (theme: string) => {
|
||||
StorageUtils.setTheme(theme);
|
||||
setSelectedTheme(theme);
|
||||
};
|
||||
|
||||
useEffect(() => {
|
||||
document.body.setAttribute('data-theme', selectedTheme);
|
||||
document.body.setAttribute(
|
||||
'data-color-scheme',
|
||||
// @ts-expect-error daisyuiThemes complains about index type, but it should work
|
||||
daisyuiThemes[selectedTheme]?.['color-scheme'] ?? 'auto'
|
||||
);
|
||||
}, [selectedTheme]);
|
||||
|
||||
const { isGenerating, viewingConversation } = useAppContext();
|
||||
const isCurrConvGenerating = isGenerating(viewingConversation?.id ?? '');
|
||||
|
||||
const removeConversation = () => {
|
||||
if (isCurrConvGenerating || !viewingConversation) return;
|
||||
const convId = viewingConversation.id;
|
||||
if (window.confirm('Are you sure to delete this conversation?')) {
|
||||
StorageUtils.remove(convId);
|
||||
navigate('/');
|
||||
}
|
||||
};
|
||||
|
||||
const downloadConversation = () => {
|
||||
if (isCurrConvGenerating || !viewingConversation) return;
|
||||
const convId = viewingConversation.id;
|
||||
const conversationJson = JSON.stringify(viewingConversation, null, 2);
|
||||
const blob = new Blob([conversationJson], { type: 'application/json' });
|
||||
const url = URL.createObjectURL(blob);
|
||||
const a = document.createElement('a');
|
||||
a.href = url;
|
||||
a.download = `conversation_${convId}.json`;
|
||||
document.body.appendChild(a);
|
||||
a.click();
|
||||
document.body.removeChild(a);
|
||||
URL.revokeObjectURL(url);
|
||||
};
|
||||
|
||||
return (
|
||||
<div className="flex flex-row items-center pt-6 pb-6 sticky top-0 z-10 bg-base-100">
|
||||
{/* open sidebar button */}
|
||||
<label htmlFor="toggle-drawer" className="btn btn-ghost lg:hidden">
|
||||
<svg
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
width="16"
|
||||
height="16"
|
||||
fill="currentColor"
|
||||
className="bi bi-list"
|
||||
viewBox="0 0 16 16"
|
||||
>
|
||||
<path
|
||||
fillRule="evenodd"
|
||||
d="M2.5 12a.5.5 0 0 1 .5-.5h10a.5.5 0 0 1 0 1H3a.5.5 0 0 1-.5-.5m0-4a.5.5 0 0 1 .5-.5h10a.5.5 0 0 1 0 1H3a.5.5 0 0 1-.5-.5m0-4a.5.5 0 0 1 .5-.5h10a.5.5 0 0 1 0 1H3a.5.5 0 0 1-.5-.5"
|
||||
/>
|
||||
</svg>
|
||||
</label>
|
||||
|
||||
<div className="grow text-2xl font-bold ml-2">llama.cpp</div>
|
||||
|
||||
{/* action buttons (top right) */}
|
||||
<div className="flex items-center">
|
||||
<div v-if="messages.length > 0" className="dropdown dropdown-end">
|
||||
{/* "..." button */}
|
||||
<button
|
||||
tabIndex={0}
|
||||
role="button"
|
||||
className="btn m-1"
|
||||
disabled={isCurrConvGenerating}
|
||||
>
|
||||
<svg
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
width="16"
|
||||
height="16"
|
||||
fill="currentColor"
|
||||
className="bi bi-three-dots-vertical"
|
||||
viewBox="0 0 16 16"
|
||||
>
|
||||
<path d="M9.5 13a1.5 1.5 0 1 1-3 0 1.5 1.5 0 0 1 3 0m0-5a1.5 1.5 0 1 1-3 0 1.5 1.5 0 0 1 3 0m0-5a1.5 1.5 0 1 1-3 0 1.5 1.5 0 0 1 3 0" />
|
||||
</svg>
|
||||
</button>
|
||||
{/* dropdown menu */}
|
||||
<ul
|
||||
tabIndex={0}
|
||||
className="dropdown-content menu bg-base-100 rounded-box z-[1] w-52 p-2 shadow"
|
||||
>
|
||||
<li onClick={downloadConversation}>
|
||||
<a>Download</a>
|
||||
</li>
|
||||
<li className="text-error" onClick={removeConversation}>
|
||||
<a>Delete</a>
|
||||
</li>
|
||||
</ul>
|
||||
</div>
|
||||
<div className="tooltip tooltip-bottom" data-tip="Settings">
|
||||
<button className="btn" onClick={() => setShowSettings(true)}>
|
||||
{/* settings button */}
|
||||
<svg
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
width="16"
|
||||
height="16"
|
||||
fill="currentColor"
|
||||
className="bi bi-gear"
|
||||
viewBox="0 0 16 16"
|
||||
>
|
||||
<path d="M8 4.754a3.246 3.246 0 1 0 0 6.492 3.246 3.246 0 0 0 0-6.492M5.754 8a2.246 2.246 0 1 1 4.492 0 2.246 2.246 0 0 1-4.492 0" />
|
||||
<path d="M9.796 1.343c-.527-1.79-3.065-1.79-3.592 0l-.094.319a.873.873 0 0 1-1.255.52l-.292-.16c-1.64-.892-3.433.902-2.54 2.541l.159.292a.873.873 0 0 1-.52 1.255l-.319.094c-1.79.527-1.79 3.065 0 3.592l.319.094a.873.873 0 0 1 .52 1.255l-.16.292c-.892 1.64.901 3.434 2.541 2.54l.292-.159a.873.873 0 0 1 1.255.52l.094.319c.527 1.79 3.065 1.79 3.592 0l.094-.319a.873.873 0 0 1 1.255-.52l.292.16c1.64.893 3.434-.902 2.54-2.541l-.159-.292a.873.873 0 0 1 .52-1.255l.319-.094c1.79-.527 1.79-3.065 0-3.592l-.319-.094a.873.873 0 0 1-.52-1.255l.16-.292c.893-1.64-.902-3.433-2.541-2.54l-.292.159a.873.873 0 0 1-1.255-.52zm-2.633.283c.246-.835 1.428-.835 1.674 0l.094.319a1.873 1.873 0 0 0 2.693 1.115l.291-.16c.764-.415 1.6.42 1.184 1.185l-.159.292a1.873 1.873 0 0 0 1.116 2.692l.318.094c.835.246.835 1.428 0 1.674l-.319.094a1.873 1.873 0 0 0-1.115 2.693l.16.291c.415.764-.42 1.6-1.185 1.184l-.291-.159a1.873 1.873 0 0 0-2.693 1.116l-.094.318c-.246.835-1.428.835-1.674 0l-.094-.319a1.873 1.873 0 0 0-2.692-1.115l-.292.16c-.764.415-1.6-.42-1.184-1.185l.159-.291A1.873 1.873 0 0 0 1.945 8.93l-.319-.094c-.835-.246-.835-1.428 0-1.674l.319-.094A1.873 1.873 0 0 0 3.06 4.377l-.16-.292c-.415-.764.42-1.6 1.185-1.184l.292.159a1.873 1.873 0 0 0 2.692-1.115z" />
|
||||
</svg>
|
||||
</button>
|
||||
</div>
|
||||
|
||||
{/* theme controller is copied from https://daisyui.com/components/theme-controller/ */}
|
||||
<div className="tooltip tooltip-bottom" data-tip="Themes">
|
||||
<div className="dropdown dropdown-end dropdown-bottom">
|
||||
<div tabIndex={0} role="button" className="btn m-1">
|
||||
<svg
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
width="16"
|
||||
height="16"
|
||||
fill="currentColor"
|
||||
className="bi bi-palette2"
|
||||
viewBox="0 0 16 16"
|
||||
>
|
||||
<path d="M0 .5A.5.5 0 0 1 .5 0h5a.5.5 0 0 1 .5.5v5.277l4.147-4.131a.5.5 0 0 1 .707 0l3.535 3.536a.5.5 0 0 1 0 .708L10.261 10H15.5a.5.5 0 0 1 .5.5v5a.5.5 0 0 1-.5.5H3a3 3 0 0 1-2.121-.879A3 3 0 0 1 0 13.044m6-.21 7.328-7.3-2.829-2.828L6 7.188zM4.5 13a1.5 1.5 0 1 0-3 0 1.5 1.5 0 0 0 3 0M15 15v-4H9.258l-4.015 4zM0 .5v12.495zm0 12.495V13z" />
|
||||
</svg>
|
||||
</div>
|
||||
<ul
|
||||
tabIndex={0}
|
||||
className="dropdown-content bg-base-300 rounded-box z-[1] w-52 p-2 shadow-2xl h-80 overflow-y-auto"
|
||||
>
|
||||
<li>
|
||||
<button
|
||||
className={classNames({
|
||||
'btn btn-sm btn-block btn-ghost justify-start': true,
|
||||
'btn-active': selectedTheme === 'auto',
|
||||
})}
|
||||
onClick={() => setTheme('auto')}
|
||||
>
|
||||
auto
|
||||
</button>
|
||||
</li>
|
||||
{THEMES.map((theme) => (
|
||||
<li key={theme}>
|
||||
<input
|
||||
type="radio"
|
||||
name="theme-dropdown"
|
||||
className="theme-controller btn btn-sm btn-block btn-ghost justify-start"
|
||||
aria-label={theme}
|
||||
value={theme}
|
||||
checked={selectedTheme === theme}
|
||||
onChange={(e) => e.target.checked && setTheme(theme)}
|
||||
/>
|
||||
</li>
|
||||
))}
|
||||
</ul>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
}
|
310
examples/server/webui/src/components/MarkdownDisplay.tsx
Normal file
310
examples/server/webui/src/components/MarkdownDisplay.tsx
Normal file
|
@ -0,0 +1,310 @@
|
|||
import React, { useMemo, useState } from 'react';
|
||||
import Markdown, { ExtraProps } from 'react-markdown';
|
||||
import remarkGfm from 'remark-gfm';
|
||||
import rehypeHightlight from 'rehype-highlight';
|
||||
import rehypeKatex from 'rehype-katex';
|
||||
import remarkMath from 'remark-math';
|
||||
import remarkBreaks from 'remark-breaks';
|
||||
import 'katex/dist/katex.min.css';
|
||||
import { classNames, copyStr } from '../utils/misc';
|
||||
import { ElementContent, Root } from 'hast';
|
||||
import { visit } from 'unist-util-visit';
|
||||
import { useAppContext } from '../utils/app.context';
|
||||
import { CanvasType } from '../utils/types';
|
||||
|
||||
export default function MarkdownDisplay({
|
||||
content,
|
||||
isGenerating,
|
||||
}: {
|
||||
content: string;
|
||||
isGenerating?: boolean;
|
||||
}) {
|
||||
const preprocessedContent = useMemo(
|
||||
() => preprocessLaTeX(content),
|
||||
[content]
|
||||
);
|
||||
return (
|
||||
<Markdown
|
||||
remarkPlugins={[remarkGfm, remarkMath, remarkBreaks]}
|
||||
rehypePlugins={[rehypeHightlight, rehypeKatex, rehypeCustomCopyButton]}
|
||||
components={{
|
||||
button: (props) => (
|
||||
<CodeBlockButtons
|
||||
{...props}
|
||||
isGenerating={isGenerating}
|
||||
origContent={preprocessedContent}
|
||||
/>
|
||||
),
|
||||
// note: do not use "pre", "p" or other basic html elements here, it will cause the node to re-render when the message is being generated (this should be a bug with react-markdown, not sure how to fix it)
|
||||
}}
|
||||
>
|
||||
{preprocessedContent}
|
||||
</Markdown>
|
||||
);
|
||||
}
|
||||
|
||||
const CodeBlockButtons: React.ElementType<
|
||||
React.ClassAttributes<HTMLButtonElement> &
|
||||
React.HTMLAttributes<HTMLButtonElement> &
|
||||
ExtraProps & { origContent: string; isGenerating?: boolean }
|
||||
> = ({ node, origContent, isGenerating }) => {
|
||||
const { config } = useAppContext();
|
||||
const startOffset = node?.position?.start.offset ?? 0;
|
||||
const endOffset = node?.position?.end.offset ?? 0;
|
||||
|
||||
const copiedContent = useMemo(
|
||||
() =>
|
||||
origContent
|
||||
.substring(startOffset, endOffset)
|
||||
.replace(/^```[^\n]+\n/g, '')
|
||||
.replace(/```$/g, ''),
|
||||
[origContent, startOffset, endOffset]
|
||||
);
|
||||
|
||||
const codeLanguage = useMemo(
|
||||
() =>
|
||||
origContent
|
||||
.substring(startOffset, startOffset + 10)
|
||||
.match(/^```([^\n]+)\n/)?.[1] ?? '',
|
||||
[origContent, startOffset]
|
||||
);
|
||||
|
||||
const canRunCode =
|
||||
!isGenerating &&
|
||||
config.pyIntepreterEnabled &&
|
||||
codeLanguage.startsWith('py');
|
||||
|
||||
return (
|
||||
<div
|
||||
className={classNames({
|
||||
'text-right sticky top-[7em] mb-2 mr-2 h-0': true,
|
||||
'display-none': !node?.position,
|
||||
})}
|
||||
>
|
||||
<CopyButton className="badge btn-mini" content={copiedContent} />
|
||||
{canRunCode && (
|
||||
<RunPyCodeButton
|
||||
className="badge btn-mini ml-2"
|
||||
content={copiedContent}
|
||||
/>
|
||||
)}
|
||||
</div>
|
||||
);
|
||||
};
|
||||
|
||||
export const CopyButton = ({
|
||||
content,
|
||||
className,
|
||||
}: {
|
||||
content: string;
|
||||
className?: string;
|
||||
}) => {
|
||||
const [copied, setCopied] = useState(false);
|
||||
return (
|
||||
<button
|
||||
className={className}
|
||||
onClick={() => {
|
||||
copyStr(content);
|
||||
setCopied(true);
|
||||
}}
|
||||
onMouseLeave={() => setCopied(false)}
|
||||
>
|
||||
{copied ? 'Copied!' : '📋 Copy'}
|
||||
</button>
|
||||
);
|
||||
};
|
||||
|
||||
export const RunPyCodeButton = ({
|
||||
content,
|
||||
className,
|
||||
}: {
|
||||
content: string;
|
||||
className?: string;
|
||||
}) => {
|
||||
const { setCanvasData } = useAppContext();
|
||||
return (
|
||||
<>
|
||||
<button
|
||||
className={className}
|
||||
onClick={() =>
|
||||
setCanvasData({
|
||||
type: CanvasType.PY_INTERPRETER,
|
||||
content,
|
||||
})
|
||||
}
|
||||
>
|
||||
▶️ Run
|
||||
</button>
|
||||
</>
|
||||
);
|
||||
};
|
||||
|
||||
/**
|
||||
* This injects the "button" element before each "pre" element.
|
||||
* The actual button will be replaced with a react component in the MarkdownDisplay.
|
||||
* We don't replace "pre" node directly because it will cause the node to re-render, which causes this bug: https://github.com/ggerganov/llama.cpp/issues/9608
|
||||
*/
|
||||
function rehypeCustomCopyButton() {
|
||||
return function (tree: Root) {
|
||||
visit(tree, 'element', function (node) {
|
||||
if (node.tagName === 'pre' && !node.properties.visited) {
|
||||
const preNode = { ...node };
|
||||
// replace current node
|
||||
preNode.properties.visited = 'true';
|
||||
node.tagName = 'div';
|
||||
node.properties = {};
|
||||
// add node for button
|
||||
const btnNode: ElementContent = {
|
||||
type: 'element',
|
||||
tagName: 'button',
|
||||
properties: {},
|
||||
children: [],
|
||||
position: node.position,
|
||||
};
|
||||
node.children = [btnNode, preNode];
|
||||
}
|
||||
});
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* The part below is copied and adapted from:
|
||||
* https://github.com/danny-avila/LibreChat/blob/main/client/src/utils/latex.ts
|
||||
* (MIT License)
|
||||
*/
|
||||
|
||||
// Regex to check if the processed content contains any potential LaTeX patterns
|
||||
const containsLatexRegex =
|
||||
/\\\(.*?\\\)|\\\[.*?\\\]|\$.*?\$|\\begin\{equation\}.*?\\end\{equation\}/;
|
||||
|
||||
// Regex for inline and block LaTeX expressions
|
||||
const inlineLatex = new RegExp(/\\\((.+?)\\\)/, 'g');
|
||||
const blockLatex = new RegExp(/\\\[(.*?[^\\])\\\]/, 'gs');
|
||||
|
||||
// Function to restore code blocks
|
||||
const restoreCodeBlocks = (content: string, codeBlocks: string[]) => {
|
||||
return content.replace(
|
||||
/<<CODE_BLOCK_(\d+)>>/g,
|
||||
(_, index) => codeBlocks[index]
|
||||
);
|
||||
};
|
||||
|
||||
// Regex to identify code blocks and inline code
|
||||
const codeBlockRegex = /(```[\s\S]*?```|`.*?`)/g;
|
||||
|
||||
export const processLaTeX = (_content: string) => {
|
||||
let content = _content;
|
||||
// Temporarily replace code blocks and inline code with placeholders
|
||||
const codeBlocks: string[] = [];
|
||||
let index = 0;
|
||||
content = content.replace(codeBlockRegex, (match) => {
|
||||
codeBlocks[index] = match;
|
||||
return `<<CODE_BLOCK_${index++}>>`;
|
||||
});
|
||||
|
||||
// Escape dollar signs followed by a digit or space and digit
|
||||
let processedContent = content.replace(/(\$)(?=\s?\d)/g, '\\$');
|
||||
|
||||
// If no LaTeX patterns are found, restore code blocks and return the processed content
|
||||
if (!containsLatexRegex.test(processedContent)) {
|
||||
return restoreCodeBlocks(processedContent, codeBlocks);
|
||||
}
|
||||
|
||||
// Convert LaTeX expressions to a markdown compatible format
|
||||
processedContent = processedContent
|
||||
.replace(inlineLatex, (_: string, equation: string) => `$${equation}$`) // Convert inline LaTeX
|
||||
.replace(blockLatex, (_: string, equation: string) => `$$${equation}$$`); // Convert block LaTeX
|
||||
|
||||
// Restore code blocks
|
||||
return restoreCodeBlocks(processedContent, codeBlocks);
|
||||
};
|
||||
|
||||
/**
|
||||
* Preprocesses LaTeX content by replacing delimiters and escaping certain characters.
|
||||
*
|
||||
* @param content The input string containing LaTeX expressions.
|
||||
* @returns The processed string with replaced delimiters and escaped characters.
|
||||
*/
|
||||
export function preprocessLaTeX(content: string): string {
|
||||
// Step 1: Protect code blocks
|
||||
const codeBlocks: string[] = [];
|
||||
content = content.replace(/(```[\s\S]*?```|`[^`\n]+`)/g, (_, code) => {
|
||||
codeBlocks.push(code);
|
||||
return `<<CODE_BLOCK_${codeBlocks.length - 1}>>`;
|
||||
});
|
||||
|
||||
// Step 2: Protect existing LaTeX expressions
|
||||
const latexExpressions: string[] = [];
|
||||
|
||||
// Protect block math ($$...$$), \[...\], and \(...\) as before.
|
||||
content = content.replace(
|
||||
/(\$\$[\s\S]*?\$\$|\\\[[\s\S]*?\\\]|\\\(.*?\\\))/g,
|
||||
(match) => {
|
||||
latexExpressions.push(match);
|
||||
return `<<LATEX_${latexExpressions.length - 1}>>`;
|
||||
}
|
||||
);
|
||||
|
||||
// Protect inline math ($...$) only if it does NOT match a currency pattern.
|
||||
// We assume a currency pattern is one where the inner content is purely numeric (with optional decimals).
|
||||
content = content.replace(/\$([^$]+)\$/g, (match, inner) => {
|
||||
if (/^\s*\d+(?:\.\d+)?\s*$/.test(inner)) {
|
||||
// This looks like a currency value (e.g. "$123" or "$12.34"),
|
||||
// so don't protect it.
|
||||
return match;
|
||||
} else {
|
||||
// Otherwise, treat it as a LaTeX expression.
|
||||
latexExpressions.push(match);
|
||||
return `<<LATEX_${latexExpressions.length - 1}>>`;
|
||||
}
|
||||
});
|
||||
|
||||
// Step 3: Escape dollar signs that are likely currency indicators.
|
||||
// (Now that inline math is protected, this will only escape dollars not already protected)
|
||||
content = content.replace(/\$(?=\d)/g, '\\$');
|
||||
|
||||
// Step 4: Restore LaTeX expressions
|
||||
content = content.replace(
|
||||
/<<LATEX_(\d+)>>/g,
|
||||
(_, index) => latexExpressions[parseInt(index)]
|
||||
);
|
||||
|
||||
// Step 5: Restore code blocks
|
||||
content = content.replace(
|
||||
/<<CODE_BLOCK_(\d+)>>/g,
|
||||
(_, index) => codeBlocks[parseInt(index)]
|
||||
);
|
||||
|
||||
// Step 6: Apply additional escaping functions
|
||||
content = escapeBrackets(content);
|
||||
content = escapeMhchem(content);
|
||||
|
||||
return content;
|
||||
}
|
||||
|
||||
export function escapeBrackets(text: string): string {
|
||||
const pattern =
|
||||
/(```[\S\s]*?```|`.*?`)|\\\[([\S\s]*?[^\\])\\]|\\\((.*?)\\\)/g;
|
||||
return text.replace(
|
||||
pattern,
|
||||
(
|
||||
match: string,
|
||||
codeBlock: string | undefined,
|
||||
squareBracket: string | undefined,
|
||||
roundBracket: string | undefined
|
||||
): string => {
|
||||
if (codeBlock != null) {
|
||||
return codeBlock;
|
||||
} else if (squareBracket != null) {
|
||||
return `$$${squareBracket}$$`;
|
||||
} else if (roundBracket != null) {
|
||||
return `$${roundBracket}$`;
|
||||
}
|
||||
return match;
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
export function escapeMhchem(text: string) {
|
||||
return text.replaceAll('$\\ce{', '$\\\\ce{').replaceAll('$\\pu{', '$\\\\pu{');
|
||||
}
|
536
examples/server/webui/src/components/SettingDialog.tsx
Normal file
536
examples/server/webui/src/components/SettingDialog.tsx
Normal file
|
@ -0,0 +1,536 @@
|
|||
import { useState } from 'react';
|
||||
import { useAppContext } from '../utils/app.context';
|
||||
import { CONFIG_DEFAULT, CONFIG_INFO } from '../Config';
|
||||
import { isDev } from '../Config';
|
||||
import StorageUtils from '../utils/storage';
|
||||
import { classNames, isBoolean, isNumeric, isString } from '../utils/misc';
|
||||
import {
|
||||
BeakerIcon,
|
||||
ChatBubbleOvalLeftEllipsisIcon,
|
||||
Cog6ToothIcon,
|
||||
FunnelIcon,
|
||||
HandRaisedIcon,
|
||||
SquaresPlusIcon,
|
||||
} from '@heroicons/react/24/outline';
|
||||
import { OpenInNewTab } from '../utils/common';
|
||||
|
||||
type SettKey = keyof typeof CONFIG_DEFAULT;
|
||||
|
||||
const BASIC_KEYS: SettKey[] = [
|
||||
'temperature',
|
||||
'top_k',
|
||||
'top_p',
|
||||
'min_p',
|
||||
'max_tokens',
|
||||
];
|
||||
const SAMPLER_KEYS: SettKey[] = [
|
||||
'dynatemp_range',
|
||||
'dynatemp_exponent',
|
||||
'typical_p',
|
||||
'xtc_probability',
|
||||
'xtc_threshold',
|
||||
];
|
||||
const PENALTY_KEYS: SettKey[] = [
|
||||
'repeat_last_n',
|
||||
'repeat_penalty',
|
||||
'presence_penalty',
|
||||
'frequency_penalty',
|
||||
'dry_multiplier',
|
||||
'dry_base',
|
||||
'dry_allowed_length',
|
||||
'dry_penalty_last_n',
|
||||
];
|
||||
|
||||
enum SettingInputType {
|
||||
SHORT_INPUT,
|
||||
LONG_INPUT,
|
||||
CHECKBOX,
|
||||
CUSTOM,
|
||||
}
|
||||
|
||||
interface SettingFieldInput {
|
||||
type: Exclude<SettingInputType, SettingInputType.CUSTOM>;
|
||||
label: string | React.ReactElement;
|
||||
help?: string | React.ReactElement;
|
||||
key: SettKey;
|
||||
}
|
||||
|
||||
interface SettingFieldCustom {
|
||||
type: SettingInputType.CUSTOM;
|
||||
key: SettKey;
|
||||
component:
|
||||
| string
|
||||
| React.FC<{
|
||||
value: string | boolean | number;
|
||||
onChange: (value: string) => void;
|
||||
}>;
|
||||
}
|
||||
|
||||
interface SettingSection {
|
||||
title: React.ReactElement;
|
||||
fields: (SettingFieldInput | SettingFieldCustom)[];
|
||||
}
|
||||
|
||||
const ICON_CLASSNAME = 'w-4 h-4 mr-1 inline';
|
||||
|
||||
const SETTING_SECTIONS: SettingSection[] = [
|
||||
{
|
||||
title: (
|
||||
<>
|
||||
<Cog6ToothIcon className={ICON_CLASSNAME} />
|
||||
General
|
||||
</>
|
||||
),
|
||||
fields: [
|
||||
{
|
||||
type: SettingInputType.SHORT_INPUT,
|
||||
label: 'API Key',
|
||||
key: 'apiKey',
|
||||
},
|
||||
{
|
||||
type: SettingInputType.LONG_INPUT,
|
||||
label: 'System Message (will be disabled if left empty)',
|
||||
key: 'systemMessage',
|
||||
},
|
||||
...BASIC_KEYS.map(
|
||||
(key) =>
|
||||
({
|
||||
type: SettingInputType.SHORT_INPUT,
|
||||
label: key,
|
||||
key,
|
||||
}) as SettingFieldInput
|
||||
),
|
||||
],
|
||||
},
|
||||
{
|
||||
title: (
|
||||
<>
|
||||
<FunnelIcon className={ICON_CLASSNAME} />
|
||||
Samplers
|
||||
</>
|
||||
),
|
||||
fields: [
|
||||
{
|
||||
type: SettingInputType.SHORT_INPUT,
|
||||
label: 'Samplers queue',
|
||||
key: 'samplers',
|
||||
},
|
||||
...SAMPLER_KEYS.map(
|
||||
(key) =>
|
||||
({
|
||||
type: SettingInputType.SHORT_INPUT,
|
||||
label: key,
|
||||
key,
|
||||
}) as SettingFieldInput
|
||||
),
|
||||
],
|
||||
},
|
||||
{
|
||||
title: (
|
||||
<>
|
||||
<HandRaisedIcon className={ICON_CLASSNAME} />
|
||||
Penalties
|
||||
</>
|
||||
),
|
||||
fields: PENALTY_KEYS.map((key) => ({
|
||||
type: SettingInputType.SHORT_INPUT,
|
||||
label: key,
|
||||
key,
|
||||
})),
|
||||
},
|
||||
{
|
||||
title: (
|
||||
<>
|
||||
<ChatBubbleOvalLeftEllipsisIcon className={ICON_CLASSNAME} />
|
||||
Reasoning
|
||||
</>
|
||||
),
|
||||
fields: [
|
||||
{
|
||||
type: SettingInputType.CHECKBOX,
|
||||
label: 'Expand though process by default for generating message',
|
||||
key: 'showThoughtInProgress',
|
||||
},
|
||||
{
|
||||
type: SettingInputType.CHECKBOX,
|
||||
label:
|
||||
'Exclude thought process when sending request to API (Recommended for DeepSeek-R1)',
|
||||
key: 'excludeThoughtOnReq',
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
title: (
|
||||
<>
|
||||
<SquaresPlusIcon className={ICON_CLASSNAME} />
|
||||
Advanced
|
||||
</>
|
||||
),
|
||||
fields: [
|
||||
{
|
||||
type: SettingInputType.CUSTOM,
|
||||
key: 'custom', // dummy key, won't be used
|
||||
component: () => {
|
||||
const debugImportDemoConv = async () => {
|
||||
const res = await fetch('/demo-conversation.json');
|
||||
const demoConv = await res.json();
|
||||
StorageUtils.remove(demoConv.id);
|
||||
for (const msg of demoConv.messages) {
|
||||
StorageUtils.appendMsg(demoConv.id, msg);
|
||||
}
|
||||
};
|
||||
return (
|
||||
<button className="btn" onClick={debugImportDemoConv}>
|
||||
(debug) Import demo conversation
|
||||
</button>
|
||||
);
|
||||
},
|
||||
},
|
||||
{
|
||||
type: SettingInputType.CHECKBOX,
|
||||
label: 'Show tokens per second',
|
||||
key: 'showTokensPerSecond',
|
||||
},
|
||||
{
|
||||
type: SettingInputType.LONG_INPUT,
|
||||
label: (
|
||||
<>
|
||||
Custom JSON config (For more info, refer to{' '}
|
||||
<OpenInNewTab href="https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md">
|
||||
server documentation
|
||||
</OpenInNewTab>
|
||||
)
|
||||
</>
|
||||
),
|
||||
key: 'custom',
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
title: (
|
||||
<>
|
||||
<BeakerIcon className={ICON_CLASSNAME} />
|
||||
Experimental
|
||||
</>
|
||||
),
|
||||
fields: [
|
||||
{
|
||||
type: SettingInputType.CUSTOM,
|
||||
key: 'custom', // dummy key, won't be used
|
||||
component: () => (
|
||||
<>
|
||||
<p className="mb-8">
|
||||
Experimental features are not guaranteed to work correctly.
|
||||
<br />
|
||||
<br />
|
||||
If you encounter any problems, create a{' '}
|
||||
<OpenInNewTab href="https://github.com/ggerganov/llama.cpp/issues/new?template=019-bug-misc.yml">
|
||||
Bug (misc.)
|
||||
</OpenInNewTab>{' '}
|
||||
report on Github. Please also specify <b>webui/experimental</b> on
|
||||
the report title and include screenshots.
|
||||
<br />
|
||||
<br />
|
||||
Some features may require packages downloaded from CDN, so they
|
||||
need internet connection.
|
||||
</p>
|
||||
</>
|
||||
),
|
||||
},
|
||||
{
|
||||
type: SettingInputType.CHECKBOX,
|
||||
label: (
|
||||
<>
|
||||
<b>Enable Python interpreter</b>
|
||||
<br />
|
||||
<small className="text-xs">
|
||||
This feature uses{' '}
|
||||
<OpenInNewTab href="https://pyodide.org">pyodide</OpenInNewTab>,
|
||||
downloaded from CDN. To use this feature, ask the LLM to generate
|
||||
python code inside a markdown code block. You will see a "Run"
|
||||
button on the code block, near the "Copy" button.
|
||||
</small>
|
||||
</>
|
||||
),
|
||||
key: 'pyIntepreterEnabled',
|
||||
},
|
||||
],
|
||||
},
|
||||
];
|
||||
|
||||
export default function SettingDialog({
|
||||
show,
|
||||
onClose,
|
||||
}: {
|
||||
show: boolean;
|
||||
onClose: () => void;
|
||||
}) {
|
||||
const { config, saveConfig } = useAppContext();
|
||||
const [sectionIdx, setSectionIdx] = useState(0);
|
||||
|
||||
// clone the config object to prevent direct mutation
|
||||
const [localConfig, setLocalConfig] = useState<typeof CONFIG_DEFAULT>(
|
||||
JSON.parse(JSON.stringify(config))
|
||||
);
|
||||
|
||||
const resetConfig = () => {
|
||||
if (window.confirm('Are you sure to reset all settings?')) {
|
||||
setLocalConfig(CONFIG_DEFAULT);
|
||||
}
|
||||
};
|
||||
|
||||
const handleSave = () => {
|
||||
// copy the local config to prevent direct mutation
|
||||
const newConfig: typeof CONFIG_DEFAULT = JSON.parse(
|
||||
JSON.stringify(localConfig)
|
||||
);
|
||||
// validate the config
|
||||
for (const key in newConfig) {
|
||||
const value = newConfig[key as SettKey];
|
||||
const mustBeBoolean = isBoolean(CONFIG_DEFAULT[key as SettKey]);
|
||||
const mustBeString = isString(CONFIG_DEFAULT[key as SettKey]);
|
||||
const mustBeNumeric = isNumeric(CONFIG_DEFAULT[key as SettKey]);
|
||||
if (mustBeString) {
|
||||
if (!isString(value)) {
|
||||
alert(`Value for ${key} must be string`);
|
||||
return;
|
||||
}
|
||||
} else if (mustBeNumeric) {
|
||||
const trimedValue = value.toString().trim();
|
||||
const numVal = Number(trimedValue);
|
||||
if (isNaN(numVal) || !isNumeric(numVal) || trimedValue.length === 0) {
|
||||
alert(`Value for ${key} must be numeric`);
|
||||
return;
|
||||
}
|
||||
// force conversion to number
|
||||
// @ts-expect-error this is safe
|
||||
newConfig[key] = numVal;
|
||||
} else if (mustBeBoolean) {
|
||||
if (!isBoolean(value)) {
|
||||
alert(`Value for ${key} must be boolean`);
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
console.error(`Unknown default type for key ${key}`);
|
||||
}
|
||||
}
|
||||
if (isDev) console.log('Saving config', newConfig);
|
||||
saveConfig(newConfig);
|
||||
onClose();
|
||||
};
|
||||
|
||||
const onChange = (key: SettKey) => (value: string | boolean) => {
|
||||
// note: we do not perform validation here, because we may get incomplete value as user is still typing it
|
||||
setLocalConfig({ ...localConfig, [key]: value });
|
||||
};
|
||||
|
||||
return (
|
||||
<dialog className={classNames({ modal: true, 'modal-open': show })}>
|
||||
<div className="modal-box w-11/12 max-w-3xl">
|
||||
<h3 className="text-lg font-bold mb-6">Settings</h3>
|
||||
<div className="flex flex-col md:flex-row h-[calc(90vh-12rem)]">
|
||||
{/* Left panel, showing sections - Desktop version */}
|
||||
<div className="hidden md:flex flex-col items-stretch pr-4 mr-4 border-r-2 border-base-200">
|
||||
{SETTING_SECTIONS.map((section, idx) => (
|
||||
<div
|
||||
key={idx}
|
||||
className={classNames({
|
||||
'btn btn-ghost justify-start font-normal w-44 mb-1': true,
|
||||
'btn-active': sectionIdx === idx,
|
||||
})}
|
||||
onClick={() => setSectionIdx(idx)}
|
||||
dir="auto"
|
||||
>
|
||||
{section.title}
|
||||
</div>
|
||||
))}
|
||||
</div>
|
||||
|
||||
{/* Left panel, showing sections - Mobile version */}
|
||||
<div className="md:hidden flex flex-row gap-2 mb-4">
|
||||
<details className="dropdown">
|
||||
<summary className="btn bt-sm w-full m-1">
|
||||
{SETTING_SECTIONS[sectionIdx].title}
|
||||
</summary>
|
||||
<ul className="menu dropdown-content bg-base-100 rounded-box z-[1] w-52 p-2 shadow">
|
||||
{SETTING_SECTIONS.map((section, idx) => (
|
||||
<div
|
||||
key={idx}
|
||||
className={classNames({
|
||||
'btn btn-ghost justify-start font-normal': true,
|
||||
'btn-active': sectionIdx === idx,
|
||||
})}
|
||||
onClick={() => setSectionIdx(idx)}
|
||||
dir="auto"
|
||||
>
|
||||
{section.title}
|
||||
</div>
|
||||
))}
|
||||
</ul>
|
||||
</details>
|
||||
</div>
|
||||
|
||||
{/* Right panel, showing setting fields */}
|
||||
<div className="grow overflow-y-auto px-4">
|
||||
{SETTING_SECTIONS[sectionIdx].fields.map((field, idx) => {
|
||||
const key = `${sectionIdx}-${idx}`;
|
||||
if (field.type === SettingInputType.SHORT_INPUT) {
|
||||
return (
|
||||
<SettingsModalShortInput
|
||||
key={key}
|
||||
configKey={field.key}
|
||||
value={localConfig[field.key]}
|
||||
onChange={onChange(field.key)}
|
||||
label={field.label as string}
|
||||
/>
|
||||
);
|
||||
} else if (field.type === SettingInputType.LONG_INPUT) {
|
||||
return (
|
||||
<SettingsModalLongInput
|
||||
key={key}
|
||||
configKey={field.key}
|
||||
value={localConfig[field.key].toString()}
|
||||
onChange={onChange(field.key)}
|
||||
label={field.label as string}
|
||||
/>
|
||||
);
|
||||
} else if (field.type === SettingInputType.CHECKBOX) {
|
||||
return (
|
||||
<SettingsModalCheckbox
|
||||
key={key}
|
||||
configKey={field.key}
|
||||
value={!!localConfig[field.key]}
|
||||
onChange={onChange(field.key)}
|
||||
label={field.label as string}
|
||||
/>
|
||||
);
|
||||
} else if (field.type === SettingInputType.CUSTOM) {
|
||||
return (
|
||||
<div key={key} className="mb-2">
|
||||
{typeof field.component === 'string'
|
||||
? field.component
|
||||
: field.component({
|
||||
value: localConfig[field.key],
|
||||
onChange: onChange(field.key),
|
||||
})}
|
||||
</div>
|
||||
);
|
||||
}
|
||||
})}
|
||||
|
||||
<p className="opacity-40 mb-6 text-sm mt-8">
|
||||
Settings are saved in browser's localStorage
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div className="modal-action">
|
||||
<button className="btn" onClick={resetConfig}>
|
||||
Reset to default
|
||||
</button>
|
||||
<button className="btn" onClick={onClose}>
|
||||
Close
|
||||
</button>
|
||||
<button className="btn btn-primary" onClick={handleSave}>
|
||||
Save
|
||||
</button>
|
||||
</div>
|
||||
</div>
|
||||
</dialog>
|
||||
);
|
||||
}
|
||||
|
||||
function SettingsModalLongInput({
|
||||
configKey,
|
||||
value,
|
||||
onChange,
|
||||
label,
|
||||
}: {
|
||||
configKey: SettKey;
|
||||
value: string;
|
||||
onChange: (value: string) => void;
|
||||
label?: string;
|
||||
}) {
|
||||
return (
|
||||
<label className="form-control mb-2">
|
||||
<div className="label inline">{label || configKey}</div>
|
||||
<textarea
|
||||
className="textarea textarea-bordered h-24"
|
||||
placeholder={`Default: ${CONFIG_DEFAULT[configKey] || 'none'}`}
|
||||
value={value}
|
||||
onChange={(e) => onChange(e.target.value)}
|
||||
/>
|
||||
</label>
|
||||
);
|
||||
}
|
||||
|
||||
function SettingsModalShortInput({
|
||||
configKey,
|
||||
value,
|
||||
onChange,
|
||||
label,
|
||||
}: {
|
||||
configKey: SettKey;
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
value: any;
|
||||
onChange: (value: string) => void;
|
||||
label?: string;
|
||||
}) {
|
||||
const helpMsg = CONFIG_INFO[configKey];
|
||||
|
||||
return (
|
||||
<>
|
||||
{/* on mobile, we simply show the help message here */}
|
||||
{helpMsg && (
|
||||
<div className="block md:hidden mb-1">
|
||||
<b>{label || configKey}</b>
|
||||
<br />
|
||||
<p className="text-xs">{helpMsg}</p>
|
||||
</div>
|
||||
)}
|
||||
<label className="input input-bordered join-item grow flex items-center gap-2 mb-2">
|
||||
<div className="dropdown dropdown-hover">
|
||||
<div tabIndex={0} role="button" className="font-bold hidden md:block">
|
||||
{label || configKey}
|
||||
</div>
|
||||
{helpMsg && (
|
||||
<div className="dropdown-content menu bg-base-100 rounded-box z-10 w-64 p-2 shadow mt-4">
|
||||
{helpMsg}
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
<input
|
||||
type="text"
|
||||
className="grow"
|
||||
placeholder={`Default: ${CONFIG_DEFAULT[configKey] || 'none'}`}
|
||||
value={value}
|
||||
onChange={(e) => onChange(e.target.value)}
|
||||
/>
|
||||
</label>
|
||||
</>
|
||||
);
|
||||
}
|
||||
|
||||
function SettingsModalCheckbox({
|
||||
configKey,
|
||||
value,
|
||||
onChange,
|
||||
label,
|
||||
}: {
|
||||
configKey: SettKey;
|
||||
value: boolean;
|
||||
onChange: (value: boolean) => void;
|
||||
label: string;
|
||||
}) {
|
||||
return (
|
||||
<div className="flex flex-row items-center mb-2">
|
||||
<input
|
||||
type="checkbox"
|
||||
className="toggle"
|
||||
checked={value}
|
||||
onChange={(e) => onChange(e.target.checked)}
|
||||
/>
|
||||
<span className="ml-4">{label || configKey}</span>
|
||||
</div>
|
||||
);
|
||||
}
|
95
examples/server/webui/src/components/Sidebar.tsx
Normal file
95
examples/server/webui/src/components/Sidebar.tsx
Normal file
|
@ -0,0 +1,95 @@
|
|||
import { useEffect, useMemo, useState } from 'react';
|
||||
import { classNames } from '../utils/misc';
|
||||
import { Conversation } from '../utils/types';
|
||||
import StorageUtils from '../utils/storage';
|
||||
import { useNavigate, useParams } from 'react-router';
|
||||
|
||||
export default function Sidebar() {
|
||||
const params = useParams();
|
||||
const navigate = useNavigate();
|
||||
const currConv = useMemo(
|
||||
() => StorageUtils.getOneConversation(params.convId ?? ''),
|
||||
[params.convId]
|
||||
);
|
||||
|
||||
const [conversations, setConversations] = useState<Conversation[]>([]);
|
||||
|
||||
useEffect(() => {
|
||||
const handleConversationChange = () => {
|
||||
setConversations(StorageUtils.getAllConversations());
|
||||
};
|
||||
StorageUtils.onConversationChanged(handleConversationChange);
|
||||
handleConversationChange();
|
||||
return () => {
|
||||
StorageUtils.offConversationChanged(handleConversationChange);
|
||||
};
|
||||
}, []);
|
||||
|
||||
return (
|
||||
<>
|
||||
<input
|
||||
id="toggle-drawer"
|
||||
type="checkbox"
|
||||
className="drawer-toggle"
|
||||
defaultChecked
|
||||
/>
|
||||
|
||||
<div className="drawer-side h-screen lg:h-screen z-50 lg:max-w-64">
|
||||
<label
|
||||
htmlFor="toggle-drawer"
|
||||
aria-label="close sidebar"
|
||||
className="drawer-overlay"
|
||||
></label>
|
||||
<div className="flex flex-col bg-base-200 min-h-full max-w-64 py-4 px-4">
|
||||
<div className="flex flex-row items-center justify-between mb-4 mt-4">
|
||||
<h2 className="font-bold ml-4">Conversations</h2>
|
||||
|
||||
{/* close sidebar button */}
|
||||
<label htmlFor="toggle-drawer" className="btn btn-ghost lg:hidden">
|
||||
<svg
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
width="16"
|
||||
height="16"
|
||||
fill="currentColor"
|
||||
className="bi bi-arrow-bar-left"
|
||||
viewBox="0 0 16 16"
|
||||
>
|
||||
<path
|
||||
fillRule="evenodd"
|
||||
d="M12.5 15a.5.5 0 0 1-.5-.5v-13a.5.5 0 0 1 1 0v13a.5.5 0 0 1-.5.5M10 8a.5.5 0 0 1-.5.5H3.707l2.147 2.146a.5.5 0 0 1-.708.708l-3-3a.5.5 0 0 1 0-.708l3-3a.5.5 0 1 1 .708.708L3.707 7.5H9.5a.5.5 0 0 1 .5.5"
|
||||
/>
|
||||
</svg>
|
||||
</label>
|
||||
</div>
|
||||
|
||||
{/* list of conversations */}
|
||||
<div
|
||||
className={classNames({
|
||||
'btn btn-ghost justify-start': true,
|
||||
'btn-active': !currConv,
|
||||
})}
|
||||
onClick={() => navigate('/')}
|
||||
>
|
||||
+ New conversation
|
||||
</div>
|
||||
{conversations.map((conv) => (
|
||||
<div
|
||||
key={conv.id}
|
||||
className={classNames({
|
||||
'btn btn-ghost justify-start font-normal': true,
|
||||
'btn-active': conv.id === currConv?.id,
|
||||
})}
|
||||
onClick={() => navigate(`/chat/${conv.id}`)}
|
||||
dir="auto"
|
||||
>
|
||||
<span className="truncate">{conv.messages[0].content}</span>
|
||||
</div>
|
||||
))}
|
||||
<div className="text-center text-xs opacity-40 mt-auto mx-4">
|
||||
Conversations are saved to browser's localStorage
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</>
|
||||
);
|
||||
}
|
|
@ -1,60 +0,0 @@
|
|||
import hljs from 'highlight.js/lib/core';
|
||||
|
||||
// only import commonly used languages to reduce bundle size
|
||||
|
||||
import python from 'highlight.js/lib/languages/python';
|
||||
import javascript from 'highlight.js/lib/languages/javascript';
|
||||
import json from 'highlight.js/lib/languages/json';
|
||||
import bash from 'highlight.js/lib/languages/bash';
|
||||
import yaml from 'highlight.js/lib/languages/yaml';
|
||||
import markdown from 'highlight.js/lib/languages/markdown';
|
||||
import scss from 'highlight.js/lib/languages/scss';
|
||||
import xml from 'highlight.js/lib/languages/xml';
|
||||
import ruby from 'highlight.js/lib/languages/ruby';
|
||||
import go from 'highlight.js/lib/languages/go';
|
||||
import java from 'highlight.js/lib/languages/java';
|
||||
import rust from 'highlight.js/lib/languages/rust';
|
||||
import scala from 'highlight.js/lib/languages/scala';
|
||||
import cpp from 'highlight.js/lib/languages/cpp';
|
||||
import csharp from 'highlight.js/lib/languages/csharp';
|
||||
import swift from 'highlight.js/lib/languages/swift';
|
||||
import dart from 'highlight.js/lib/languages/dart';
|
||||
import elixir from 'highlight.js/lib/languages/elixir';
|
||||
import kotlin from 'highlight.js/lib/languages/kotlin';
|
||||
import lua from 'highlight.js/lib/languages/lua';
|
||||
import php from 'highlight.js/lib/languages/php';
|
||||
import latex from 'highlight.js/lib/languages/latex';
|
||||
|
||||
hljs.registerLanguage('python', python);
|
||||
hljs.registerLanguage('javascript', javascript);
|
||||
hljs.registerLanguage('json', json);
|
||||
hljs.registerLanguage('yaml', yaml);
|
||||
hljs.registerLanguage('markdown', markdown);
|
||||
hljs.registerLanguage('xml', xml);
|
||||
hljs.registerLanguage('ruby', ruby);
|
||||
hljs.registerLanguage('go', go);
|
||||
hljs.registerLanguage('java', java);
|
||||
hljs.registerLanguage('rust', rust);
|
||||
hljs.registerLanguage('scala', scala);
|
||||
hljs.registerLanguage('csharp', csharp);
|
||||
hljs.registerLanguage('swift', swift);
|
||||
hljs.registerLanguage('dart', dart);
|
||||
hljs.registerLanguage('elixir', elixir);
|
||||
hljs.registerLanguage('kotlin', kotlin);
|
||||
hljs.registerLanguage('lua', lua);
|
||||
hljs.registerLanguage('php', php);
|
||||
hljs.registerLanguage('latex', latex);
|
||||
|
||||
// reuse some languages to further reduce bundle size
|
||||
|
||||
hljs.registerLanguage('shell', bash);
|
||||
hljs.registerLanguage('bash', bash);
|
||||
hljs.registerLanguage('sh', bash);
|
||||
|
||||
hljs.registerLanguage('css', scss);
|
||||
hljs.registerLanguage('scss', scss);
|
||||
|
||||
hljs.registerLanguage('c', cpp);
|
||||
hljs.registerLanguage('cpp', cpp);
|
||||
|
||||
export default hljs;
|
|
@ -1,15 +1,28 @@
|
|||
@use "sass:meta";
|
||||
@use 'sass:meta';
|
||||
|
||||
@tailwind base;
|
||||
@tailwind components;
|
||||
@tailwind utilities;
|
||||
|
||||
.markdown {
|
||||
h1, h2, h3, h4, h5, h6, ul, ol, li { all: revert; }
|
||||
h1,
|
||||
h2,
|
||||
h3,
|
||||
h4,
|
||||
h5,
|
||||
h6,
|
||||
ul,
|
||||
ol,
|
||||
li {
|
||||
all: revert;
|
||||
}
|
||||
pre {
|
||||
@apply whitespace-pre-wrap rounded-lg p-2;
|
||||
border: 1px solid currentColor;
|
||||
}
|
||||
p {
|
||||
@apply mb-2;
|
||||
}
|
||||
/* TODO: fix markdown table */
|
||||
}
|
||||
|
||||
|
@ -19,7 +32,9 @@
|
|||
.btn-mini {
|
||||
@apply cursor-pointer hover:shadow-md;
|
||||
}
|
||||
.chat-screen { max-width: 900px; }
|
||||
.chat-screen {
|
||||
max-width: 900px;
|
||||
}
|
||||
|
||||
.chat-bubble-base-300 {
|
||||
--tw-bg-opacity: 1;
|
||||
|
@ -30,6 +45,9 @@
|
|||
/* Highlight.js */
|
||||
[data-color-scheme='light'] {
|
||||
@include meta.load-css('highlight.js/styles/stackoverflow-light');
|
||||
.dark-color {
|
||||
@apply bg-base-content text-base-100;
|
||||
}
|
||||
}
|
||||
[data-color-scheme='dark'] {
|
||||
@include meta.load-css('highlight.js/styles/stackoverflow-dark');
|
||||
|
@ -37,6 +55,9 @@
|
|||
[data-color-scheme='auto'] {
|
||||
@media (prefers-color-scheme: light) {
|
||||
@include meta.load-css('highlight.js/styles/stackoverflow-light');
|
||||
.dark-color {
|
||||
@apply bg-base-content text-base-100;
|
||||
}
|
||||
}
|
||||
@media (prefers-color-scheme: dark) {
|
||||
@include meta.load-css('highlight.js/styles/stackoverflow-dark');
|
||||
|
@ -46,3 +67,7 @@
|
|||
background: transparent !important;
|
||||
padding: 0.5em !important;
|
||||
}
|
||||
|
||||
.katex-display {
|
||||
margin: 0 0 !important;
|
||||
}
|
|
@ -1,66 +0,0 @@
|
|||
import katex from 'katex';
|
||||
|
||||
// Adapted from https://github.com/SchneeHertz/markdown-it-katex-gpt
|
||||
// MIT license
|
||||
|
||||
const defaultOptions = {
|
||||
delimiters: [
|
||||
{ left: '\\[', right: '\\]', display: true },
|
||||
{ left: '\\(', right: '\\)', display: false },
|
||||
],
|
||||
};
|
||||
|
||||
export function renderLatexHTML(content, display = false) {
|
||||
return katex.renderToString(content, {
|
||||
throwOnError: false,
|
||||
output: 'mathml',
|
||||
displayMode: display,
|
||||
});
|
||||
}
|
||||
|
||||
function escapedBracketRule(options) {
|
||||
return (state, silent) => {
|
||||
const max = state.posMax;
|
||||
const start = state.pos;
|
||||
|
||||
for (const { left, right, display } of options.delimiters) {
|
||||
|
||||
// Check if it starts with the left delimiter
|
||||
if (!state.src.slice(start).startsWith(left)) continue;
|
||||
|
||||
// Skip the length of the left delimiter
|
||||
let pos = start + left.length;
|
||||
|
||||
// Find the matching right delimiter
|
||||
while (pos < max) {
|
||||
if (state.src.slice(pos).startsWith(right)) {
|
||||
break;
|
||||
}
|
||||
pos++;
|
||||
}
|
||||
|
||||
// No matching right delimiter found, skip to the next match
|
||||
if (pos >= max) continue;
|
||||
|
||||
// If not in silent mode, convert LaTeX formula to MathML
|
||||
if (!silent) {
|
||||
const content = state.src.slice(start + left.length, pos);
|
||||
try {
|
||||
const renderedContent = renderLatexHTML(content, display);
|
||||
const token = state.push('html_inline', '', 0);
|
||||
token.content = renderedContent;
|
||||
} catch (e) {
|
||||
console.error(e);
|
||||
}
|
||||
}
|
||||
|
||||
// Update position, skip the length of the right delimiter
|
||||
state.pos = pos + right.length;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
export default function (md, options = defaultOptions) {
|
||||
md.inline.ruler.after('text', 'escaped_bracket', escapedBracketRule(options));
|
||||
}
|
|
@ -1,701 +0,0 @@
|
|||
import './styles.scss';
|
||||
import { createApp, defineComponent, shallowRef, computed, h } from 'vue/dist/vue.esm-bundler.js';
|
||||
import MarkdownIt from 'markdown-it';
|
||||
import TextLineStream from 'textlinestream';
|
||||
|
||||
// math formula rendering
|
||||
import 'katex/dist/katex.min.css';
|
||||
import markdownItKatexGpt from './katex-gpt';
|
||||
import markdownItKatexNormal from '@vscode/markdown-it-katex';
|
||||
|
||||
// code highlighting
|
||||
import hljs from './highlight-config';
|
||||
import daisyuiThemes from 'daisyui/src/theming/themes';
|
||||
|
||||
// ponyfill for missing ReadableStream asyncIterator on Safari
|
||||
import { asyncIterator } from '@sec-ant/readable-stream/ponyfill/asyncIterator';
|
||||
|
||||
const isDev = import.meta.env.MODE === 'development';
|
||||
|
||||
// types
|
||||
/** @typedef {{ id: number, role: 'user' | 'assistant', content: string, timings: any }} Message */
|
||||
/** @typedef {{ role: 'user' | 'assistant', content: string }} APIMessage */
|
||||
/** @typedef {{ id: string, lastModified: number, messages: Array<Message> }} Conversation */
|
||||
|
||||
// utility functions
|
||||
const isString = (x) => !!x.toLowerCase;
|
||||
const isBoolean = (x) => x === true || x === false;
|
||||
const isNumeric = (n) => !isString(n) && !isNaN(n) && !isBoolean(n);
|
||||
const escapeAttr = (str) => str.replace(/>/g, '>').replace(/"/g, '"');
|
||||
const copyStr = (textToCopy) => {
|
||||
// Navigator clipboard api needs a secure context (https)
|
||||
if (navigator.clipboard && window.isSecureContext) {
|
||||
navigator.clipboard.writeText(textToCopy);
|
||||
} else {
|
||||
// Use the 'out of viewport hidden text area' trick
|
||||
const textArea = document.createElement('textarea');
|
||||
textArea.value = textToCopy;
|
||||
// Move textarea out of the viewport so it's not visible
|
||||
textArea.style.position = 'absolute';
|
||||
textArea.style.left = '-999999px';
|
||||
document.body.prepend(textArea);
|
||||
textArea.select();
|
||||
document.execCommand('copy');
|
||||
}
|
||||
};
|
||||
|
||||
// constants
|
||||
const BASE_URL = isDev
|
||||
? (localStorage.getItem('base') || 'https://localhost:8080') // for debugging
|
||||
: (new URL('.', document.baseURI).href).toString().replace(/\/$/, ''); // for production
|
||||
console.log({ BASE_URL });
|
||||
|
||||
const CONFIG_DEFAULT = {
|
||||
// Note: in order not to introduce breaking changes, please keep the same data type (number, string, etc) if you want to change the default value. Do not use null or undefined for default value.
|
||||
apiKey: '',
|
||||
systemMessage: 'You are a helpful assistant.',
|
||||
showTokensPerSecond: false,
|
||||
showThoughtInProgress: false,
|
||||
excludeThoughtOnReq: true,
|
||||
// make sure these default values are in sync with `common.h`
|
||||
samplers: 'edkypmxt',
|
||||
temperature: 0.8,
|
||||
dynatemp_range: 0.0,
|
||||
dynatemp_exponent: 1.0,
|
||||
top_k: 40,
|
||||
top_p: 0.95,
|
||||
min_p: 0.05,
|
||||
xtc_probability: 0.0,
|
||||
xtc_threshold: 0.1,
|
||||
typical_p: 1.0,
|
||||
repeat_last_n: 64,
|
||||
repeat_penalty: 1.0,
|
||||
presence_penalty: 0.0,
|
||||
frequency_penalty: 0.0,
|
||||
dry_multiplier: 0.0,
|
||||
dry_base: 1.75,
|
||||
dry_allowed_length: 2,
|
||||
dry_penalty_last_n: -1,
|
||||
max_tokens: -1,
|
||||
custom: '', // custom json-stringified object
|
||||
};
|
||||
const CONFIG_INFO = {
|
||||
apiKey: 'Set the API Key if you are using --api-key option for the server.',
|
||||
systemMessage: 'The starting message that defines how model should behave.',
|
||||
samplers: 'The order at which samplers are applied, in simplified way. Default is "dkypmxt": dry->top_k->typ_p->top_p->min_p->xtc->temperature',
|
||||
temperature: 'Controls the randomness of the generated text by affecting the probability distribution of the output tokens. Higher = more random, lower = more focused.',
|
||||
dynatemp_range: 'Addon for the temperature sampler. The added value to the range of dynamic temperature, which adjusts probabilities by entropy of tokens.',
|
||||
dynatemp_exponent: 'Addon for the temperature sampler. Smoothes out the probability redistribution based on the most probable token.',
|
||||
top_k: 'Keeps only k top tokens.',
|
||||
top_p: 'Limits tokens to those that together have a cumulative probability of at least p',
|
||||
min_p: 'Limits tokens based on the minimum probability for a token to be considered, relative to the probability of the most likely token.',
|
||||
xtc_probability: 'XTC sampler cuts out top tokens; this parameter controls the chance of cutting tokens at all. 0 disables XTC.',
|
||||
xtc_threshold: 'XTC sampler cuts out top tokens; this parameter controls the token probability that is required to cut that token.',
|
||||
typical_p: 'Sorts and limits tokens based on the difference between log-probability and entropy.',
|
||||
repeat_last_n: 'Last n tokens to consider for penalizing repetition',
|
||||
repeat_penalty: 'Controls the repetition of token sequences in the generated text',
|
||||
presence_penalty: 'Limits tokens based on whether they appear in the output or not.',
|
||||
frequency_penalty: 'Limits tokens based on how often they appear in the output.',
|
||||
dry_multiplier: 'DRY sampling reduces repetition in generated text even across long contexts. This parameter sets the DRY sampling multiplier.',
|
||||
dry_base: 'DRY sampling reduces repetition in generated text even across long contexts. This parameter sets the DRY sampling base value.',
|
||||
dry_allowed_length: 'DRY sampling reduces repetition in generated text even across long contexts. This parameter sets the allowed length for DRY sampling.',
|
||||
dry_penalty_last_n: 'DRY sampling reduces repetition in generated text even across long contexts. This parameter sets DRY penalty for the last n tokens.',
|
||||
max_tokens: 'The maximum number of token per output.',
|
||||
custom: '', // custom json-stringified object
|
||||
};
|
||||
// config keys having numeric value (i.e. temperature, top_k, top_p, etc)
|
||||
const CONFIG_NUMERIC_KEYS = Object.entries(CONFIG_DEFAULT).filter(e => isNumeric(e[1])).map(e => e[0]);
|
||||
// list of themes supported by daisyui
|
||||
const THEMES = ['light', 'dark']
|
||||
// make sure light & dark are always at the beginning
|
||||
.concat(Object.keys(daisyuiThemes).filter(t => t !== 'light' && t !== 'dark'));
|
||||
|
||||
// markdown support
|
||||
const VueMarkdown = defineComponent(
|
||||
(props) => {
|
||||
const md = shallowRef(new MarkdownIt({
|
||||
breaks: true,
|
||||
highlight: function (str, lang) { // Add highlight.js
|
||||
if (lang && hljs.getLanguage(lang)) {
|
||||
try {
|
||||
return '<pre dir="auto"><code class="hljs">' +
|
||||
hljs.highlight(str, { language: lang, ignoreIllegals: true }).value +
|
||||
'</code></pre>';
|
||||
} catch (__) {}
|
||||
}
|
||||
return '<pre dir="auto"><code class="hljs">' + md.value.utils.escapeHtml(str) + '</code></pre>';
|
||||
}
|
||||
}));
|
||||
// support latex with double dollar sign and square brackets
|
||||
md.value.use(markdownItKatexGpt, {
|
||||
delimiters: [
|
||||
{ left: '\\[', right: '\\]', display: true },
|
||||
{ left: '\\(', right: '\\)', display: false },
|
||||
{ left: '$$', right: '$$', display: false },
|
||||
// do not add single dollar sign here, other wise it will confused with dollar used for money symbol
|
||||
],
|
||||
throwOnError: false,
|
||||
});
|
||||
// support latex with single dollar sign
|
||||
md.value.use(markdownItKatexNormal, { throwOnError: false });
|
||||
// add copy button to code blocks
|
||||
const origFenchRenderer = md.value.renderer.rules.fence;
|
||||
md.value.renderer.rules.fence = (tokens, idx, ...args) => {
|
||||
const content = tokens[idx].content;
|
||||
const origRendered = origFenchRenderer(tokens, idx, ...args);
|
||||
return `<div class="relative my-4">
|
||||
<div class="text-right sticky top-4 mb-2 mr-2 h-0">
|
||||
<button class="badge btn-mini" onclick="copyStr(${escapeAttr(JSON.stringify(content))})">📋 Copy</button>
|
||||
</div>
|
||||
${origRendered}
|
||||
</div>`;
|
||||
};
|
||||
window.copyStr = copyStr;
|
||||
const content = computed(() => md.value.render(props.source));
|
||||
return () => h('div', { innerHTML: content.value });
|
||||
},
|
||||
{ props: ['source'] }
|
||||
);
|
||||
|
||||
// input field to be used by settings modal
|
||||
const SettingsModalShortInput = defineComponent({
|
||||
template: document.getElementById('settings-modal-short-input').innerHTML,
|
||||
props: {
|
||||
label: { type: String, required: false },
|
||||
configKey: String,
|
||||
configDefault: Object,
|
||||
configInfo: Object,
|
||||
modelValue: [Object, String, Number],
|
||||
},
|
||||
});
|
||||
|
||||
// message bubble component
|
||||
const MessageBubble = defineComponent({
|
||||
components: {
|
||||
VueMarkdown
|
||||
},
|
||||
template: document.getElementById('message-bubble').innerHTML,
|
||||
props: {
|
||||
config: Object,
|
||||
msg: Object,
|
||||
isGenerating: Boolean,
|
||||
showThoughtInProgress: Boolean,
|
||||
editUserMsgAndRegenerate: Function,
|
||||
regenerateMsg: Function,
|
||||
},
|
||||
data() {
|
||||
return {
|
||||
editingContent: null,
|
||||
};
|
||||
},
|
||||
computed: {
|
||||
timings() {
|
||||
if (!this.msg.timings) return null;
|
||||
return {
|
||||
...this.msg.timings,
|
||||
prompt_per_second: this.msg.timings.prompt_n / (this.msg.timings.prompt_ms / 1000),
|
||||
predicted_per_second: this.msg.timings.predicted_n / (this.msg.timings.predicted_ms / 1000),
|
||||
};
|
||||
},
|
||||
splitMsgContent() {
|
||||
const content = this.msg.content;
|
||||
if (this.msg.role !== 'assistant') {
|
||||
return { content };
|
||||
}
|
||||
let actualContent = '';
|
||||
let cot = '';
|
||||
let isThinking = false;
|
||||
let thinkSplit = content.split('<think>', 2);
|
||||
actualContent += thinkSplit[0];
|
||||
while (thinkSplit[1] !== undefined) {
|
||||
// <think> tag found
|
||||
thinkSplit = thinkSplit[1].split('</think>', 2);
|
||||
cot += thinkSplit[0];
|
||||
isThinking = true;
|
||||
if (thinkSplit[1] !== undefined) {
|
||||
// </think> closing tag found
|
||||
isThinking = false;
|
||||
thinkSplit = thinkSplit[1].split('<think>', 2);
|
||||
actualContent += thinkSplit[0];
|
||||
}
|
||||
}
|
||||
return { content: actualContent, cot, isThinking };
|
||||
},
|
||||
},
|
||||
methods: {
|
||||
copyMsg() {
|
||||
copyStr(this.msg.content);
|
||||
},
|
||||
editMsg() {
|
||||
this.editUserMsgAndRegenerate({
|
||||
...this.msg,
|
||||
content: this.editingContent,
|
||||
});
|
||||
this.editingContent = null;
|
||||
},
|
||||
},
|
||||
});
|
||||
|
||||
// coversations is stored in localStorage
|
||||
// format: { [convId]: { id: string, lastModified: number, messages: [...] } }
|
||||
// convId is a string prefixed with 'conv-'
|
||||
const StorageUtils = {
|
||||
/**
|
||||
* manage conversations
|
||||
* @returns {Array<Conversation>}
|
||||
*/
|
||||
getAllConversations() {
|
||||
const res = [];
|
||||
for (const key in localStorage) {
|
||||
if (key.startsWith('conv-')) {
|
||||
res.push(JSON.parse(localStorage.getItem(key)));
|
||||
}
|
||||
}
|
||||
res.sort((a, b) => b.lastModified - a.lastModified);
|
||||
return res;
|
||||
},
|
||||
/**
|
||||
* can return null if convId does not exist
|
||||
* @param {string} convId
|
||||
* @returns {Conversation | null}
|
||||
*/
|
||||
getOneConversation(convId) {
|
||||
return JSON.parse(localStorage.getItem(convId) || 'null');
|
||||
},
|
||||
/**
|
||||
* if convId does not exist, create one
|
||||
* @param {string} convId
|
||||
* @param {Message} msg
|
||||
*/
|
||||
appendMsg(convId, msg) {
|
||||
if (msg.content === null) return;
|
||||
const conv = StorageUtils.getOneConversation(convId) || {
|
||||
id: convId,
|
||||
lastModified: Date.now(),
|
||||
messages: [],
|
||||
};
|
||||
conv.messages.push(msg);
|
||||
conv.lastModified = Date.now();
|
||||
localStorage.setItem(convId, JSON.stringify(conv));
|
||||
},
|
||||
/**
|
||||
* Get new conversation id
|
||||
* @returns {string}
|
||||
*/
|
||||
getNewConvId() {
|
||||
return `conv-${Date.now()}`;
|
||||
},
|
||||
/**
|
||||
* remove conversation by id
|
||||
* @param {string} convId
|
||||
*/
|
||||
remove(convId) {
|
||||
localStorage.removeItem(convId);
|
||||
},
|
||||
/**
|
||||
* remove all conversations
|
||||
* @param {string} convId
|
||||
*/
|
||||
filterAndKeepMsgs(convId, predicate) {
|
||||
const conv = StorageUtils.getOneConversation(convId);
|
||||
if (!conv) return;
|
||||
conv.messages = conv.messages.filter(predicate);
|
||||
conv.lastModified = Date.now();
|
||||
localStorage.setItem(convId, JSON.stringify(conv));
|
||||
},
|
||||
/**
|
||||
* remove last message from conversation
|
||||
* @param {string} convId
|
||||
* @returns {Message | undefined}
|
||||
*/
|
||||
popMsg(convId) {
|
||||
const conv = StorageUtils.getOneConversation(convId);
|
||||
if (!conv) return;
|
||||
const msg = conv.messages.pop();
|
||||
conv.lastModified = Date.now();
|
||||
if (conv.messages.length === 0) {
|
||||
StorageUtils.remove(convId);
|
||||
} else {
|
||||
localStorage.setItem(convId, JSON.stringify(conv));
|
||||
}
|
||||
return msg;
|
||||
},
|
||||
|
||||
// manage config
|
||||
getConfig() {
|
||||
const savedVal = JSON.parse(localStorage.getItem('config') || '{}');
|
||||
// to prevent breaking changes in the future, we always provide default value for missing keys
|
||||
return {
|
||||
...CONFIG_DEFAULT,
|
||||
...savedVal,
|
||||
};
|
||||
},
|
||||
setConfig(config) {
|
||||
localStorage.setItem('config', JSON.stringify(config));
|
||||
},
|
||||
getTheme() {
|
||||
return localStorage.getItem('theme') || 'auto';
|
||||
},
|
||||
setTheme(theme) {
|
||||
if (theme === 'auto') {
|
||||
localStorage.removeItem('theme');
|
||||
} else {
|
||||
localStorage.setItem('theme', theme);
|
||||
}
|
||||
},
|
||||
};
|
||||
|
||||
// scroll to bottom of chat messages
|
||||
// if requiresNearBottom is true, only auto-scroll if user is near bottom
|
||||
const chatScrollToBottom = (requiresNearBottom) => {
|
||||
const msgListElem = document.getElementById('messages-list');
|
||||
const spaceToBottom = msgListElem.scrollHeight - msgListElem.scrollTop - msgListElem.clientHeight;
|
||||
if (!requiresNearBottom || (spaceToBottom < 100)) {
|
||||
setTimeout(() => msgListElem.scrollTo({ top: msgListElem.scrollHeight }), 1);
|
||||
}
|
||||
};
|
||||
|
||||
// wrapper for SSE
|
||||
async function* sendSSEPostRequest(url, fetchOptions) {
|
||||
const res = await fetch(url, fetchOptions);
|
||||
const lines = res.body
|
||||
.pipeThrough(new TextDecoderStream())
|
||||
.pipeThrough(new TextLineStream());
|
||||
for await (const line of asyncIterator(lines)) {
|
||||
if (isDev) console.log({line});
|
||||
if (line.startsWith('data:') && !line.endsWith('[DONE]')) {
|
||||
const data = JSON.parse(line.slice(5));
|
||||
yield data;
|
||||
} else if (line.startsWith('error:')) {
|
||||
const data = JSON.parse(line.slice(6));
|
||||
throw new Error(data.message || 'Unknown error');
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
const mainApp = createApp({
|
||||
components: {
|
||||
VueMarkdown,
|
||||
SettingsModalShortInput,
|
||||
MessageBubble,
|
||||
},
|
||||
data() {
|
||||
return {
|
||||
conversations: StorageUtils.getAllConversations(),
|
||||
/** @type {Array<Message>} */
|
||||
messages: [],
|
||||
viewingConvId: StorageUtils.getNewConvId(),
|
||||
inputMsg: '',
|
||||
isGenerating: false,
|
||||
/** @type {Array<Message> | null} */
|
||||
pendingMsg: null, // the on-going message from assistant
|
||||
stopGeneration: () => {},
|
||||
selectedTheme: StorageUtils.getTheme(),
|
||||
config: StorageUtils.getConfig(),
|
||||
showConfigDialog: false,
|
||||
// const
|
||||
themes: THEMES,
|
||||
/** @type {CONFIG_DEFAULT} */
|
||||
configDefault: {...CONFIG_DEFAULT},
|
||||
configInfo: {...CONFIG_INFO},
|
||||
isDev,
|
||||
}
|
||||
},
|
||||
computed: {},
|
||||
mounted() {
|
||||
document.getElementById('app').classList.remove('opacity-0'); // show app
|
||||
// scroll to the bottom when the pending message height is updated
|
||||
const pendingMsgElem = document.getElementById('pending-msg');
|
||||
const resizeObserver = new ResizeObserver(() => {
|
||||
if (this.isGenerating) chatScrollToBottom(true);
|
||||
});
|
||||
resizeObserver.observe(pendingMsgElem);
|
||||
this.setSelectedTheme(this.selectedTheme);
|
||||
},
|
||||
watch: {
|
||||
viewingConvId: function(val, oldVal) {
|
||||
if (val != oldVal) {
|
||||
this.fetchMessages();
|
||||
chatScrollToBottom();
|
||||
this.hideSidebar();
|
||||
}
|
||||
}
|
||||
},
|
||||
methods: {
|
||||
hideSidebar() {
|
||||
document.getElementById('toggle-drawer').checked = false;
|
||||
},
|
||||
setSelectedTheme(theme) {
|
||||
this.selectedTheme = theme;
|
||||
document.body.setAttribute('data-theme', theme);
|
||||
document.body.setAttribute('data-color-scheme', daisyuiThemes[theme]?.['color-scheme'] ?? 'auto');
|
||||
StorageUtils.setTheme(theme);
|
||||
},
|
||||
newConversation() {
|
||||
if (this.isGenerating) return;
|
||||
this.viewingConvId = StorageUtils.getNewConvId();
|
||||
},
|
||||
setViewingConv(convId) {
|
||||
if (this.isGenerating) return;
|
||||
this.viewingConvId = convId;
|
||||
},
|
||||
deleteConv(convId) {
|
||||
if (this.isGenerating) return;
|
||||
if (window.confirm('Are you sure to delete this conversation?')) {
|
||||
StorageUtils.remove(convId);
|
||||
if (this.viewingConvId === convId) {
|
||||
this.viewingConvId = StorageUtils.getNewConvId();
|
||||
}
|
||||
this.fetchConversation();
|
||||
this.fetchMessages();
|
||||
}
|
||||
},
|
||||
downloadConv(convId) {
|
||||
const conversation = StorageUtils.getOneConversation(convId);
|
||||
if (!conversation) {
|
||||
alert('Conversation not found.');
|
||||
return;
|
||||
}
|
||||
const conversationJson = JSON.stringify(conversation, null, 2);
|
||||
const blob = new Blob([conversationJson], { type: 'application/json' });
|
||||
const url = URL.createObjectURL(blob);
|
||||
const a = document.createElement('a');
|
||||
a.href = url;
|
||||
a.download = `conversation_${convId}.json`;
|
||||
document.body.appendChild(a);
|
||||
a.click();
|
||||
document.body.removeChild(a);
|
||||
URL.revokeObjectURL(url);
|
||||
},
|
||||
async sendMessage() {
|
||||
if (!this.inputMsg) return;
|
||||
const currConvId = this.viewingConvId;
|
||||
|
||||
StorageUtils.appendMsg(currConvId, {
|
||||
id: Date.now(),
|
||||
role: 'user',
|
||||
content: this.inputMsg,
|
||||
});
|
||||
this.fetchConversation();
|
||||
this.fetchMessages();
|
||||
this.inputMsg = '';
|
||||
this.generateMessage(currConvId);
|
||||
chatScrollToBottom();
|
||||
},
|
||||
async generateMessage(currConvId) {
|
||||
if (this.isGenerating) return;
|
||||
this.pendingMsg = { id: Date.now()+1, role: 'assistant', content: null };
|
||||
this.isGenerating = true;
|
||||
|
||||
try {
|
||||
/** @type {CONFIG_DEFAULT} */
|
||||
const config = this.config;
|
||||
const abortController = new AbortController();
|
||||
this.stopGeneration = () => abortController.abort();
|
||||
/** @type {Array<APIMessage>} */
|
||||
let messages = [
|
||||
{ role: 'system', content: config.systemMessage },
|
||||
...normalizeMsgsForAPI(this.messages),
|
||||
];
|
||||
if (config.excludeThoughtOnReq) {
|
||||
messages = filterThoughtFromMsgs(messages);
|
||||
}
|
||||
if (isDev) console.log({messages});
|
||||
const params = {
|
||||
messages,
|
||||
stream: true,
|
||||
cache_prompt: true,
|
||||
samplers: config.samplers,
|
||||
temperature: config.temperature,
|
||||
dynatemp_range: config.dynatemp_range,
|
||||
dynatemp_exponent: config.dynatemp_exponent,
|
||||
top_k: config.top_k,
|
||||
top_p: config.top_p,
|
||||
min_p: config.min_p,
|
||||
typical_p: config.typical_p,
|
||||
xtc_probability: config.xtc_probability,
|
||||
xtc_threshold: config.xtc_threshold,
|
||||
repeat_last_n: config.repeat_last_n,
|
||||
repeat_penalty: config.repeat_penalty,
|
||||
presence_penalty: config.presence_penalty,
|
||||
frequency_penalty: config.frequency_penalty,
|
||||
dry_multiplier: config.dry_multiplier,
|
||||
dry_base: config.dry_base,
|
||||
dry_allowed_length: config.dry_allowed_length,
|
||||
dry_penalty_last_n: config.dry_penalty_last_n,
|
||||
max_tokens: config.max_tokens,
|
||||
timings_per_token: !!config.showTokensPerSecond,
|
||||
...(config.custom.length ? JSON.parse(config.custom) : {}),
|
||||
};
|
||||
const chunks = sendSSEPostRequest(`${BASE_URL}/v1/chat/completions`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
...(config.apiKey ? {'Authorization': `Bearer ${config.apiKey}`} : {})
|
||||
},
|
||||
body: JSON.stringify(params),
|
||||
signal: abortController.signal,
|
||||
});
|
||||
for await (const chunk of chunks) {
|
||||
const stop = chunk.stop;
|
||||
const addedContent = chunk.choices[0].delta.content;
|
||||
const lastContent = this.pendingMsg.content || '';
|
||||
if (addedContent) {
|
||||
this.pendingMsg = {
|
||||
id: this.pendingMsg.id,
|
||||
role: 'assistant',
|
||||
content: lastContent + addedContent,
|
||||
};
|
||||
}
|
||||
const timings = chunk.timings;
|
||||
if (timings && config.showTokensPerSecond) {
|
||||
// only extract what's really needed, to save some space
|
||||
this.pendingMsg.timings = {
|
||||
prompt_n: timings.prompt_n,
|
||||
prompt_ms: timings.prompt_ms,
|
||||
predicted_n: timings.predicted_n,
|
||||
predicted_ms: timings.predicted_ms,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
StorageUtils.appendMsg(currConvId, this.pendingMsg);
|
||||
this.fetchConversation();
|
||||
this.fetchMessages();
|
||||
setTimeout(() => document.getElementById('msg-input').focus(), 1);
|
||||
} catch (error) {
|
||||
if (error.name === 'AbortError') {
|
||||
// user stopped the generation via stopGeneration() function
|
||||
StorageUtils.appendMsg(currConvId, this.pendingMsg);
|
||||
this.fetchConversation();
|
||||
this.fetchMessages();
|
||||
} else {
|
||||
console.error(error);
|
||||
alert(error);
|
||||
// pop last user message
|
||||
const lastUserMsg = StorageUtils.popMsg(currConvId);
|
||||
this.inputMsg = lastUserMsg ? lastUserMsg.content : '';
|
||||
}
|
||||
}
|
||||
|
||||
this.pendingMsg = null;
|
||||
this.isGenerating = false;
|
||||
this.stopGeneration = () => {};
|
||||
this.fetchMessages();
|
||||
chatScrollToBottom();
|
||||
},
|
||||
|
||||
// message actions
|
||||
regenerateMsg(msg) {
|
||||
if (this.isGenerating) return;
|
||||
// TODO: somehow keep old history (like how ChatGPT has different "tree"). This can be done by adding "sub-conversations" with "subconv-" prefix, and new message will have a list of subconvIds
|
||||
const currConvId = this.viewingConvId;
|
||||
StorageUtils.filterAndKeepMsgs(currConvId, (m) => m.id < msg.id);
|
||||
this.fetchConversation();
|
||||
this.fetchMessages();
|
||||
this.generateMessage(currConvId);
|
||||
},
|
||||
editUserMsgAndRegenerate(msg) {
|
||||
if (this.isGenerating) return;
|
||||
const currConvId = this.viewingConvId;
|
||||
const newContent = msg.content;
|
||||
StorageUtils.filterAndKeepMsgs(currConvId, (m) => m.id < msg.id);
|
||||
StorageUtils.appendMsg(currConvId, {
|
||||
id: Date.now(),
|
||||
role: 'user',
|
||||
content: newContent,
|
||||
});
|
||||
this.fetchConversation();
|
||||
this.fetchMessages();
|
||||
this.generateMessage(currConvId);
|
||||
},
|
||||
|
||||
// settings dialog methods
|
||||
closeAndSaveConfigDialog() {
|
||||
try {
|
||||
if (this.config.custom.length) JSON.parse(this.config.custom);
|
||||
} catch (error) {
|
||||
alert('Invalid JSON for custom config. Please either fix it or leave it empty.');
|
||||
return;
|
||||
}
|
||||
for (const key of CONFIG_NUMERIC_KEYS) {
|
||||
if (isNaN(this.config[key]) || this.config[key].toString().trim().length === 0) {
|
||||
alert(`Invalid number for ${key} (expected an integer or a float)`);
|
||||
return;
|
||||
}
|
||||
this.config[key] = parseFloat(this.config[key]);
|
||||
}
|
||||
this.showConfigDialog = false;
|
||||
StorageUtils.setConfig(this.config);
|
||||
},
|
||||
closeAndDiscardConfigDialog() {
|
||||
this.showConfigDialog = false;
|
||||
this.config = StorageUtils.getConfig();
|
||||
},
|
||||
resetConfigDialog() {
|
||||
if (window.confirm('Are you sure to reset all settings?')) {
|
||||
this.config = {...CONFIG_DEFAULT};
|
||||
}
|
||||
},
|
||||
|
||||
// sync state functions
|
||||
fetchConversation() {
|
||||
this.conversations = StorageUtils.getAllConversations();
|
||||
},
|
||||
fetchMessages() {
|
||||
this.messages = StorageUtils.getOneConversation(this.viewingConvId)?.messages ?? [];
|
||||
},
|
||||
|
||||
// debug functions
|
||||
async debugImportDemoConv() {
|
||||
const res = await fetch('/demo-conversation.json');
|
||||
const demoConv = await res.json();
|
||||
StorageUtils.remove(demoConv.id);
|
||||
for (const msg of demoConv.messages) {
|
||||
StorageUtils.appendMsg(demoConv.id, msg);
|
||||
}
|
||||
this.fetchConversation();
|
||||
}
|
||||
},
|
||||
});
|
||||
mainApp.config.errorHandler = alert;
|
||||
try {
|
||||
mainApp.mount('#app');
|
||||
} catch (err) {
|
||||
console.error(err);
|
||||
document.getElementById('app').innerHTML = `<div style="margin:2em auto">
|
||||
Failed to start app. Please try clearing localStorage and try again.<br/>
|
||||
<br/>
|
||||
<button class="btn" onClick="localStorage.clear(); window.location.reload();">Clear localStorage</button>
|
||||
</div>`;
|
||||
}
|
||||
|
||||
/**
|
||||
* filter out redundant fields upon sending to API
|
||||
* @param {Array<APIMessage>} messages
|
||||
* @returns {Array<APIMessage>}
|
||||
*/
|
||||
function normalizeMsgsForAPI(messages) {
|
||||
return messages.map((msg) => {
|
||||
return {
|
||||
role: msg.role,
|
||||
content: msg.content,
|
||||
};
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* recommended for DeepsSeek-R1, filter out content between <think> and </think> tags
|
||||
* @param {Array<APIMessage>} messages
|
||||
* @returns {Array<APIMessage>}
|
||||
*/
|
||||
function filterThoughtFromMsgs(messages) {
|
||||
return messages.map((msg) => {
|
||||
return {
|
||||
role: msg.role,
|
||||
content: msg.role === 'assistant'
|
||||
? msg.content.split('</think>').at(-1).trim()
|
||||
: msg.content,
|
||||
};
|
||||
});
|
||||
}
|
10
examples/server/webui/src/main.tsx
Normal file
10
examples/server/webui/src/main.tsx
Normal file
|
@ -0,0 +1,10 @@
|
|||
import { StrictMode } from 'react';
|
||||
import { createRoot } from 'react-dom/client';
|
||||
import './index.scss';
|
||||
import App from './App.tsx';
|
||||
|
||||
createRoot(document.getElementById('root')!).render(
|
||||
<StrictMode>
|
||||
<App />
|
||||
</StrictMode>
|
||||
);
|
327
examples/server/webui/src/utils/app.context.tsx
Normal file
327
examples/server/webui/src/utils/app.context.tsx
Normal file
|
@ -0,0 +1,327 @@
|
|||
import React, { createContext, useContext, useEffect, useState } from 'react';
|
||||
import {
|
||||
APIMessage,
|
||||
CanvasData,
|
||||
Conversation,
|
||||
Message,
|
||||
PendingMessage,
|
||||
} from './types';
|
||||
import StorageUtils from './storage';
|
||||
import {
|
||||
filterThoughtFromMsgs,
|
||||
normalizeMsgsForAPI,
|
||||
getSSEStreamAsync,
|
||||
} from './misc';
|
||||
import { BASE_URL, CONFIG_DEFAULT, isDev } from '../Config';
|
||||
import { matchPath, useLocation } from 'react-router';
|
||||
|
||||
interface AppContextValue {
|
||||
// conversations and messages
|
||||
viewingConversation: Conversation | null;
|
||||
pendingMessages: Record<Conversation['id'], PendingMessage>;
|
||||
isGenerating: (convId: string) => boolean;
|
||||
sendMessage: (
|
||||
convId: string,
|
||||
content: string,
|
||||
onChunk?: CallbackGeneratedChunk
|
||||
) => Promise<boolean>;
|
||||
stopGenerating: (convId: string) => void;
|
||||
replaceMessageAndGenerate: (
|
||||
convId: string,
|
||||
origMsgId: Message['id'],
|
||||
content?: string,
|
||||
onChunk?: CallbackGeneratedChunk
|
||||
) => Promise<void>;
|
||||
|
||||
// canvas
|
||||
canvasData: CanvasData | null;
|
||||
setCanvasData: (data: CanvasData | null) => void;
|
||||
|
||||
// config
|
||||
config: typeof CONFIG_DEFAULT;
|
||||
saveConfig: (config: typeof CONFIG_DEFAULT) => void;
|
||||
showSettings: boolean;
|
||||
setShowSettings: (show: boolean) => void;
|
||||
}
|
||||
|
||||
// for now, this callback is only used for scrolling to the bottom of the chat
|
||||
type CallbackGeneratedChunk = () => void;
|
||||
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
const AppContext = createContext<AppContextValue>({} as any);
|
||||
|
||||
export const AppContextProvider = ({
|
||||
children,
|
||||
}: {
|
||||
children: React.ReactElement;
|
||||
}) => {
|
||||
const { pathname } = useLocation();
|
||||
const params = matchPath('/chat/:convId', pathname);
|
||||
const convId = params?.params?.convId;
|
||||
|
||||
const [viewingConversation, setViewingConversation] =
|
||||
useState<Conversation | null>(null);
|
||||
const [pendingMessages, setPendingMessages] = useState<
|
||||
Record<Conversation['id'], PendingMessage>
|
||||
>({});
|
||||
const [aborts, setAborts] = useState<
|
||||
Record<Conversation['id'], AbortController>
|
||||
>({});
|
||||
const [config, setConfig] = useState(StorageUtils.getConfig());
|
||||
const [canvasData, setCanvasData] = useState<CanvasData | null>(null);
|
||||
const [showSettings, setShowSettings] = useState(false);
|
||||
|
||||
// handle change when the convId from URL is changed
|
||||
useEffect(() => {
|
||||
// also reset the canvas data
|
||||
setCanvasData(null);
|
||||
const handleConversationChange = (changedConvId: string) => {
|
||||
if (changedConvId !== convId) return;
|
||||
setViewingConversation(StorageUtils.getOneConversation(convId));
|
||||
};
|
||||
StorageUtils.onConversationChanged(handleConversationChange);
|
||||
setViewingConversation(StorageUtils.getOneConversation(convId ?? ''));
|
||||
return () => {
|
||||
StorageUtils.offConversationChanged(handleConversationChange);
|
||||
};
|
||||
}, [convId]);
|
||||
|
||||
const setPending = (convId: string, pendingMsg: PendingMessage | null) => {
|
||||
// if pendingMsg is null, remove the key from the object
|
||||
if (!pendingMsg) {
|
||||
setPendingMessages((prev) => {
|
||||
const newState = { ...prev };
|
||||
delete newState[convId];
|
||||
return newState;
|
||||
});
|
||||
} else {
|
||||
setPendingMessages((prev) => ({ ...prev, [convId]: pendingMsg }));
|
||||
}
|
||||
};
|
||||
|
||||
const setAbort = (convId: string, controller: AbortController | null) => {
|
||||
if (!controller) {
|
||||
setAborts((prev) => {
|
||||
const newState = { ...prev };
|
||||
delete newState[convId];
|
||||
return newState;
|
||||
});
|
||||
} else {
|
||||
setAborts((prev) => ({ ...prev, [convId]: controller }));
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// public functions
|
||||
|
||||
const isGenerating = (convId: string) => !!pendingMessages[convId];
|
||||
|
||||
const generateMessage = async (
|
||||
convId: string,
|
||||
onChunk?: CallbackGeneratedChunk
|
||||
) => {
|
||||
if (isGenerating(convId)) return;
|
||||
|
||||
const config = StorageUtils.getConfig();
|
||||
const currConversation = StorageUtils.getOneConversation(convId);
|
||||
if (!currConversation) {
|
||||
throw new Error('Current conversation is not found');
|
||||
}
|
||||
|
||||
const abortController = new AbortController();
|
||||
setAbort(convId, abortController);
|
||||
|
||||
let pendingMsg: PendingMessage = {
|
||||
id: Date.now() + 1,
|
||||
role: 'assistant',
|
||||
content: null,
|
||||
};
|
||||
setPending(convId, pendingMsg);
|
||||
|
||||
try {
|
||||
// prepare messages for API
|
||||
let messages: APIMessage[] = [
|
||||
...(config.systemMessage.length === 0
|
||||
? []
|
||||
: [{ role: 'system', content: config.systemMessage } as APIMessage]),
|
||||
...normalizeMsgsForAPI(currConversation?.messages ?? []),
|
||||
];
|
||||
if (config.excludeThoughtOnReq) {
|
||||
messages = filterThoughtFromMsgs(messages);
|
||||
}
|
||||
if (isDev) console.log({ messages });
|
||||
|
||||
// prepare params
|
||||
const params = {
|
||||
messages,
|
||||
stream: true,
|
||||
cache_prompt: true,
|
||||
samplers: config.samplers,
|
||||
temperature: config.temperature,
|
||||
dynatemp_range: config.dynatemp_range,
|
||||
dynatemp_exponent: config.dynatemp_exponent,
|
||||
top_k: config.top_k,
|
||||
top_p: config.top_p,
|
||||
min_p: config.min_p,
|
||||
typical_p: config.typical_p,
|
||||
xtc_probability: config.xtc_probability,
|
||||
xtc_threshold: config.xtc_threshold,
|
||||
repeat_last_n: config.repeat_last_n,
|
||||
repeat_penalty: config.repeat_penalty,
|
||||
presence_penalty: config.presence_penalty,
|
||||
frequency_penalty: config.frequency_penalty,
|
||||
dry_multiplier: config.dry_multiplier,
|
||||
dry_base: config.dry_base,
|
||||
dry_allowed_length: config.dry_allowed_length,
|
||||
dry_penalty_last_n: config.dry_penalty_last_n,
|
||||
max_tokens: config.max_tokens,
|
||||
timings_per_token: !!config.showTokensPerSecond,
|
||||
...(config.custom.length ? JSON.parse(config.custom) : {}),
|
||||
};
|
||||
|
||||
// send request
|
||||
const fetchResponse = await fetch(`${BASE_URL}/v1/chat/completions`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
...(config.apiKey
|
||||
? { Authorization: `Bearer ${config.apiKey}` }
|
||||
: {}),
|
||||
},
|
||||
body: JSON.stringify(params),
|
||||
signal: abortController.signal,
|
||||
});
|
||||
if (fetchResponse.status !== 200) {
|
||||
const body = await fetchResponse.json();
|
||||
throw new Error(body?.error?.message || 'Unknown error');
|
||||
}
|
||||
const chunks = getSSEStreamAsync(fetchResponse);
|
||||
for await (const chunk of chunks) {
|
||||
// const stop = chunk.stop;
|
||||
if (chunk.error) {
|
||||
throw new Error(chunk.error?.message || 'Unknown error');
|
||||
}
|
||||
const addedContent = chunk.choices[0].delta.content;
|
||||
const lastContent = pendingMsg.content || '';
|
||||
if (addedContent) {
|
||||
pendingMsg = {
|
||||
id: pendingMsg.id,
|
||||
role: 'assistant',
|
||||
content: lastContent + addedContent,
|
||||
};
|
||||
}
|
||||
const timings = chunk.timings;
|
||||
if (timings && config.showTokensPerSecond) {
|
||||
// only extract what's really needed, to save some space
|
||||
pendingMsg.timings = {
|
||||
prompt_n: timings.prompt_n,
|
||||
prompt_ms: timings.prompt_ms,
|
||||
predicted_n: timings.predicted_n,
|
||||
predicted_ms: timings.predicted_ms,
|
||||
};
|
||||
}
|
||||
setPending(convId, pendingMsg);
|
||||
onChunk?.();
|
||||
}
|
||||
} catch (err) {
|
||||
setPending(convId, null);
|
||||
if ((err as Error).name === 'AbortError') {
|
||||
// user stopped the generation via stopGeneration() function
|
||||
// we can safely ignore this error
|
||||
} else {
|
||||
console.error(err);
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
alert((err as any)?.message ?? 'Unknown error');
|
||||
throw err; // rethrow
|
||||
}
|
||||
}
|
||||
|
||||
if (pendingMsg.content) {
|
||||
StorageUtils.appendMsg(currConversation.id, {
|
||||
id: pendingMsg.id,
|
||||
content: pendingMsg.content,
|
||||
role: pendingMsg.role,
|
||||
timings: pendingMsg.timings,
|
||||
});
|
||||
}
|
||||
setPending(convId, null);
|
||||
onChunk?.(); // trigger scroll to bottom
|
||||
};
|
||||
|
||||
const sendMessage = async (
|
||||
convId: string,
|
||||
content: string,
|
||||
onChunk?: CallbackGeneratedChunk
|
||||
): Promise<boolean> => {
|
||||
if (isGenerating(convId) || content.trim().length === 0) return false;
|
||||
|
||||
StorageUtils.appendMsg(convId, {
|
||||
id: Date.now(),
|
||||
role: 'user',
|
||||
content,
|
||||
});
|
||||
|
||||
try {
|
||||
await generateMessage(convId, onChunk);
|
||||
return true;
|
||||
} catch (_) {
|
||||
// rollback
|
||||
StorageUtils.popMsg(convId);
|
||||
}
|
||||
return false;
|
||||
};
|
||||
|
||||
const stopGenerating = (convId: string) => {
|
||||
setPending(convId, null);
|
||||
aborts[convId]?.abort();
|
||||
};
|
||||
|
||||
// if content is undefined, we remove last assistant message
|
||||
const replaceMessageAndGenerate = async (
|
||||
convId: string,
|
||||
origMsgId: Message['id'],
|
||||
content?: string,
|
||||
onChunk?: CallbackGeneratedChunk
|
||||
) => {
|
||||
if (isGenerating(convId)) return;
|
||||
|
||||
StorageUtils.filterAndKeepMsgs(convId, (msg) => msg.id < origMsgId);
|
||||
if (content) {
|
||||
StorageUtils.appendMsg(convId, {
|
||||
id: Date.now(),
|
||||
role: 'user',
|
||||
content,
|
||||
});
|
||||
}
|
||||
|
||||
await generateMessage(convId, onChunk);
|
||||
};
|
||||
|
||||
const saveConfig = (config: typeof CONFIG_DEFAULT) => {
|
||||
StorageUtils.setConfig(config);
|
||||
setConfig(config);
|
||||
};
|
||||
|
||||
return (
|
||||
<AppContext.Provider
|
||||
value={{
|
||||
isGenerating,
|
||||
viewingConversation,
|
||||
pendingMessages,
|
||||
sendMessage,
|
||||
stopGenerating,
|
||||
replaceMessageAndGenerate,
|
||||
canvasData,
|
||||
setCanvasData,
|
||||
config,
|
||||
saveConfig,
|
||||
showSettings,
|
||||
setShowSettings,
|
||||
}}
|
||||
>
|
||||
{children}
|
||||
</AppContext.Provider>
|
||||
);
|
||||
};
|
||||
|
||||
export const useAppContext = () => useContext(AppContext);
|
38
examples/server/webui/src/utils/common.tsx
Normal file
38
examples/server/webui/src/utils/common.tsx
Normal file
|
@ -0,0 +1,38 @@
|
|||
export const XCloseButton: React.ElementType<
|
||||
React.ClassAttributes<HTMLButtonElement> &
|
||||
React.HTMLAttributes<HTMLButtonElement>
|
||||
> = ({ className, ...props }) => (
|
||||
<button className={`btn btn-square btn-sm ${className ?? ''}`} {...props}>
|
||||
<svg
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
className="h-6 w-6"
|
||||
fill="none"
|
||||
viewBox="0 0 24 24"
|
||||
stroke="currentColor"
|
||||
>
|
||||
<path
|
||||
strokeLinecap="round"
|
||||
strokeLinejoin="round"
|
||||
strokeWidth="2"
|
||||
d="M6 18L18 6M6 6l12 12"
|
||||
/>
|
||||
</svg>
|
||||
</button>
|
||||
);
|
||||
|
||||
export const OpenInNewTab = ({
|
||||
href,
|
||||
children,
|
||||
}: {
|
||||
href: string;
|
||||
children: string;
|
||||
}) => (
|
||||
<a
|
||||
className="underline"
|
||||
href={href}
|
||||
target="_blank"
|
||||
rel="noopener noreferrer"
|
||||
>
|
||||
{children}
|
||||
</a>
|
||||
);
|
90
examples/server/webui/src/utils/misc.ts
Normal file
90
examples/server/webui/src/utils/misc.ts
Normal file
|
@ -0,0 +1,90 @@
|
|||
// @ts-expect-error this package does not have typing
|
||||
import TextLineStream from 'textlinestream';
|
||||
import { APIMessage, Message } from './types';
|
||||
|
||||
// ponyfill for missing ReadableStream asyncIterator on Safari
|
||||
import { asyncIterator } from '@sec-ant/readable-stream/ponyfill/asyncIterator';
|
||||
import { isDev } from '../Config';
|
||||
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
export const isString = (x: any) => !!x.toLowerCase;
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
export const isBoolean = (x: any) => x === true || x === false;
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
export const isNumeric = (n: any) => !isString(n) && !isNaN(n) && !isBoolean(n);
|
||||
export const escapeAttr = (str: string) =>
|
||||
str.replace(/>/g, '>').replace(/"/g, '"');
|
||||
|
||||
// wrapper for SSE
|
||||
export async function* getSSEStreamAsync(fetchResponse: Response) {
|
||||
if (!fetchResponse.body) throw new Error('Response body is empty');
|
||||
const lines: ReadableStream<string> = fetchResponse.body
|
||||
.pipeThrough(new TextDecoderStream())
|
||||
.pipeThrough(new TextLineStream());
|
||||
// @ts-expect-error asyncIterator complains about type, but it should work
|
||||
for await (const line of asyncIterator(lines)) {
|
||||
if (isDev) console.log({ line });
|
||||
if (line.startsWith('data:') && !line.endsWith('[DONE]')) {
|
||||
const data = JSON.parse(line.slice(5));
|
||||
yield data;
|
||||
} else if (line.startsWith('error:')) {
|
||||
const data = JSON.parse(line.slice(6));
|
||||
throw new Error(data.message || 'Unknown error');
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// copy text to clipboard
|
||||
export const copyStr = (textToCopy: string) => {
|
||||
// Navigator clipboard api needs a secure context (https)
|
||||
if (navigator.clipboard && window.isSecureContext) {
|
||||
navigator.clipboard.writeText(textToCopy);
|
||||
} else {
|
||||
// Use the 'out of viewport hidden text area' trick
|
||||
const textArea = document.createElement('textarea');
|
||||
textArea.value = textToCopy;
|
||||
// Move textarea out of the viewport so it's not visible
|
||||
textArea.style.position = 'absolute';
|
||||
textArea.style.left = '-999999px';
|
||||
document.body.prepend(textArea);
|
||||
textArea.select();
|
||||
document.execCommand('copy');
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* filter out redundant fields upon sending to API
|
||||
*/
|
||||
export function normalizeMsgsForAPI(messages: Message[]) {
|
||||
return messages.map((msg) => {
|
||||
return {
|
||||
role: msg.role,
|
||||
content: msg.content,
|
||||
};
|
||||
}) as APIMessage[];
|
||||
}
|
||||
|
||||
/**
|
||||
* recommended for DeepsSeek-R1, filter out content between <think> and </think> tags
|
||||
*/
|
||||
export function filterThoughtFromMsgs(messages: APIMessage[]) {
|
||||
return messages.map((msg) => {
|
||||
return {
|
||||
role: msg.role,
|
||||
content:
|
||||
msg.role === 'assistant'
|
||||
? msg.content.split('</think>').at(-1)!.trim()
|
||||
: msg.content,
|
||||
} as APIMessage;
|
||||
});
|
||||
}
|
||||
|
||||
export function classNames(classes: Record<string, boolean>): string {
|
||||
return Object.entries(classes)
|
||||
.filter(([_, value]) => value)
|
||||
.map(([key, _]) => key)
|
||||
.join(' ');
|
||||
}
|
||||
|
||||
export const delay = (ms: number) =>
|
||||
new Promise((resolve) => setTimeout(resolve, ms));
|
138
examples/server/webui/src/utils/storage.ts
Normal file
138
examples/server/webui/src/utils/storage.ts
Normal file
|
@ -0,0 +1,138 @@
|
|||
// coversations is stored in localStorage
|
||||
// format: { [convId]: { id: string, lastModified: number, messages: [...] } }
|
||||
|
||||
import { CONFIG_DEFAULT } from '../Config';
|
||||
import { Conversation, Message } from './types';
|
||||
|
||||
const event = new EventTarget();
|
||||
|
||||
type CallbackConversationChanged = (convId: string) => void;
|
||||
let onConversationChangedHandlers: [
|
||||
CallbackConversationChanged,
|
||||
EventListener,
|
||||
][] = [];
|
||||
const dispatchConversationChange = (convId: string) => {
|
||||
event.dispatchEvent(
|
||||
new CustomEvent('conversationChange', { detail: { convId } })
|
||||
);
|
||||
};
|
||||
|
||||
// convId is a string prefixed with 'conv-'
|
||||
const StorageUtils = {
|
||||
/**
|
||||
* manage conversations
|
||||
*/
|
||||
getAllConversations(): Conversation[] {
|
||||
const res = [];
|
||||
for (const key in localStorage) {
|
||||
if (key.startsWith('conv-')) {
|
||||
res.push(JSON.parse(localStorage.getItem(key) ?? '{}'));
|
||||
}
|
||||
}
|
||||
res.sort((a, b) => b.lastModified - a.lastModified);
|
||||
return res;
|
||||
},
|
||||
/**
|
||||
* can return null if convId does not exist
|
||||
*/
|
||||
getOneConversation(convId: string): Conversation | null {
|
||||
return JSON.parse(localStorage.getItem(convId) || 'null');
|
||||
},
|
||||
/**
|
||||
* if convId does not exist, create one
|
||||
*/
|
||||
appendMsg(convId: string, msg: Message): void {
|
||||
if (msg.content === null) return;
|
||||
const conv = StorageUtils.getOneConversation(convId) || {
|
||||
id: convId,
|
||||
lastModified: Date.now(),
|
||||
messages: [],
|
||||
};
|
||||
conv.messages.push(msg);
|
||||
conv.lastModified = Date.now();
|
||||
localStorage.setItem(convId, JSON.stringify(conv));
|
||||
dispatchConversationChange(convId);
|
||||
},
|
||||
/**
|
||||
* Get new conversation id
|
||||
*/
|
||||
getNewConvId(): string {
|
||||
return `conv-${Date.now()}`;
|
||||
},
|
||||
/**
|
||||
* remove conversation by id
|
||||
*/
|
||||
remove(convId: string): void {
|
||||
localStorage.removeItem(convId);
|
||||
dispatchConversationChange(convId);
|
||||
},
|
||||
/**
|
||||
* remove all conversations
|
||||
*/
|
||||
filterAndKeepMsgs(
|
||||
convId: string,
|
||||
predicate: (msg: Message) => boolean
|
||||
): void {
|
||||
const conv = StorageUtils.getOneConversation(convId);
|
||||
if (!conv) return;
|
||||
conv.messages = conv.messages.filter(predicate);
|
||||
conv.lastModified = Date.now();
|
||||
localStorage.setItem(convId, JSON.stringify(conv));
|
||||
dispatchConversationChange(convId);
|
||||
},
|
||||
/**
|
||||
* remove last message from conversation
|
||||
*/
|
||||
popMsg(convId: string): Message | undefined {
|
||||
const conv = StorageUtils.getOneConversation(convId);
|
||||
if (!conv) return;
|
||||
const msg = conv.messages.pop();
|
||||
conv.lastModified = Date.now();
|
||||
if (conv.messages.length === 0) {
|
||||
StorageUtils.remove(convId);
|
||||
} else {
|
||||
localStorage.setItem(convId, JSON.stringify(conv));
|
||||
}
|
||||
dispatchConversationChange(convId);
|
||||
return msg;
|
||||
},
|
||||
|
||||
// event listeners
|
||||
onConversationChanged(callback: CallbackConversationChanged) {
|
||||
const fn = (e: Event) => callback((e as CustomEvent).detail.convId);
|
||||
onConversationChangedHandlers.push([callback, fn]);
|
||||
event.addEventListener('conversationChange', fn);
|
||||
},
|
||||
offConversationChanged(callback: CallbackConversationChanged) {
|
||||
const fn = onConversationChangedHandlers.find(([cb, _]) => cb === callback);
|
||||
if (fn) {
|
||||
event.removeEventListener('conversationChange', fn[1]);
|
||||
}
|
||||
onConversationChangedHandlers = [];
|
||||
},
|
||||
|
||||
// manage config
|
||||
getConfig(): typeof CONFIG_DEFAULT {
|
||||
const savedVal = JSON.parse(localStorage.getItem('config') || '{}');
|
||||
// to prevent breaking changes in the future, we always provide default value for missing keys
|
||||
return {
|
||||
...CONFIG_DEFAULT,
|
||||
...savedVal,
|
||||
};
|
||||
},
|
||||
setConfig(config: typeof CONFIG_DEFAULT) {
|
||||
localStorage.setItem('config', JSON.stringify(config));
|
||||
},
|
||||
getTheme(): string {
|
||||
return localStorage.getItem('theme') || 'auto';
|
||||
},
|
||||
setTheme(theme: string) {
|
||||
if (theme === 'auto') {
|
||||
localStorage.removeItem('theme');
|
||||
} else {
|
||||
localStorage.setItem('theme', theme);
|
||||
}
|
||||
},
|
||||
};
|
||||
|
||||
export default StorageUtils;
|
36
examples/server/webui/src/utils/types.ts
Normal file
36
examples/server/webui/src/utils/types.ts
Normal file
|
@ -0,0 +1,36 @@
|
|||
export interface TimingReport {
|
||||
prompt_n: number;
|
||||
prompt_ms: number;
|
||||
predicted_n: number;
|
||||
predicted_ms: number;
|
||||
}
|
||||
|
||||
export interface Message {
|
||||
id: number;
|
||||
role: 'user' | 'assistant' | 'system';
|
||||
content: string;
|
||||
timings?: TimingReport;
|
||||
}
|
||||
|
||||
export type APIMessage = Pick<Message, 'role' | 'content'>;
|
||||
|
||||
export interface Conversation {
|
||||
id: string; // format: `conv-{timestamp}`
|
||||
lastModified: number; // timestamp from Date.now()
|
||||
messages: Message[];
|
||||
}
|
||||
|
||||
export type PendingMessage = Omit<Message, 'content'> & {
|
||||
content: string | null;
|
||||
};
|
||||
|
||||
export enum CanvasType {
|
||||
PY_INTERPRETER,
|
||||
}
|
||||
|
||||
export interface CanvasPyInterpreter {
|
||||
type: CanvasType.PY_INTERPRETER;
|
||||
content: string;
|
||||
}
|
||||
|
||||
export type CanvasData = CanvasPyInterpreter;
|
1
examples/server/webui/src/vite-env.d.ts
vendored
Normal file
1
examples/server/webui/src/vite-env.d.ts
vendored
Normal file
|
@ -0,0 +1 @@
|
|||
/// <reference types="vite/client" />
|
26
examples/server/webui/tsconfig.app.json
Normal file
26
examples/server/webui/tsconfig.app.json
Normal file
|
@ -0,0 +1,26 @@
|
|||
{
|
||||
"compilerOptions": {
|
||||
"tsBuildInfoFile": "./node_modules/.tmp/tsconfig.app.tsbuildinfo",
|
||||
"target": "ES2021",
|
||||
"useDefineForClassFields": true,
|
||||
"lib": ["ES2021", "DOM", "DOM.Iterable"],
|
||||
"module": "ESNext",
|
||||
"skipLibCheck": true,
|
||||
|
||||
/* Bundler mode */
|
||||
"moduleResolution": "bundler",
|
||||
"allowImportingTsExtensions": true,
|
||||
"isolatedModules": true,
|
||||
"moduleDetection": "force",
|
||||
"noEmit": true,
|
||||
"jsx": "react-jsx",
|
||||
|
||||
/* Linting */
|
||||
"strict": true,
|
||||
"noUnusedLocals": true,
|
||||
"noUnusedParameters": true,
|
||||
"noFallthroughCasesInSwitch": true,
|
||||
"noUncheckedSideEffectImports": true
|
||||
},
|
||||
"include": ["src"]
|
||||
}
|
7
examples/server/webui/tsconfig.json
Normal file
7
examples/server/webui/tsconfig.json
Normal file
|
@ -0,0 +1,7 @@
|
|||
{
|
||||
"files": [],
|
||||
"references": [
|
||||
{ "path": "./tsconfig.app.json" },
|
||||
{ "path": "./tsconfig.node.json" }
|
||||
]
|
||||
}
|
24
examples/server/webui/tsconfig.node.json
Normal file
24
examples/server/webui/tsconfig.node.json
Normal file
|
@ -0,0 +1,24 @@
|
|||
{
|
||||
"compilerOptions": {
|
||||
"tsBuildInfoFile": "./node_modules/.tmp/tsconfig.node.tsbuildinfo",
|
||||
"target": "ES2022",
|
||||
"lib": ["ES2023"],
|
||||
"module": "ESNext",
|
||||
"skipLibCheck": true,
|
||||
|
||||
/* Bundler mode */
|
||||
"moduleResolution": "bundler",
|
||||
"allowImportingTsExtensions": true,
|
||||
"isolatedModules": true,
|
||||
"moduleDetection": "force",
|
||||
"noEmit": true,
|
||||
|
||||
/* Linting */
|
||||
"strict": true,
|
||||
"noUnusedLocals": true,
|
||||
"noUnusedParameters": true,
|
||||
"noFallthroughCasesInSwitch": true,
|
||||
"noUncheckedSideEffectImports": true
|
||||
},
|
||||
"include": ["vite.config.ts"]
|
||||
}
|
|
@ -1,8 +1,11 @@
|
|||
|
||||
import { defineConfig, PluginOption } from 'vite';
|
||||
import react from '@vitejs/plugin-react';
|
||||
import { viteSingleFile } from 'vite-plugin-singlefile';
|
||||
import path from 'path';
|
||||
import fs from 'fs';
|
||||
import zlib from 'zlib';
|
||||
import path from 'node:path';
|
||||
import fs from 'node:fs';
|
||||
import zlib from 'node:zlib';
|
||||
|
||||
/* eslint-disable */
|
||||
|
||||
const MAX_BUNDLE_SIZE = 1.5 * 1024 * 1024; // only increase when absolutely necessary
|
||||
|
||||
|
@ -15,20 +18,26 @@ const GUIDE_FOR_FRONTEND = `
|
|||
-->
|
||||
`.trim();
|
||||
|
||||
const FRONTEND_PLUGINS = [react()];
|
||||
|
||||
const BUILD_PLUGINS = [
|
||||
...FRONTEND_PLUGINS,
|
||||
viteSingleFile(),
|
||||
(function llamaCppPlugin() {
|
||||
let config;
|
||||
let config: any;
|
||||
return {
|
||||
name: 'llamacpp:build',
|
||||
apply: 'build',
|
||||
async configResolved(_config) {
|
||||
async configResolved(_config: any) {
|
||||
config = _config;
|
||||
},
|
||||
writeBundle() {
|
||||
const outputIndexHtml = path.join(config.build.outDir, 'index.html');
|
||||
const content = GUIDE_FOR_FRONTEND + '\n' + fs.readFileSync(outputIndexHtml, 'utf-8');
|
||||
const compressed = zlib.gzipSync(Buffer.from(content, 'utf-8'), { level: 9 });
|
||||
const content =
|
||||
GUIDE_FOR_FRONTEND + '\n' + fs.readFileSync(outputIndexHtml, 'utf-8');
|
||||
const compressed = zlib.gzipSync(Buffer.from(content, 'utf-8'), {
|
||||
level: 9,
|
||||
});
|
||||
|
||||
// because gzip header contains machine-specific info, we must remove these data from the header
|
||||
// timestamp
|
||||
|
@ -42,18 +51,30 @@ const BUILD_PLUGINS = [
|
|||
if (compressed.byteLength > MAX_BUNDLE_SIZE) {
|
||||
throw new Error(
|
||||
`Bundle size is too large (${Math.ceil(compressed.byteLength / 1024)} KB).\n` +
|
||||
`Please reduce the size of the frontend or increase MAX_BUNDLE_SIZE in vite.config.js.\n`,
|
||||
`Please reduce the size of the frontend or increase MAX_BUNDLE_SIZE in vite.config.js.\n`
|
||||
);
|
||||
}
|
||||
|
||||
const targetOutputFile = path.join(config.build.outDir, '../../public/index.html.gz');
|
||||
const targetOutputFile = path.join(
|
||||
config.build.outDir,
|
||||
'../../public/index.html.gz'
|
||||
);
|
||||
fs.writeFileSync(targetOutputFile, compressed);
|
||||
}
|
||||
}
|
||||
},
|
||||
} satisfies PluginOption;
|
||||
})(),
|
||||
];
|
||||
|
||||
/** @type {import('vite').UserConfig} */
|
||||
export default {
|
||||
plugins: process.env.ANALYZE ? [] : BUILD_PLUGINS,
|
||||
};
|
||||
export default defineConfig({
|
||||
// @ts-ignore
|
||||
plugins: process.env.ANALYZE ? FRONTEND_PLUGINS : BUILD_PLUGINS,
|
||||
server: {
|
||||
proxy: {
|
||||
'/v1': 'http://localhost:8080',
|
||||
},
|
||||
headers: {
|
||||
'Cross-Origin-Embedder-Policy': 'require-corp',
|
||||
'Cross-Origin-Opener-Policy': 'same-origin',
|
||||
},
|
||||
},
|
||||
});
|
|
@ -274,22 +274,25 @@ endif()
|
|||
|
||||
# Generate version info based on git commit.
|
||||
|
||||
find_program(GIT_EXE NAMES git git.exe REQUIRED NO_CMAKE_FIND_ROOT_PATH)
|
||||
execute_process(COMMAND ${GIT_EXE} rev-list --count HEAD
|
||||
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
|
||||
OUTPUT_VARIABLE GGML_BUILD_NUMBER
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
if(NOT DEFINED GGML_BUILD_NUMBER)
|
||||
find_program(GIT_EXE NAMES git git.exe REQUIRED NO_CMAKE_FIND_ROOT_PATH)
|
||||
execute_process(COMMAND ${GIT_EXE} rev-list --count HEAD
|
||||
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
|
||||
OUTPUT_VARIABLE GGML_BUILD_NUMBER
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
|
||||
if(GGML_BUILD_NUMBER EQUAL 1)
|
||||
message(WARNING "GGML build version fixed at 1 likely due to a shallow clone.")
|
||||
if(GGML_BUILD_NUMBER EQUAL 1)
|
||||
message(WARNING "GGML build version fixed at 1 likely due to a shallow clone.")
|
||||
endif()
|
||||
|
||||
execute_process(COMMAND ${GIT_EXE} rev-parse --short HEAD
|
||||
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
|
||||
OUTPUT_VARIABLE GGML_BUILD_COMMIT
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
endif()
|
||||
|
||||
execute_process(COMMAND ${GIT_EXE} rev-parse --short HEAD
|
||||
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
|
||||
OUTPUT_VARIABLE GGML_BUILD_COMMIT
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
|
||||
# Capture variables prefixed with GGML_.
|
||||
|
||||
|
|
|
@ -1775,7 +1775,7 @@ extern "C" {
|
|||
struct ggml_tensor * a,
|
||||
int k);
|
||||
|
||||
#define GGML_KQ_MASK_PAD 32
|
||||
#define GGML_KQ_MASK_PAD 64
|
||||
|
||||
// q: [n_embd, n_batch, n_head, 1]
|
||||
// k: [n_embd, n_kv, n_head_kv, 1]
|
||||
|
|
|
@ -989,19 +989,7 @@ ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_conte
|
|||
this_size = GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment);
|
||||
}
|
||||
|
||||
if (this_size > max_size) {
|
||||
GGML_LOG_ERROR("%s: tensor %s is too large to fit in a %s buffer (tensor size: %zu, max buffer size: %zu)\n",
|
||||
__func__, t->name,
|
||||
ggml_backend_buft_name(buft),
|
||||
this_size, max_size);
|
||||
for (size_t i = 0; i < n_buffers; i++) {
|
||||
ggml_backend_buffer_free(buffers[i]);
|
||||
}
|
||||
free(buffers);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if ((cur_buf_size + this_size) > max_size) {
|
||||
if (cur_buf_size > 0 && (cur_buf_size + this_size) > max_size) {
|
||||
// allocate tensors in the current buffer
|
||||
if (!alloc_tensor_range(ctx, first, t, buft, cur_buf_size, &buffers, &n_buffers)) {
|
||||
return NULL;
|
||||
|
|
|
@ -360,21 +360,15 @@ inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b)
|
|||
#endif
|
||||
|
||||
#if defined(__loongarch_asx)
|
||||
|
||||
typedef union {
|
||||
int32_t i;
|
||||
float f;
|
||||
} ft_union;
|
||||
|
||||
/* float type data load instructions */
|
||||
static __m128 __lsx_vreplfr2vr_s(float val) {
|
||||
ft_union fi_tmpval = {.f = val};
|
||||
return (__m128)__lsx_vreplgr2vr_w(fi_tmpval.i);
|
||||
static __m128 __lsx_vreplfr2vr_s(const float val) {
|
||||
v4f32 res = {val, val, val, val};
|
||||
return (__m128)res;
|
||||
}
|
||||
|
||||
static __m256 __lasx_xvreplfr2vr_s(float val) {
|
||||
ft_union fi_tmpval = {.f = val};
|
||||
return (__m256)__lasx_xvreplgr2vr_w(fi_tmpval.i);
|
||||
static __m256 __lasx_xvreplfr2vr_s(const float val) {
|
||||
v8f32 res = {val, val, val, val, val, val, val, val};
|
||||
return (__m256)res;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
|
|
@ -297,6 +297,90 @@ static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
|
|||
static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
|
||||
#endif
|
||||
|
||||
#if defined(__loongarch_sx)
|
||||
|
||||
static __m128i lsx_packs_w(__m128i a, __m128i b) {
|
||||
__m128i tmp, tmp1;
|
||||
tmp = __lsx_vsat_w(a, 15);
|
||||
tmp1 = __lsx_vsat_w(b, 15);
|
||||
return __lsx_vpickev_h(tmp1, tmp);
|
||||
}
|
||||
|
||||
static __m128i lsx_packs_h(__m128i a, __m128i b) {
|
||||
__m128i tmp, tmp1;
|
||||
tmp = __lsx_vsat_h(a, 7);
|
||||
tmp1 = __lsx_vsat_h(b, 7);
|
||||
return __lsx_vpickev_b(tmp1, tmp);
|
||||
}
|
||||
|
||||
static __m128i lsx_packus_h(__m128i a, __m128i b) {
|
||||
__m128i tmp, tmp1;
|
||||
tmp = __lsx_vsat_hu(a, 7);
|
||||
tmp1 = __lsx_vsat_hu(b, 7);
|
||||
return __lsx_vpickev_b(tmp1, tmp);
|
||||
}
|
||||
|
||||
static __m128i lsx_maddubs_h(__m128i a, __m128i b) {
|
||||
__m128i tmp1, tmp2;
|
||||
tmp1 = __lsx_vmulwev_h_b(a, b);
|
||||
tmp2 = __lsx_vmulwod_h_b(a, b);
|
||||
return __lsx_vsadd_h(tmp1, tmp2);
|
||||
}
|
||||
|
||||
static __m128i lsx_madd_h(__m128i a, __m128i b) {
|
||||
__m128i tmp1, tmp2;
|
||||
tmp1 = __lsx_vmulwev_w_h(a, b);
|
||||
tmp2 = __lsx_vmulwod_w_h(a, b);
|
||||
return __lsx_vadd_w(tmp1, tmp2);
|
||||
}
|
||||
|
||||
static __m128i lsx_set_w(int32_t a, int32_t b, int32_t c, int32_t d) {
|
||||
v4i32 __ret = {d, c, b, a};
|
||||
return (__m128i)__ret;
|
||||
}
|
||||
|
||||
static __m128i lsx_shuffle_b(__m128i a, __m128i b) {
|
||||
__m128i mask_f, zero, tmp0, tmp2, mask;
|
||||
int f = 0x8f;
|
||||
mask_f = __lsx_vreplgr2vr_b(f);
|
||||
zero = __lsx_vldi(0);
|
||||
tmp0 = __lsx_vand_v(b, mask_f); // get mask with low 4 bit and sign bits
|
||||
tmp0 = __lsx_vori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive
|
||||
mask = __lsx_vsle_b(zero, tmp0); // if mask >= 0, set mask
|
||||
tmp2 = __lsx_vand_v(tmp0, mask); // maskout the in2 < ones
|
||||
return __lsx_vshuf_b(a, zero, tmp2);
|
||||
}
|
||||
|
||||
static __m128i lsx_hadd_h(__m128i a, __m128i b) {
|
||||
__m128i tmp1 = __lsx_vpickev_h(b, a);
|
||||
__m128i tmp2 = __lsx_vpickod_h(b, a);
|
||||
return __lsx_vadd_h(tmp1, tmp2);
|
||||
}
|
||||
|
||||
static __m128i lsx_hadd_w(__m128i a, __m128i b) {
|
||||
__m128i tmp1 = __lsx_vpickev_w(b, a);
|
||||
__m128i tmp2 = __lsx_vpickod_w(b, a);
|
||||
return __lsx_vadd_w(tmp1, tmp2);
|
||||
}
|
||||
|
||||
static __m128 lsx_hadd_s(__m128 a, __m128 b) {
|
||||
__m128 tmp1 = (__m128)__lsx_vpickev_w((__m128i)b, (__m128i)a);
|
||||
__m128 tmp2 = (__m128)__lsx_vpickod_w((__m128i)b, (__m128i)a);
|
||||
|
||||
return __lsx_vfadd_s(tmp1, tmp2);
|
||||
}
|
||||
|
||||
static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
|
||||
__m128 res_0 =lsx_hadd_s(a, b);
|
||||
__m128 res_1 =lsx_hadd_s(c, d);
|
||||
__m128 res =lsx_hadd_s(res_0, res_1);
|
||||
res =lsx_hadd_s(res, res);
|
||||
res =lsx_hadd_s(res, res);
|
||||
|
||||
return ((v4f32)res)[0];
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(__loongarch_asx)
|
||||
|
||||
#ifdef __clang__
|
||||
|
@ -395,11 +479,6 @@ static __m256i lasx_set_w(int e7, int e6, int e5, int e4, int e3, int e2, int e1
|
|||
return (__m256i)__ret;
|
||||
}
|
||||
|
||||
static __m128i lsx_set_w(int32_t a, int32_t b, int32_t c, int32_t d) {
|
||||
v4i32 __ret = {d, c, b, a};
|
||||
return (__m128i)__ret;
|
||||
}
|
||||
|
||||
static __m256i lasx_set_d(int64_t a, int64_t b, int64_t c, int64_t d) {
|
||||
v4i64 __ret = {d, c, b, a};
|
||||
return (__m256i)__ret;
|
||||
|
@ -409,18 +488,6 @@ static __m256i lasx_insertf128( __m128i x, __m128i y) {
|
|||
return lasx_set_q(x, y);
|
||||
}
|
||||
|
||||
static __m128i lsx_shuffle_b(__m128i a, __m128i b) {
|
||||
__m128i mask_f, zero, tmp0, tmp2, mask;
|
||||
int f = 0x8f;
|
||||
mask_f = __lsx_vreplgr2vr_b(f);
|
||||
zero = __lsx_vldi(0);
|
||||
tmp0 = __lsx_vand_v(b, mask_f); // get mask with low 4 bit and sign bits
|
||||
tmp0 = __lsx_vori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive
|
||||
mask = __lsx_vsle_b(zero, tmp0); // if mask >= 0, set mask
|
||||
tmp2 = __lsx_vand_v(tmp0, mask); // maskout the in2 < ones
|
||||
return __lsx_vshuf_b(a, zero, tmp2);
|
||||
}
|
||||
|
||||
static __m256i lasx_shuffle_b(__m256i a, __m256i b) {
|
||||
__m256i mask_f, zero, tmp0, tmp2, mask;
|
||||
int f = 0x8f;
|
||||
|
@ -434,30 +501,15 @@ static __m256i lasx_shuffle_b(__m256i a, __m256i b) {
|
|||
}
|
||||
|
||||
static __m256i lasx_extu8_16(__m128i a) {
|
||||
__m128i zero = __lsx_vldi(0);
|
||||
__m128i vlo = __lsx_vilvl_b(zero, a);
|
||||
__m128i vhi = __lsx_vilvh_b(zero, a);
|
||||
return lasx_set_q(vhi, vlo);
|
||||
return __lasx_vext2xv_hu_bu(____m256i(a));
|
||||
}
|
||||
|
||||
static __m256i lasx_ext8_16(__m128i a) {
|
||||
__m128i sign = __lsx_vslti_b(a, 0);
|
||||
__m128i vlo = __lsx_vilvl_b(sign, a);
|
||||
__m128i vhi = __lsx_vilvh_b(sign, a);
|
||||
return lasx_set_q(vhi, vlo);
|
||||
return __lasx_vext2xv_h_b(____m256i(a));
|
||||
}
|
||||
|
||||
static __m256i lasx_ext16_32(__m128i a) {
|
||||
__m256i tmp1;
|
||||
tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 0), 0);
|
||||
tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 1), 1);
|
||||
tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 2), 2);
|
||||
tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 3), 3);
|
||||
tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 4), 4);
|
||||
tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 5), 5);
|
||||
tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 6), 6);
|
||||
tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 7), 7);
|
||||
return tmp1;
|
||||
return __lasx_vext2xv_w_h(____m256i(a));
|
||||
}
|
||||
|
||||
static __m128i lasx_extracti128( __m256i a, int pos) {
|
||||
|
@ -482,25 +534,6 @@ static __m128 lasx_extractf128( __m256 a, int pos) {
|
|||
return ret;
|
||||
}
|
||||
|
||||
static __m128i lsx_hadd_h(__m128i a, __m128i b) {
|
||||
__m128i tmp1 = __lsx_vpickev_h(b, a);
|
||||
__m128i tmp2 = __lsx_vpickod_h(b, a);
|
||||
return __lsx_vadd_h(tmp1, tmp2);
|
||||
}
|
||||
|
||||
static __m128i lsx_hadd_w(__m128i a, __m128i b) {
|
||||
__m128i tmp1 = __lsx_vpickev_w(b, a);
|
||||
__m128i tmp2 = __lsx_vpickod_w(b, a);
|
||||
return __lsx_vadd_w(tmp1, tmp2);
|
||||
}
|
||||
|
||||
static __m128 lsx_hadd_s(__m128 a, __m128 b) {
|
||||
__m128 tmp1 = (__m128)__lsx_vpickev_w((__m128i)b, (__m128i)a);
|
||||
__m128 tmp2 = (__m128)__lsx_vpickod_w((__m128i)b, (__m128i)a);
|
||||
|
||||
return __lsx_vfadd_s(tmp1, tmp2);
|
||||
}
|
||||
|
||||
static __m256i lasx_maddubs_h(__m256i a, __m256i b) {
|
||||
__m256i tmp1, tmp2;
|
||||
tmp1 = __lasx_xvmulwev_h_b(a, b);
|
||||
|
@ -529,42 +562,6 @@ static __m256i lasx_packs_h(__m256i a, __m256i b) {
|
|||
return __lasx_xvpickev_b(tmp1, tmp);
|
||||
}
|
||||
|
||||
static __m128i lsx_packs_w(__m128i a, __m128i b) {
|
||||
__m128i tmp, tmp1;
|
||||
tmp = __lsx_vsat_w(a, 15);
|
||||
tmp1 = __lsx_vsat_w(b, 15);
|
||||
return __lsx_vpickev_h(tmp1, tmp);
|
||||
}
|
||||
|
||||
static __m128i lsx_packs_h(__m128i a, __m128i b) {
|
||||
__m128i tmp, tmp1;
|
||||
tmp = __lsx_vsat_h(a, 7);
|
||||
tmp1 = __lsx_vsat_h(b, 7);
|
||||
return __lsx_vpickev_b(tmp1, tmp);
|
||||
}
|
||||
|
||||
static __m128i lsx_packus_h(__m128i a, __m128i b) {
|
||||
__m128i tmp, tmp1;
|
||||
tmp = __lsx_vsat_hu(a, 7);
|
||||
tmp1 = __lsx_vsat_hu(b, 7);
|
||||
return __lsx_vpickev_b(tmp1, tmp);
|
||||
}
|
||||
|
||||
|
||||
static __m128i lsx_maddubs_h(__m128i a, __m128i b) {
|
||||
__m128i tmp1, tmp2;
|
||||
tmp1 = __lsx_vmulwev_h_b(a, b);
|
||||
tmp2 = __lsx_vmulwod_h_b(a, b);
|
||||
return __lsx_vsadd_h(tmp1, tmp2);
|
||||
}
|
||||
|
||||
static __m128i lsx_madd_h(__m128i a, __m128i b) {
|
||||
__m128i tmp1, tmp2;
|
||||
tmp1 = __lsx_vmulwev_w_h(a, b);
|
||||
tmp2 = __lsx_vmulwod_w_h(a, b);
|
||||
return __lsx_vadd_w(tmp1, tmp2);
|
||||
}
|
||||
|
||||
// multiply int8_t, add results pairwise twice
|
||||
static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
|
||||
// Get absolute values of x vectors
|
||||
|
@ -580,12 +577,10 @@ static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
|
|||
// horizontally add 8 floats
|
||||
static inline float hsum_float_8(const __m256 x) {
|
||||
__m128 res = lasx_extractf128(x, 1);
|
||||
ft_union tmp;
|
||||
res = __lsx_vfadd_s(res, lasx_extractf128(x, 0));
|
||||
res = __lsx_vfadd_s(res, (__m128)__lsx_vpickod_d((__m128i)res, (__m128i)res));
|
||||
res = __lsx_vfadd_s(res, (__m128)__lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w(res, 1), 0));
|
||||
tmp.i = __lsx_vpickve2gr_w(res, 0);
|
||||
return tmp.f;
|
||||
return ((v4f32)res)[0];
|
||||
}
|
||||
|
||||
// horizontally add 8 int32_t
|
||||
|
@ -927,7 +922,6 @@ void quantize_row_q8_0(const float * restrict x, void * restrict vy, int64_t k)
|
|||
|
||||
#elif defined(__loongarch_asx)
|
||||
for (int i = 0; i < nb; i++) {
|
||||
ft_union fi;
|
||||
__m256 v0 = (__m256)__lasx_xvld( x , 0);
|
||||
__m256 v1 = (__m256)__lasx_xvld( x , 32);
|
||||
__m256 v2 = (__m256)__lasx_xvld( x , 64);
|
||||
|
@ -945,8 +939,7 @@ void quantize_row_q8_0(const float * restrict x, void * restrict vy, int64_t k)
|
|||
max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
|
||||
__m128 tmp = max4;
|
||||
max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vinsgr2vr_w(tmp, __lsx_vpickve2gr_w( max4, 1 ), 0 ));
|
||||
fi.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 );
|
||||
const float max_scalar = fi.f;
|
||||
const float max_scalar = ((v4f32)max4)[0];
|
||||
|
||||
// Quantize these floats
|
||||
const float d = max_scalar / 127.f;
|
||||
|
@ -1251,7 +1244,6 @@ void quantize_row_q8_1(const float * restrict x, void * restrict vy, int64_t k)
|
|||
|
||||
#elif defined(__loongarch_asx)
|
||||
for (int i = 0; i < nb; i++) {
|
||||
ft_union ft;
|
||||
__m256 v0 = (__m256)__lasx_xvld( x , 0 );
|
||||
__m256 v1 = (__m256)__lasx_xvld( x , 32 );
|
||||
__m256 v2 = (__m256)__lasx_xvld( x , 64 );
|
||||
|
@ -1269,8 +1261,7 @@ void quantize_row_q8_1(const float * restrict x, void * restrict vy, int64_t k)
|
|||
max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
|
||||
__m128 tmp = max4;
|
||||
max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vextrins_w((__m128i)tmp, (__m128i)max4, 0x10 ));
|
||||
ft.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 );
|
||||
const float max_scalar = ft.f;
|
||||
const float max_scalar = ((v4f32)max4)[0];
|
||||
|
||||
// Quantize these floats
|
||||
const float d = max_scalar / 127.f;
|
||||
|
@ -2232,21 +2223,22 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * r
|
|||
}
|
||||
|
||||
sumf = hsum_float_8(acc);
|
||||
|
||||
#elif defined(__loongarch_sx)
|
||||
// set constants
|
||||
const __m128i low_mask = __lsx_vreplgr2vr_b(0xF);
|
||||
const __m128i off = __lsx_vreplgr2vr_b(8);
|
||||
|
||||
// Initialize accumulator with zeros
|
||||
__m128 acc_0 = __lsx_vldi(0);
|
||||
__m128 acc_1 = __lsx_vldi(0);
|
||||
__m128 acc_2 = __lsx_vldi(0);
|
||||
__m128 acc_3 = __lsx_vldi(0);
|
||||
__m128 acc_0 = (__m128)__lsx_vldi(0);
|
||||
__m128 acc_1 = (__m128)__lsx_vldi(0);
|
||||
__m128 acc_2 = (__m128)__lsx_vldi(0);
|
||||
__m128 acc_3 = (__m128)__lsx_vldi(0);
|
||||
|
||||
for (; ib + 1 < nb; ib += 2) {
|
||||
|
||||
// Compute combined scale for the block 0 and 1
|
||||
const __m128 d_0_1 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
|
||||
const __m128 d_0_1 = (__m128)__lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
|
||||
|
||||
const __m128i tmp_0_1 = __lsx_vld((const __m128i *)x[ib].qs, 0);
|
||||
|
||||
|
@ -2264,7 +2256,7 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * r
|
|||
//_mm_prefetch(&y[ib] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
|
||||
|
||||
// Compute combined scale for the block 2 and 3
|
||||
const __m128 d_2_3 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[ib + 1].d) * GGML_FP16_TO_FP32(y[ib + 1].d) );
|
||||
const __m128 d_2_3 = (__m128)__lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[ib + 1].d) * GGML_FP16_TO_FP32(y[ib + 1].d) );
|
||||
|
||||
const __m128i tmp_2_3 = __lsx_vld((const __m128i *)x[ib + 1].qs, 0);
|
||||
|
||||
|
@ -6141,9 +6133,7 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * r
|
|||
acc_m = __lsx_vfadd_s(acc_m, (__m128)tmp1);
|
||||
|
||||
|
||||
ft_union fi;
|
||||
fi.i = __lsx_vpickve2gr_w(acc_m, 0);
|
||||
*s = hsum_float_8(acc) + fi.f ;
|
||||
*s = hsum_float_8(acc) + ((v4f32)acc_m)[0];
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
|
|
|
@ -1078,29 +1078,23 @@ do { \
|
|||
#define GGML_F16_STEP 32
|
||||
#define GGML_F16_EPR 8
|
||||
|
||||
// F16 arithmetic is not supported by AVX, so we use F32 instead
|
||||
// F16 arithmetic is not supported by LASX, so we use F32 instead
|
||||
|
||||
#define GGML_F32Cx8 __m256
|
||||
#define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
|
||||
#define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
|
||||
|
||||
static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
|
||||
float tmp[8];
|
||||
|
||||
for (int i = 0; i < 8; i++) {
|
||||
tmp[i] = GGML_FP16_TO_FP32(x[i]);
|
||||
}
|
||||
|
||||
return (__m256)__lasx_xvld(tmp, 0);
|
||||
__m256i a;
|
||||
memcpy(&a, x, sizeof(ggml_fp16_t) * 8);
|
||||
a = __lasx_xvpermi_d(a, 0 | (1 << 4));
|
||||
return __lasx_xvfcvtl_s_h(a);
|
||||
}
|
||||
|
||||
static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
|
||||
float arr[8];
|
||||
|
||||
__lasx_xvst(y, arr, 0);
|
||||
|
||||
for (int i = 0; i < 8; i++) {
|
||||
x[i] = GGML_FP32_TO_FP16(arr[i]);
|
||||
}
|
||||
__m256i a = __lasx_xvfcvt_h_s(y, y);
|
||||
a = __lasx_xvpermi_d(a, 0 | (2 << 2));
|
||||
memcpy(x, &a, sizeof(ggml_fp16_t) * 8);
|
||||
}
|
||||
#define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
|
||||
#define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
|
||||
|
@ -13862,9 +13856,13 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
|||
tp->ec = GGML_STATUS_ABORTED;
|
||||
}
|
||||
|
||||
ggml_barrier(state->threadpool);
|
||||
if (node_n + 1 < cgraph->n_nodes) {
|
||||
ggml_barrier(state->threadpool);
|
||||
}
|
||||
}
|
||||
|
||||
ggml_barrier(state->threadpool);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
|
|
@ -28,7 +28,7 @@ if (CUDAToolkit_FOUND)
|
|||
list(APPEND GGML_HEADERS_CUDA "../../include/ggml-cuda.h")
|
||||
|
||||
file(GLOB GGML_SOURCES_CUDA "*.cu")
|
||||
file(GLOB SRCS "template-instances/fattn-wmma*.cu")
|
||||
file(GLOB SRCS "template-instances/fattn-mma*.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
file(GLOB SRCS "template-instances/mmq*.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
|
|
|
@ -61,6 +61,13 @@
|
|||
#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x1030) // RX 6000, minimum for dp4a
|
||||
#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x1100) // RX 7000, minimum for WMMA
|
||||
|
||||
#define GGML_CUDA_CC_IS_RDNA(cc) (cc >= GGML_CUDA_CC_RDNA1)
|
||||
#define GGML_CUDA_CC_IS_RDNA1(cc) (cc >= GGML_CUDA_CC_RDNA1 && cc < GGML_CUDA_CC_RDNA2)
|
||||
#define GGML_CUDA_CC_IS_RDNA2(cc) (cc >= GGML_CUDA_CC_RDNA2 && cc < GGML_CUDA_CC_RDNA3)
|
||||
#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3)
|
||||
#define GGML_CUDA_CC_IS_GCN(cc) (cc > GGML_CUDA_CC_OFFSET_AMD && cc < GGML_CUDA_CC_CDNA)
|
||||
#define GGML_CUDA_CC_IS_CDNA(cc) (cc >= GGML_CUDA_CC_CDNA && cc < GGML_CUDA_CC_RDNA1)
|
||||
|
||||
#define GGML_CUDA_CC_QY1 210
|
||||
#define GGML_CUDA_CC_QY2 220
|
||||
|
||||
|
@ -148,7 +155,7 @@ typedef float2 dfloat2;
|
|||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
|
||||
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
|
||||
#define INT8_MMA_AVAILABLE
|
||||
#define NEW_MMA_AVAILABLE
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
|
||||
|
||||
#if !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= GGML_CUDA_CC_QY1)
|
||||
|
@ -159,14 +166,24 @@ static constexpr bool fast_fp16_available(const int cc) {
|
|||
return cc >= GGML_CUDA_CC_PASCAL && cc != 610;
|
||||
}
|
||||
|
||||
// Any FP16 tensor cores are available.
|
||||
static constexpr bool fp16_mma_available(const int cc) {
|
||||
return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_VOLTA;
|
||||
}
|
||||
|
||||
static constexpr bool int8_mma_available(const int cc) {
|
||||
// Volta technically had FP16 tensor cores but they work very differently compared to Turing and later.
|
||||
static constexpr bool new_mma_available(const int cc) {
|
||||
return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_TURING;
|
||||
}
|
||||
|
||||
static constexpr __device__ int ggml_cuda_get_physical_warp_size() {
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
return __AMDGCN_WAVEFRONT_SIZE;
|
||||
#else
|
||||
return 32;
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
}
|
||||
|
||||
[[noreturn]]
|
||||
static __device__ void no_device_code(
|
||||
const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
|
||||
|
|
|
@ -516,6 +516,114 @@ constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
|
|||
nullptr;
|
||||
}
|
||||
|
||||
// The HIP compiler for some reason complains that it can't unroll a loop because of the jt*ncols + j >= ne01 conditional.
|
||||
#ifdef __clang__
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wpass-failed"
|
||||
#endif // __clang__
|
||||
|
||||
template<int D, int ncols, int KQ_stride> // D == head size
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(D, 1)
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_stream_k_fixup(
|
||||
float * __restrict__ dst, const float2 * __restrict__ dst_fixup, const int ne01, const int ne02, const int ne11) {
|
||||
const float * dst_fixup_data = ((const float *) dst_fixup) + gridDim.x*(2*2*ncols);
|
||||
|
||||
const int iter_k = ne11 / KQ_stride;
|
||||
const int iter_j = (ne01 + (ncols - 1)) / ncols;
|
||||
|
||||
const int bidx0 = blockIdx.x;
|
||||
|
||||
const int kbc0 = (bidx0 + 0)*iter_k*iter_j*ne02 / gridDim.x;
|
||||
const int kbc0_stop = (bidx0 + 1)*iter_k*iter_j*ne02 / gridDim.x;
|
||||
|
||||
const bool did_not_have_any_data = kbc0 == kbc0_stop;
|
||||
const bool wrote_beginning_of_tile = kbc0 % iter_k == 0;
|
||||
const bool did_not_write_last = kbc0/iter_k == kbc0_stop/iter_k && kbc0_stop % iter_k != 0;
|
||||
if (did_not_have_any_data || wrote_beginning_of_tile || did_not_write_last) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int channel = kbc0 / (iter_k*iter_j);
|
||||
const int jt = (kbc0 - channel*iter_k*iter_j) / iter_k;
|
||||
|
||||
dst += jt*ncols*ne02*D + channel*D;
|
||||
|
||||
// Load the partial result that needs a fixup:
|
||||
float dst_val[ncols] = {0.0f};
|
||||
float max_val[ncols] = {0.0f};
|
||||
float rowsum[ncols] = {0.0f};
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
if (jt*ncols + j >= ne01) {
|
||||
break;
|
||||
}
|
||||
dst_val[j] = dst[j*ne02*D + threadIdx.x];
|
||||
|
||||
const float2 tmp = dst_fixup[bidx0*ncols + j];
|
||||
max_val[j] = tmp.x;
|
||||
rowsum[j] = tmp.y;
|
||||
}
|
||||
|
||||
// Iterate over previous blocks and compute the combined results.
|
||||
// All CUDA blocks that get here must have a previous block that needs a fixup.
|
||||
int bidx = bidx0 - 1;
|
||||
int kbc_stop = kbc0;
|
||||
while(true) {
|
||||
const int kbc = bidx*iter_k*iter_j*ne02 / gridDim.x;
|
||||
if (kbc == kbc_stop) { // Did not have any data.
|
||||
bidx--;
|
||||
kbc_stop = kbc;
|
||||
continue;
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
if (jt*ncols + j >= ne01) {
|
||||
break;
|
||||
}
|
||||
const float dst_add = dst_fixup_data[bidx*ncols*D + j*D + threadIdx.x];
|
||||
|
||||
const float2 tmp = dst_fixup[(gridDim.x + bidx)*ncols + j];
|
||||
|
||||
// Scale the current and new value accumulators depending on the max. values.
|
||||
const float max_val_new = fmaxf(max_val[j], tmp.x);
|
||||
|
||||
const float diff_val = max_val[j] - max_val_new;
|
||||
const float diff_add = tmp.x - max_val_new;
|
||||
|
||||
const float scale_val = diff_val >= SOFTMAX_FTZ_THRESHOLD ? expf(diff_val) : 0.0f;
|
||||
const float scale_add = diff_add >= SOFTMAX_FTZ_THRESHOLD ? expf(diff_add) : 0.0f;
|
||||
|
||||
dst_val[j] = scale_val*dst_val[j] + scale_add*dst_add;
|
||||
rowsum[j] = scale_val*rowsum[j] + scale_add*tmp.y;
|
||||
|
||||
max_val[j] = max_val_new;
|
||||
}
|
||||
|
||||
// If this block started in a previous tile we are done and don't need to combine additional partial results.
|
||||
if (kbc % iter_k == 0 || kbc/iter_k < kbc0/iter_k) {
|
||||
break;
|
||||
}
|
||||
bidx--;
|
||||
kbc_stop = kbc;
|
||||
}
|
||||
|
||||
// Write back final result:
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
if (jt*ncols + j >= ne01) {
|
||||
return;
|
||||
}
|
||||
dst[j*ne02*D + threadIdx.x] = dst_val[j] / rowsum[j];
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef __clang__
|
||||
#pragma clang diagnostic pop
|
||||
#endif // __clang__
|
||||
|
||||
template<int D, int parallel_blocks> // D == head size
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(D, 1)
|
||||
|
@ -581,10 +689,11 @@ static void on_no_fattn_vec_case(const int D) {
|
|||
}
|
||||
}
|
||||
|
||||
template <int D, int parallel_blocks>
|
||||
// parallel_blocks == 0 is stream-k decomposition
|
||||
template <int D, int cols_per_block, int parallel_blocks, int KQ_stride>
|
||||
void launch_fattn(
|
||||
ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel,
|
||||
const int nwarps, const int cols_per_block, const bool need_f16_K, const bool need_f16_V
|
||||
const int nwarps, const size_t nbytes_shared, const bool need_f16_K, const bool need_f16_V
|
||||
) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
|
@ -603,20 +712,23 @@ void launch_fattn(
|
|||
|
||||
GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");
|
||||
|
||||
GGML_ASSERT(Q->ne[3] == 1);
|
||||
|
||||
ggml_cuda_pool & pool = ctx.pool();
|
||||
cudaStream_t main_stream = ctx.stream();
|
||||
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
|
||||
|
||||
ggml_cuda_pool_alloc<half> K_f16(pool);
|
||||
ggml_cuda_pool_alloc<half> V_f16(pool);
|
||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
||||
|
||||
char * K_data = (char *) K->data;
|
||||
const char * K_data = (const char *) K->data;
|
||||
size_t nb11 = K->nb[1];
|
||||
size_t nb12 = K->nb[2];
|
||||
size_t nb13 = K->nb[3];
|
||||
|
||||
char * V_data = (char *) V->data;
|
||||
const char * V_data = (const char *) V->data;
|
||||
size_t nb21 = V->nb[1];
|
||||
size_t nb22 = V->nb[2];
|
||||
size_t nb23 = V->nb[3];
|
||||
|
@ -649,39 +761,60 @@ void launch_fattn(
|
|||
nb23 = nb23*bs*sizeof(half)/ts;
|
||||
}
|
||||
|
||||
if (parallel_blocks > 1) {
|
||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
||||
}
|
||||
const int ntiles_x = ((Q->ne[1] + cols_per_block - 1) / cols_per_block);
|
||||
const int ntiles_total = ntiles_x*Q->ne[2]*Q->ne[3];
|
||||
|
||||
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
||||
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
|
||||
const int shmem = 0;
|
||||
dim3 blocks_num;
|
||||
if (parallel_blocks == 0) {
|
||||
// For short contexts it can be faster to have the SMs work on whole tiles because this lets us skip the fixup.
|
||||
const int tiles_nwaves = (ntiles_total - nsm - 1) / nsm;
|
||||
const bool tiles_inefficient = 3*nsm < 2*tiles_nwaves*ntiles_total;
|
||||
const bool short_context = K->ne[1] < 4096;
|
||||
|
||||
const int nblocks_stream_k = 2*nsm;
|
||||
|
||||
blocks_num.x = short_context && !tiles_inefficient ? ntiles_total : nblocks_stream_k;
|
||||
blocks_num.y = 1;
|
||||
blocks_num.z = 1;
|
||||
|
||||
dst_tmp_meta.alloc(blocks_num.x*cols_per_block * (2*2 + D) * sizeof(float));
|
||||
} else {
|
||||
blocks_num.x = parallel_blocks*ntiles_x;
|
||||
blocks_num.y = Q->ne[2];
|
||||
blocks_num.z = Q->ne[3];
|
||||
|
||||
if (parallel_blocks > 1) {
|
||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
float logit_softcap = 0.0f;
|
||||
|
||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
||||
memcpy(&logit_softcap, (float *) KQV->op_params + 2, sizeof(float));
|
||||
memcpy(&scale, (const float *) KQV->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (const float *) KQV->op_params + 1, sizeof(float));
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
if (logit_softcap != 0.0f) {
|
||||
scale /= logit_softcap;
|
||||
}
|
||||
|
||||
const uint32_t n_head = Q->ne[2];
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
const uint32_t n_head_log2 = 1u << uint32_t(floorf(log2f(float(n_head))));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
fattn_kernel<<<blocks_num, block_dim, shmem, main_stream>>>(
|
||||
fattn_kernel<<<blocks_num, block_dim, nbytes_shared, main_stream>>>(
|
||||
(const char *) Q->data,
|
||||
K_data,
|
||||
V_data,
|
||||
mask ? ((const char *) mask->data) : nullptr,
|
||||
(parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
||||
(parallel_blocks) > 1 ? dst_tmp.ptr : (float *) KQV->data, dst_tmp_meta.ptr,
|
||||
scale, max_bias, m0, m1, n_head_log2, logit_softcap,
|
||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
||||
|
@ -693,16 +826,22 @@ void launch_fattn(
|
|||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
if ((parallel_blocks) == 1) {
|
||||
return;
|
||||
if constexpr (parallel_blocks == 0) {
|
||||
if (blocks_num.x % ntiles_total != 0) { // Fixup is only needed if the SMs work on fractional tiles.
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine = blocks_num;
|
||||
|
||||
flash_attn_stream_k_fixup<D, cols_per_block, KQ_stride>
|
||||
<<<blocks_num_combine, block_dim_combine, 0, main_stream>>>
|
||||
((float *) KQV->data, dst_tmp_meta.ptr, Q->ne[1], Q->ne[2], K->ne[1]);
|
||||
}
|
||||
} else if constexpr (parallel_blocks > 1) {
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
||||
|
||||
flash_attn_combine_results<D, parallel_blocks>
|
||||
<<<blocks_num_combine, block_dim_combine, 0, main_stream>>>
|
||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
||||
}
|
||||
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
||||
const int shmem_combine = 0;
|
||||
|
||||
flash_attn_combine_results<D, parallel_blocks>
|
||||
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
|
637
ggml/src/ggml-cuda/fattn-mma-f16.cuh
Normal file
637
ggml/src/ggml-cuda/fattn-mma-f16.cuh
Normal file
|
@ -0,0 +1,637 @@
|
|||
#include "common.cuh"
|
||||
#include "mma.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
|
||||
template<int D, int ncols, int nwarps, int KQ_stride, bool use_logit_softcap, bool needs_fixup, bool is_fixup>
|
||||
static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
||||
const float2 * const __restrict__ Q_f2,
|
||||
const half2 * const __restrict__ K_h2,
|
||||
const half2 * const __restrict__ V_h2,
|
||||
const half * const __restrict__ maskh,
|
||||
float2 * const __restrict__ dstk,
|
||||
float2 * const __restrict__ dstk_fixup,
|
||||
const float scale,
|
||||
const float slope,
|
||||
const float logit_softcap,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
const int ne03,
|
||||
const int ne10,
|
||||
const int ne11,
|
||||
const int ne12,
|
||||
const int ne13,
|
||||
const int ne31,
|
||||
const int nb31,
|
||||
const int nb01,
|
||||
const int nb02,
|
||||
const int nb03,
|
||||
const int nb11,
|
||||
const int nb12,
|
||||
const int nb13,
|
||||
const int nb21,
|
||||
const int nb22,
|
||||
const int nb23,
|
||||
const int ne0,
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3,
|
||||
const int jt,
|
||||
const int kb0_start,
|
||||
const int kb0_stop) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
typedef mma_A_I16K8<half2> mma_A;
|
||||
typedef mma_B_J8K8<half2> mma_B;
|
||||
typedef mma_C_I16J8<float> mma_C_KQ;
|
||||
typedef mma_C_I16J8<half2> mma_C_VKQ;
|
||||
|
||||
static_assert(nwarps*mma_B::J % ncols == 0, "bad nwarps");
|
||||
constexpr int np = nwarps*mma_B::J / ncols; // Number of parallel CUDA warps per Q column.
|
||||
|
||||
static_assert(D % nwarps == 0, "bad D");
|
||||
static_assert(KQ_stride % nwarps == 0, "bad KQ_stride");
|
||||
|
||||
constexpr int D2_padded = D/2 + 4; // Size of D in half2, padded to avoid shared memory bank conflicts.
|
||||
extern __shared__ half2 tile_KV[]; // Temporary shared buffer for loading K/V data with KQ_stride*D logical elements.
|
||||
|
||||
const int stride_Q = nb01 / sizeof(float2);
|
||||
const int stride_KV = nb11 / sizeof(half2);
|
||||
const int stride_mask = nb31 / sizeof(half);
|
||||
|
||||
mma_B Q_B[D/(2*mma_B::K)];
|
||||
mma_C_VKQ VKQ_C[D/mma_C_VKQ::I];
|
||||
|
||||
float2 KQ_rowsum = {0.0f, 0.0f};
|
||||
float2 KQ_max = {-FLT_MAX/2.0f, -FLT_MAX/2.0f};
|
||||
float2 KQ_max_scale = {0.0f, 0.0f};
|
||||
|
||||
// Temporarily load Q data into tile_KV, will be loaded into registers afterwards.
|
||||
// The loading is done with decreasing granularity for D for better memory bandwidth.
|
||||
const half2 scale_h2 = make_half2(scale, scale);
|
||||
#pragma unroll
|
||||
for (int stride_k : {WARP_SIZE, WARP_SIZE/2, WARP_SIZE/4}) {
|
||||
const int k0_start = stride_k == WARP_SIZE ? 0 : D/2 - (D/2) % (2*stride_k);
|
||||
const int k0_stop = D/2 - (D/2) % (1*stride_k);
|
||||
const int stride_j = WARP_SIZE / stride_k;
|
||||
|
||||
if (nwarps*stride_j > ncols && threadIdx.y*stride_j >= ncols) {
|
||||
break;
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps*stride_j) {
|
||||
const int j = j0 + threadIdx.y*stride_j + (stride_k == WARP_SIZE ? 0 : threadIdx.x / stride_k);
|
||||
|
||||
if (jt*ncols + j < ne01) {
|
||||
#pragma unroll
|
||||
for (int k0 = k0_start; k0 < k0_stop; k0 += stride_k) {
|
||||
const int k = k0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k);
|
||||
|
||||
const float2 tmp = Q_f2[(jt*ncols + j)*stride_Q + k];
|
||||
tile_KV[j*D2_padded + k] = scale_h2 * make_half2(tmp.x, tmp.y);
|
||||
}
|
||||
} else {
|
||||
#pragma unroll
|
||||
for (int k0 = k0_start; k0 < k0_stop; k0 += stride_k) {
|
||||
const int k = k0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k);
|
||||
|
||||
tile_KV[j*D2_padded + k] = make_half2(0.0f, 0.0f);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
{
|
||||
const int j0 = (threadIdx.y / np) * mma_B::J;
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < D/2; k0 += mma_B::K) {
|
||||
Q_B[k0/mma_B::K].load_ldmatrix(tile_KV + j0*D2_padded + k0, D2_padded);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Iterate over ne11 == previous tokens:
|
||||
for (int kb0 = kb0_start; kb0 < kb0_stop; ++kb0) {
|
||||
const int k_VKQ_0 = kb0*KQ_stride;
|
||||
mma_C_KQ KQ_C[KQ_stride/(np*mma_C_KQ::I)];
|
||||
|
||||
// Load K data into tile with decreasing granularity for D for better memory bandwidth:
|
||||
static_assert(KQ_stride % (4*nwarps) == 0, "out of bounds");
|
||||
#pragma unroll
|
||||
for (int stride_k : {WARP_SIZE, WARP_SIZE/2, WARP_SIZE/4}) {
|
||||
const int k0_start = stride_k == WARP_SIZE ? 0 : D/2 - (D/2) % (2*stride_k);
|
||||
const int k0_stop = D/2 - (D/2) % (1*stride_k);
|
||||
const int stride_i = WARP_SIZE / stride_k;
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < KQ_stride; i_KQ_0 += nwarps*stride_i) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.y*stride_i + (stride_k == WARP_SIZE ? 0 : threadIdx.x / stride_k);
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = k0_start; k_KQ_0 < k0_stop; k_KQ_0 += stride_k) {
|
||||
const int k_KQ = k_KQ_0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k);
|
||||
|
||||
tile_KV[i_KQ*D2_padded + k_KQ] = K_h2[(k_VKQ_0 + i_KQ)*stride_KV + k_KQ];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Calculate tile of KQ:
|
||||
#pragma unroll
|
||||
for (int i_KQ_00 = 0; i_KQ_00 < KQ_stride; i_KQ_00 += np*mma_A::I) {
|
||||
const int i_KQ_0 = i_KQ_00 + (threadIdx.y % np)*mma_A::I;
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += mma_A::K) {
|
||||
mma_A K_A;
|
||||
K_A.load_ldmatrix(tile_KV + i_KQ_0*D2_padded + k_KQ_0, D2_padded);
|
||||
KQ_C[i_KQ_00/(np*mma_A::I)].mma(K_A, Q_B[k_KQ_0/mma_A::K]);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (use_logit_softcap) {
|
||||
static_assert(KQ_stride % (np*mma_C_KQ::I) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int i = 0; i < KQ_stride/(np*mma_C_KQ::I); ++i) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C_KQ::ne; ++l) {
|
||||
KQ_C[i].x[l] = logit_softcap*tanhf(KQ_C[i].x[l]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (maskh) {
|
||||
static_assert(KQ_stride % (np *mma_C_KQ::I) == 0, "bad loop size");
|
||||
static_assert(ncols % (nwarps/np*mma_C_KQ::J) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int i00 = 0; i00 < KQ_stride; i00 += np*mma_C_KQ::I) {
|
||||
const int i0 = i00 + (threadIdx.y % np)*mma_C_KQ::I;
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C_KQ::ne; ++l) {
|
||||
const int i = i0 + mma_C_KQ::get_i(l);
|
||||
const int j = (threadIdx.y / np)*mma_C_KQ::J + mma_C_KQ::get_j(l);
|
||||
|
||||
KQ_C[i00/(np*mma_C_KQ::I)].x[l] += slope*__half2float(maskh[j*stride_mask + k_VKQ_0 + i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate softmax for each KQ column using the current max. value.
|
||||
// The divisor is stored in KQ_rowsum and will be applied at the end.
|
||||
float2 KQ_max_new = KQ_max;
|
||||
static_assert(KQ_stride % (np*mma_C_KQ::I) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int k = 0; k < KQ_stride/(np*mma_C_KQ::I); ++k) {
|
||||
#pragma unroll
|
||||
for (int l0 = 0; l0 < mma_C_KQ::ne; l0 += 2) {
|
||||
KQ_max_new.x = fmaxf(KQ_max_new.x, KQ_C[k].x[l0 + 0]);
|
||||
KQ_max_new.y = fmaxf(KQ_max_new.y, KQ_C[k].x[l0 + 1]);
|
||||
}
|
||||
}
|
||||
|
||||
// Values per KQ column are spread across 8 threads, does not need full warp reduce:
|
||||
#pragma unroll
|
||||
for (int offset = 16; offset > 2; offset >>= 1) {
|
||||
KQ_max_new.x = fmaxf(KQ_max_new.x, __shfl_xor_sync(0xFFFFFFFF, KQ_max_new.x, offset, WARP_SIZE));
|
||||
KQ_max_new.y = fmaxf(KQ_max_new.y, __shfl_xor_sync(0xFFFFFFFF, KQ_max_new.y, offset, WARP_SIZE));
|
||||
}
|
||||
|
||||
{
|
||||
const float2 diff = make_float2(KQ_max.x - KQ_max_new.x, KQ_max.y - KQ_max_new.y);
|
||||
KQ_max_scale = make_float2(expf(diff.x), expf(diff.y));
|
||||
if (diff.x <= SOFTMAX_FTZ_THRESHOLD) {
|
||||
KQ_max_scale.x = 0.0f;
|
||||
}
|
||||
if (diff.y <= SOFTMAX_FTZ_THRESHOLD) {
|
||||
KQ_max_scale.y = 0.0f;
|
||||
}
|
||||
KQ_max = KQ_max_new;
|
||||
}
|
||||
|
||||
float2 KQ_rowsum_add = make_float2(0.0f, 0.0f);
|
||||
static_assert(KQ_stride % (np*mma_C_KQ::I) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int k = 0; k < KQ_stride/(np*mma_C_KQ::I); ++k) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C_KQ::ne; ++l) {
|
||||
const float KQ_max_l = l % 2 == 0 ? KQ_max.x : KQ_max.y;
|
||||
const float diff = KQ_C[k].x[l] - KQ_max_l;
|
||||
KQ_C[k].x[l] = expf(diff);
|
||||
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
||||
KQ_C[k].x[l] = 0.0f;
|
||||
}
|
||||
|
||||
if (l % 2 == 0) {
|
||||
KQ_rowsum_add.x += KQ_C[k].x[l];
|
||||
} else {
|
||||
KQ_rowsum_add.y += KQ_C[k].x[l];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
||||
KQ_rowsum.x = KQ_max_scale.x*KQ_rowsum.x + KQ_rowsum_add.x;
|
||||
KQ_rowsum.y = KQ_max_scale.y*KQ_rowsum.y + KQ_rowsum_add.y;
|
||||
|
||||
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale.x, KQ_max_scale.y);
|
||||
#pragma unroll
|
||||
for (int i = 0; i < D/mma_C_VKQ::I; ++i) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C_VKQ::ne; ++l) {
|
||||
VKQ_C[i].x[l] *= KQ_max_scale_h2;
|
||||
}
|
||||
}
|
||||
|
||||
// Convert KQ C tiles into B tiles for VKQ calculation:
|
||||
mma_B B[KQ_stride/(np*2*mma_B::K)];
|
||||
static_assert(KQ_stride % (np*2*mma_B::K) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int k = 0; k < KQ_stride/(np*2*mma_B::K); ++k) {
|
||||
B[k] = KQ_C[k].to_mma_B();
|
||||
}
|
||||
|
||||
// Load V data into tile with decreasing granularity for D for better memory bandwidth:
|
||||
static_assert(KQ_stride % (4*nwarps) == 0, "out of bounds");
|
||||
#pragma unroll
|
||||
for (int stride_i : {WARP_SIZE, WARP_SIZE/2, WARP_SIZE/4}) {
|
||||
const int i0_start = stride_i == WARP_SIZE ? 0 : D/2 - (D/2) % (2*stride_i);
|
||||
const int i0_stop = D/2 - (D/2) % (1*stride_i);
|
||||
const int stride_k = WARP_SIZE / stride_i;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_V_0 = 0; k_V_0 < KQ_stride; k_V_0 += nwarps*stride_k) {
|
||||
const int k_V = k_V_0 + threadIdx.y*stride_k + (stride_i == WARP_SIZE ? 0 : threadIdx.x / stride_i);
|
||||
|
||||
#pragma unroll
|
||||
for (int i_V_0 = i0_start; i_V_0 < i0_stop; i_V_0 += stride_i) {
|
||||
const int i_V = i_V_0 + (stride_i == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_i);
|
||||
|
||||
tile_KV[k_V*D2_padded + i_V] = V_h2[(k_VKQ_0 + k_V)*stride_KV + i_V];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Calculate VKQ tile:
|
||||
#pragma unroll
|
||||
for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += mma_C_VKQ::I) {
|
||||
static_assert((KQ_stride/2) % (np*mma_A::K) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int k00 = 0; k00 < KQ_stride/2; k00 += np*mma_A::K) {
|
||||
const int k0 = k00 + (threadIdx.y % np)*mma_A::K;
|
||||
|
||||
mma_A A;
|
||||
A.load_ldmatrix_trans(tile_KV + 2*k0*D2_padded + i_VKQ_0/2, D2_padded);
|
||||
VKQ_C[i_VKQ_0/mma_C_VKQ::I].mma(A, B[k00/(np*mma_A::K)]);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
// Finally, sum up partial KQ rowsums.
|
||||
// The partial sums are spread across 8 threads each, does not need full reduce.
|
||||
#pragma unroll
|
||||
for (int offset = 16; offset > 2; offset >>= 1) {
|
||||
KQ_rowsum.x += __shfl_xor_sync(0xFFFFFFFF, KQ_rowsum.x, offset, WARP_SIZE);
|
||||
KQ_rowsum.y += __shfl_xor_sync(0xFFFFFFFF, KQ_rowsum.y, offset, WARP_SIZE);
|
||||
}
|
||||
|
||||
// Write VKQ accumulators to shared memory in column-major format.
|
||||
// It's faster to do small writes to shared memory, then large write to VRAM than to do small writes to VRAM.
|
||||
// Also for np > 1 the combination is done via these values in shared memory.
|
||||
const int j_cwd = threadIdx.y*mma_B::J + mma_B::get_j(-1); // j combine write data
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < D/2; k0 += mma_B::K) {
|
||||
const mma_B B = VKQ_C[k0/mma_B::K].to_mma_B(); // Conversion of C to B matrix puts it in column-major format.
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_B::ne; ++l) {
|
||||
const int k = k0 + mma_B::get_k(l);
|
||||
|
||||
tile_KV[j_cwd*D2_padded + k] = B.x[l];
|
||||
}
|
||||
}
|
||||
|
||||
const int j_cwmo = (threadIdx.x % (2*mma_C_VKQ::J)) / mma_C_VKQ::J; // j combine write meta offset
|
||||
const int j_cwm = threadIdx.y*(2*mma_C_VKQ::J) + 2*mma_C_VKQ::get_j(-1) + j_cwmo; // j combine write meta
|
||||
const float2 KQ_cmr = make_float2(((const float *) &KQ_max)[j_cwmo], ((const float *) &KQ_rowsum)[j_cwmo]); // KQ combine max rowsum
|
||||
|
||||
if (((!needs_fixup && !is_fixup) || np > 1) && threadIdx.x < 2*mma_C_VKQ::J) {
|
||||
// Use the 16 bytes of padding in each row to store the meta data: KQ max, KQ rowsum, KQ max scale.
|
||||
((float2 *) tile_KV)[j_cwm*(D2_padded/2) + D/4] = KQ_cmr;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
static_assert(np == 1 || np == 2 || np == 4, "bad np");
|
||||
if (np == 1) {
|
||||
// No combination is needed, the meta data can be directly written from registers to VRAM.
|
||||
if (needs_fixup && threadIdx.x < mma_B::J) {
|
||||
float2 * dstk_fixup_meta = dstk_fixup + blockIdx.x*ncols;
|
||||
dstk_fixup_meta[j_cwm] = KQ_cmr;
|
||||
}
|
||||
if (is_fixup && threadIdx.x < mma_B::J) {
|
||||
float2 * dstk_fixup_meta = dstk_fixup + (gridDim.x + blockIdx.x)*ncols;
|
||||
dstk_fixup_meta[j_cwm] = KQ_cmr;
|
||||
}
|
||||
} else if (threadIdx.y % np == 0) {
|
||||
// Combine the meta data for parallel warps via shared memory.
|
||||
// Warps with threadIdx.y % np != 0 must NOT return early.
|
||||
// All threads must return simultaneously to avoid race conditions with work on the next tile.
|
||||
|
||||
float * meta_j = (float *) tile_KV + (threadIdx.y*mma_B::J + threadIdx.x)*D2_padded + D/2;
|
||||
|
||||
float KQ_cm = -FLT_MAX/2; // KQ combine max per parallel warp.
|
||||
if (np*mma_B::J == WARP_SIZE || threadIdx.x < np*mma_B::J) {
|
||||
KQ_cm = meta_j[0];
|
||||
}
|
||||
|
||||
float KQ_cmn = KQ_cm; // KQ combine max new, max between all parallel warps.
|
||||
#pragma unroll
|
||||
for (int offset = np*mma_B::J/2; offset >= mma_B::J; offset >>= 1) {
|
||||
KQ_cmn = fmaxf(KQ_cmn, __shfl_xor_sync(0xFFFFFFFF, KQ_cmn, offset, WARP_SIZE));
|
||||
}
|
||||
|
||||
const float KQ_cms = expf(KQ_cm - KQ_cmn); // KQ combine max scale per warp.
|
||||
float KQ_crs = 0.0f; // KQ combine rowsum, scaled sum of all parallel warps.
|
||||
if (np*mma_B::J == WARP_SIZE || threadIdx.x < np*mma_B::J) {
|
||||
KQ_crs = KQ_cms*meta_j[1];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int offset = np*mma_B::J/2; offset >= mma_B::J; offset >>= 1) {
|
||||
KQ_crs += __shfl_xor_sync(0xFFFFFFFF, KQ_crs, offset, WARP_SIZE);
|
||||
}
|
||||
|
||||
// Write back combined meta data:
|
||||
if (np*mma_B::J == WARP_SIZE || threadIdx.x < np*mma_B::J) {
|
||||
meta_j[0] = KQ_cmn; // Combined max. KQ values.
|
||||
meta_j[1] = KQ_crs; // Combined KQ rowsums.
|
||||
meta_j[2] = KQ_cms; // KQ max scales per parallel warp.
|
||||
}
|
||||
if (needs_fixup && threadIdx.x < mma_B::J) {
|
||||
float2 * dstk_fixup_meta = dstk_fixup + blockIdx.x*ncols;
|
||||
dstk_fixup_meta[(threadIdx.y/np)*mma_B::J + threadIdx.x] = make_float2(KQ_cmn, KQ_crs);
|
||||
}
|
||||
if (is_fixup && threadIdx.x < mma_B::J) {
|
||||
float2 * dstk_fixup_meta = dstk_fixup + (gridDim.x + blockIdx.x)*ncols;
|
||||
dstk_fixup_meta[(threadIdx.y/np)*mma_B::J + threadIdx.x] = make_float2(KQ_cmn, KQ_crs);
|
||||
}
|
||||
}
|
||||
|
||||
if (np > 1) {
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
if (np == 1 || threadIdx.y % np == 0) {
|
||||
// The first 2*2*gridDim.x*ncols floats in dstk_fixup are for storing max. values and row sums.
|
||||
// The values after that are for the partial results of the individual blocks.
|
||||
float2 * dstk_fixup_data = dstk_fixup + gridDim.x*(2*ncols) + blockIdx.x*(ncols*(D/2));
|
||||
|
||||
#pragma unroll
|
||||
for (int stride_k : {WARP_SIZE, WARP_SIZE/2, WARP_SIZE/4}) {
|
||||
const int k0_start = stride_k == WARP_SIZE ? 0 : D/2 - (D/2) % (2*stride_k);
|
||||
const int k0_stop = D/2 - (D/2) % (1*stride_k);
|
||||
const int stride_j = WARP_SIZE / stride_k;
|
||||
|
||||
if (nwarps*stride_j > ncols && threadIdx.y*stride_j >= ncols) {
|
||||
break;
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j0_dst = 0; j0_dst < ncols; j0_dst += (nwarps/np)*stride_j) {
|
||||
const int j_dst = j0_dst + (threadIdx.y/np)*stride_j + (stride_k == WARP_SIZE ? 0 : threadIdx.x / stride_k);
|
||||
const int j_tile_KV = (j_dst/mma_B::J)*(np*mma_B::J) + j_dst % mma_B::J;
|
||||
|
||||
if (!is_fixup && jt*ncols + j_dst >= ne01) {
|
||||
continue;
|
||||
}
|
||||
const float * meta_j = (const float *) tile_KV + j_tile_KV*D2_padded + D/2;
|
||||
#pragma unroll
|
||||
for (int k0 = k0_start; k0 < k0_stop; k0 += stride_k) {
|
||||
const int k = k0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k);
|
||||
|
||||
float2 dstk_val = make_float2(0.0f, 0.0f);
|
||||
#pragma unroll
|
||||
for (int ip = 0; ip < np; ++ip) {
|
||||
const float KQ_crs = np == 1 ? 1.0f : meta_j[ip*mma_B::J*D2_padded + 2];
|
||||
const float2 dstk_val_add = __half22float2(tile_KV[(j_tile_KV + ip*mma_B::J)*D2_padded + k]);
|
||||
dstk_val.x += dstk_val_add.x*KQ_crs;
|
||||
dstk_val.y += dstk_val_add.y*KQ_crs;
|
||||
}
|
||||
|
||||
if (!needs_fixup && !is_fixup) {
|
||||
const float KQ_rowsum_j = meta_j[1];
|
||||
dstk_val.x /= KQ_rowsum_j;
|
||||
dstk_val.y /= KQ_rowsum_j;
|
||||
}
|
||||
|
||||
if (is_fixup) {
|
||||
dstk_fixup_data[j_dst*(D/2) + k] = dstk_val;
|
||||
} else {
|
||||
dstk[(jt*ncols + j_dst)*ne02*(D/2) + k] = dstk_val;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (np > 1) {
|
||||
__syncthreads();
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
template<int D, int ncols, int nwarps, int KQ_stride, bool use_logit_softcap>
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 2)
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const float logit_softcap,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
const int ne03,
|
||||
const int ne10,
|
||||
const int ne11,
|
||||
const int ne12,
|
||||
const int ne13,
|
||||
const int ne31,
|
||||
const int nb31,
|
||||
const int nb01,
|
||||
const int nb02,
|
||||
const int nb03,
|
||||
const int nb11,
|
||||
const int nb12,
|
||||
const int nb13,
|
||||
const int nb21,
|
||||
const int nb22,
|
||||
const int nb23,
|
||||
const int ne0,
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
static_assert(FATTN_KQ_STRIDE % KQ_stride == 0, "bad KQ_stride");
|
||||
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
|
||||
const int iter_k = ne11 / KQ_stride;
|
||||
const int iter_j = (ne01 + (ncols - 1)) / ncols;
|
||||
|
||||
// kbc == k block continuous, current index in continuous ijk space.
|
||||
int kbc = (blockIdx.x + 0)*iter_k*iter_j*ne02 / gridDim.x;
|
||||
const int kbc_stop = (blockIdx.x + 1)*iter_k*iter_j*ne02 / gridDim.x;
|
||||
|
||||
// If the seams of 2 CUDA blocks fall within an output tile their results need to be combined.
|
||||
// For this we need to track both the block that starts the tile (needs_fixup) and the block that finishes the tile (is_fixup).
|
||||
// In the most general case >2 seams can fall into the same tile.
|
||||
|
||||
// kb0 == k start index when in the output tile.
|
||||
int kb0_start = kbc % iter_k;
|
||||
int kb0_stop = min(iter_k, kb0_start + kbc_stop - kbc);
|
||||
while (kbc < kbc_stop && kb0_stop == iter_k) {
|
||||
const int channel = kbc / (iter_k*iter_j);
|
||||
const int jt = (kbc - channel*iter_k*iter_j) / iter_k; // j index of current tile.
|
||||
|
||||
const float2 * Q_f2 = (const float2 *) (Q + nb02* channel);
|
||||
const half2 * K_h2 = (const half2 *) (K + nb12*(channel / gqa_ratio));
|
||||
const half2 * V_h2 = (const half2 *) (V + nb12*(channel / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = mask ? (const half *) mask + (nb31/sizeof(half))*jt*ncols : nullptr;
|
||||
float2 * dstk = ((float2 *) dst) + channel*(D/2);
|
||||
|
||||
const float slope = get_alibi_slope(max_bias, channel, n_head_log2, m0, m1);
|
||||
|
||||
constexpr bool is_fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer.
|
||||
if (kb0_start == 0) {
|
||||
constexpr bool needs_fixup = false; // CUDA block is working on an entire tile.
|
||||
flash_attn_ext_f16_process_tile<D, ncols, nwarps, KQ_stride, use_logit_softcap, needs_fixup, is_fixup>
|
||||
(Q_f2, K_h2, V_h2, maskh, dstk, dst_meta, scale, slope, logit_softcap,
|
||||
ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, ne31, nb31, nb01, nb02, nb03, nb11, nb12, nb13, nb21, nb22, nb23, ne0, ne1, ne2, ne3,
|
||||
jt, kb0_start, kb0_stop);
|
||||
} else {
|
||||
constexpr bool needs_fixup = true; // CUDA block is working on the beginning of a tile.
|
||||
flash_attn_ext_f16_process_tile<D, ncols, nwarps, KQ_stride, use_logit_softcap, needs_fixup, is_fixup>
|
||||
(Q_f2, K_h2, V_h2, maskh, dstk, dst_meta, scale, slope, logit_softcap,
|
||||
ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, ne31, nb31, nb01, nb02, nb03, nb11, nb12, nb13, nb21, nb22, nb23, ne0, ne1, ne2, ne3,
|
||||
jt, kb0_start, kb0_stop);
|
||||
}
|
||||
|
||||
kbc += iter_k;
|
||||
kbc -= kbc % iter_k;
|
||||
|
||||
kb0_start = 0;
|
||||
kb0_stop = min(iter_k, kbc_stop - kbc);
|
||||
}
|
||||
|
||||
if (kbc >= kbc_stop) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int channel = kbc / (iter_k*iter_j);
|
||||
const int jt = (kbc - channel*iter_k*iter_j) / iter_k; // j index of current tile.
|
||||
|
||||
const float2 * Q_f2 = (const float2 *) (Q + nb02* channel);
|
||||
const half2 * K_h2 = (const half2 *) (K + nb12*(channel / gqa_ratio));
|
||||
const half2 * V_h2 = (const half2 *) (V + nb12*(channel / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = mask ? (const half *) mask + (nb31/sizeof(half))*jt*ncols : nullptr;
|
||||
float2 * dstk = ((float2 *) dst) + channel*(D/2);
|
||||
|
||||
const float slope = get_alibi_slope(max_bias, channel, n_head_log2, m0, m1);
|
||||
|
||||
constexpr bool is_fixup = true; // Last index writes its data to fixup buffer to avoid data races with other blocks.
|
||||
constexpr bool needs_fixup = false;
|
||||
flash_attn_ext_f16_process_tile<D, ncols, nwarps, KQ_stride, use_logit_softcap, needs_fixup, is_fixup>
|
||||
(Q_f2, K_h2, V_h2, maskh, dstk, dst_meta, scale, slope, logit_softcap,
|
||||
ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, ne31, nb31, nb01, nb02, nb03, nb11, nb12, nb13, nb21, nb22, nb23, ne0, ne1, ne2, ne3,
|
||||
jt, kb0_start, kb0_stop);
|
||||
}
|
||||
|
||||
template <int D, int cols_per_block>
|
||||
void ggml_cuda_flash_attn_ext_mma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
typedef mma_A_I16K8<half2> mma_A;
|
||||
typedef mma_B_J8K8<half2> mma_B;
|
||||
|
||||
static_assert(D % mma_B::K == 0, "bad D");
|
||||
static_assert(cols_per_block % mma_B::J == 0, "bad cols_per_block");
|
||||
|
||||
const ggml_tensor * KQV = dst;
|
||||
|
||||
constexpr int KQ_stride = D <= 128 ? 64 : 32;
|
||||
constexpr int nwarps = (KQ_stride == 32 && cols_per_block <= 16) ?
|
||||
cols_per_block/mma_B::J * KQ_stride/mma_A::I : (cols_per_block <= 8 ? 4 : 8);
|
||||
constexpr size_t nbytes_shared = std::max(KQ_stride, nwarps*mma_B::J) * (D + 8) * sizeof(half);
|
||||
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
fattn_kernel_t fattn_kernel;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, KQ_stride, use_logit_softcap>;
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, KQ_stride, use_logit_softcap>;
|
||||
}
|
||||
launch_fattn<D, cols_per_block, 0, KQ_stride>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, true, true);
|
||||
}
|
||||
|
||||
#define DECL_FATTN_MMA_F16_CASE(D, cols_per_block) \
|
||||
template void ggml_cuda_flash_attn_ext_mma_f16_case \
|
||||
<D, cols_per_block>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
|
||||
|
||||
extern DECL_FATTN_MMA_F16_CASE( 64, 8);
|
||||
extern DECL_FATTN_MMA_F16_CASE( 80, 8);
|
||||
extern DECL_FATTN_MMA_F16_CASE( 96, 8);
|
||||
extern DECL_FATTN_MMA_F16_CASE(112, 8);
|
||||
extern DECL_FATTN_MMA_F16_CASE(128, 8);
|
||||
extern DECL_FATTN_MMA_F16_CASE(256, 8);
|
||||
|
||||
extern DECL_FATTN_MMA_F16_CASE( 64, 16);
|
||||
extern DECL_FATTN_MMA_F16_CASE( 80, 16);
|
||||
extern DECL_FATTN_MMA_F16_CASE( 96, 16);
|
||||
extern DECL_FATTN_MMA_F16_CASE(112, 16);
|
||||
extern DECL_FATTN_MMA_F16_CASE(128, 16);
|
||||
extern DECL_FATTN_MMA_F16_CASE(256, 16);
|
||||
|
||||
extern DECL_FATTN_MMA_F16_CASE( 64, 32);
|
||||
extern DECL_FATTN_MMA_F16_CASE( 80, 32);
|
||||
extern DECL_FATTN_MMA_F16_CASE( 96, 32);
|
||||
extern DECL_FATTN_MMA_F16_CASE(112, 32);
|
||||
extern DECL_FATTN_MMA_F16_CASE(128, 32);
|
||||
extern DECL_FATTN_MMA_F16_CASE(256, 32);
|
||||
|
||||
extern DECL_FATTN_MMA_F16_CASE( 64, 64);
|
||||
extern DECL_FATTN_MMA_F16_CASE( 80, 64);
|
||||
extern DECL_FATTN_MMA_F16_CASE( 96, 64);
|
||||
extern DECL_FATTN_MMA_F16_CASE(112, 64);
|
||||
extern DECL_FATTN_MMA_F16_CASE(128, 64);
|
||||
extern DECL_FATTN_MMA_F16_CASE(256, 64);
|
|
@ -45,7 +45,17 @@ static __global__ void flash_attn_tile_ext_f16(
|
|||
const int ne2,
|
||||
const int ne3) {
|
||||
#ifdef FP16_AVAILABLE
|
||||
|
||||
#ifndef FLASH_ATTN_AVAILABLE
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
#endif // FLASH_ATTN_AVAILABLE
|
||||
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
#ifdef FP16_MMA_AVAILABLE
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
|
@ -288,16 +298,18 @@ void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
|
|||
const ggml_tensor * Q = dst->src[0];
|
||||
switch (Q->ne[0]) {
|
||||
case 64: {
|
||||
constexpr int D = 64;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr int D = 64;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||
launch_fattn<D, cols_per_block, parallel_blocks, -1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, true, true);
|
||||
} break;
|
||||
case 128: {
|
||||
constexpr int D = 128;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr int D = 128;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||
launch_fattn<D, cols_per_block, parallel_blocks, -1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, true, true);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
|
|
|
@ -48,7 +48,12 @@ static __global__ void flash_attn_tile_ext_f32(
|
|||
NO_DEVICE_CODE;
|
||||
return;
|
||||
#endif // FLASH_ATTN_AVAILABLE
|
||||
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
#ifdef FP16_MMA_AVAILABLE
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
|
@ -287,16 +292,18 @@ void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
|
|||
const ggml_tensor * Q = dst->src[0];
|
||||
switch (Q->ne[0]) {
|
||||
case 64: {
|
||||
constexpr int D = 64;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr int D = 64;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||
launch_fattn<D, cols_per_block, parallel_blocks, -1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, true, true);
|
||||
} break;
|
||||
case 128: {
|
||||
constexpr int D = 128;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr int D = 128;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||
launch_fattn<D, cols_per_block, parallel_blocks, -1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, true, true);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
|
|
|
@ -42,6 +42,12 @@ static __global__ void flash_attn_vec_ext_f16(
|
|||
const int ne2,
|
||||
const int ne3) {
|
||||
#ifdef FP16_AVAILABLE
|
||||
|
||||
#ifndef FLASH_ATTN_AVAILABLE
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
#endif // FLASH_ATTN_AVAILABLE
|
||||
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
|
@ -303,7 +309,8 @@ void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx,
|
|||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>;
|
||||
constexpr bool need_f16_K = D != 128;
|
||||
constexpr bool need_f16_V = D != 128 && D != 64;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, need_f16_K, need_f16_V);
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
launch_fattn<D, cols_per_block, parallel_blocks, -1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, need_f16_K, need_f16_V);
|
||||
}
|
||||
|
||||
template <int D, ggml_type type_K, ggml_type type_V>
|
||||
|
|
|
@ -41,6 +41,11 @@ static __global__ void flash_attn_vec_ext_f32(
|
|||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
#ifndef FLASH_ATTN_AVAILABLE
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
#endif // FLASH_ATTN_AVAILABLE
|
||||
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
|
@ -284,7 +289,8 @@ void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx,
|
|||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>;
|
||||
constexpr bool need_f16_K = D != 128;
|
||||
constexpr bool need_f16_V = D != 128 && D != 64;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, need_f16_K, need_f16_V);
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
launch_fattn<D, cols_per_block, parallel_blocks, -1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, need_f16_K, need_f16_V);
|
||||
}
|
||||
|
||||
template <int D, ggml_type type_K, ggml_type type_V>
|
||||
|
|
648
ggml/src/ggml-cuda/fattn-wmma-f16.cu
Normal file
648
ggml/src/ggml-cuda/fattn-wmma-f16.cu
Normal file
|
@ -0,0 +1,648 @@
|
|||
// Old and deprecated WMMA FlashAttention implementation.
|
||||
// It is still needed for Volta since the memory layout of NVIDIA tensor cores changed with Turing.
|
||||
// Long-term the WMMA code should be replaced with a dedicated Volta implementation.
|
||||
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-wmma-f16.cuh"
|
||||
|
||||
#ifdef FP16_MMA_AVAILABLE
|
||||
#include <mma.h>
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
|
||||
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
|
||||
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t, bool use_logit_softcap>
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const float logit_softcap,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
const int ne03,
|
||||
const int ne10,
|
||||
const int ne11,
|
||||
const int ne12,
|
||||
const int ne13,
|
||||
const int ne31,
|
||||
const int nb31,
|
||||
const int nb01,
|
||||
const int nb02,
|
||||
const int nb03,
|
||||
const int nb11,
|
||||
const int nb12,
|
||||
const int nb13,
|
||||
const int nb21,
|
||||
const int nb22,
|
||||
const int nb23,
|
||||
const int ne0,
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
|
||||
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||||
|
||||
static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE.");
|
||||
static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16.");
|
||||
constexpr int frag_m = ncols == 8 ? 32 : 16;
|
||||
constexpr int frag_n = ncols == 8 ? 8 : 16;
|
||||
static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::row_major> frag_a_K;
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_a_V;
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_b;
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
|
||||
|
||||
constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
|
||||
constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
|
||||
static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps.");
|
||||
|
||||
// Pad internal representation of KQ, KQV to reduce shared memory bank conflicts:
|
||||
constexpr int D_padded = D + 8;
|
||||
constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
|
||||
constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
|
||||
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
const float * Q_f = (const float *) (Q + nb02* blockIdx.y + nb01*ic0);
|
||||
const half * K_h = (const half *) (K + nb12*(blockIdx.y / gqa_ratio));
|
||||
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0;
|
||||
const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2);
|
||||
|
||||
const int stride_Q = nb01 / sizeof(float);
|
||||
const int stride_KV = nb11 / sizeof(half);
|
||||
|
||||
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
||||
const half slopeh = __float2half(slopef);
|
||||
const half2 slope2 = make_half2(slopef, slopef);
|
||||
|
||||
const half2 logit_softcap_2 = make_half2(logit_softcap, logit_softcap);
|
||||
|
||||
frag_b Q_b[D/16][ncols/frag_n];
|
||||
|
||||
// A single buffer for temporarily holding tiles of KQ and VKQ parts:
|
||||
constexpr int mem_KQ = ncols*kqs_padded*kqar;
|
||||
constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded;
|
||||
__shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts];
|
||||
float * KQ_f = (float *) KQ;
|
||||
half2 * KQ2 = (half2 *) KQ;
|
||||
|
||||
float KQ_rowsum_f[ncols/nwarps] = {0.0f};
|
||||
float KQ_max_f[ncols/nwarps];
|
||||
float KQ_max_scale_f[ncols/nwarps] = {0.0f};
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||
KQ_max_f[j] = -FLT_MAX/2.0f;
|
||||
}
|
||||
|
||||
half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
||||
half2 KQ_max_h2[ncols/nwarps];
|
||||
half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||
KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF);
|
||||
}
|
||||
|
||||
__shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
|
||||
half2 * VKQ2 = (half2 *) VKQ;
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
||||
break;
|
||||
}
|
||||
VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
|
||||
}
|
||||
}
|
||||
|
||||
// Convert Q to half and apply scale, temporarily store in KQ:
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + WARP_SIZE > D && i >= D) {
|
||||
break;
|
||||
}
|
||||
KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Load Q into tensor core fragments/registers since it will be used frequently:
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += 16) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||
nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Iterate over ne11 == previous tokens:
|
||||
for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) {
|
||||
// Calculate tile of KQ:
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
|
||||
frag_c_KQ KQ_c[ncols/frag_n];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||
nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f);
|
||||
}
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
|
||||
frag_a_K K_a;
|
||||
nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||
nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
|
||||
}
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||
nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Calculate softmax for each KQ column using the current max. value.
|
||||
// The divisor is stored in KQ_rowsum and will be applied at the end.
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
if (std::is_same<KQ_acc_t, float>::value) {
|
||||
float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE];
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
|
||||
|
||||
if (use_logit_softcap) {
|
||||
KQ_f_tmp[k0/WARP_SIZE] = logit_softcap*tanhf(KQ_f_tmp[k0/WARP_SIZE]);
|
||||
}
|
||||
}
|
||||
|
||||
float KQ_max_new = KQ_max_f[j0/nwarps];
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
|
||||
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
|
||||
}
|
||||
KQ_max_new = warp_reduce_max(KQ_max_new);
|
||||
|
||||
const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
|
||||
KQ_max_scale_f[j0/nwarps] = expf(diff);
|
||||
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
||||
KQ_max_scale_f[j0/nwarps] = 0.0f;
|
||||
}
|
||||
KQ_max_f[j0/nwarps] = KQ_max_new;
|
||||
|
||||
float KQ_rowsum_add = 0.0f;
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps];
|
||||
KQ_f_tmp[k0/WARP_SIZE] = expf(diff);
|
||||
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
||||
KQ_f_tmp[k0/WARP_SIZE] = 0.0f;
|
||||
}
|
||||
KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE];
|
||||
KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE];
|
||||
}
|
||||
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
||||
|
||||
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
||||
KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
|
||||
} else {
|
||||
half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)];
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
|
||||
|
||||
if (use_logit_softcap) {
|
||||
// There is no dedicated tangens hyperbolicus function for half2.
|
||||
KQ2_tmp[k0/WARP_SIZE] = h2exp(KQ2_tmp[k0/WARP_SIZE]*make_half2(2.0f, 2.0f));
|
||||
KQ2_tmp[k0/WARP_SIZE] = (KQ2_tmp[k0/WARP_SIZE] - make_half2(1.0f, 1.0f))
|
||||
/(KQ2_tmp[k0/WARP_SIZE] + make_half2(1.0f, 1.0f));
|
||||
|
||||
KQ2_tmp[k0/WARP_SIZE] *= logit_softcap_2;
|
||||
}
|
||||
}
|
||||
|
||||
half2 KQ_max_new = KQ_max_h2[j0/nwarps];
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
|
||||
KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
|
||||
}
|
||||
KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
|
||||
const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
|
||||
KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
|
||||
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
||||
*((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask;
|
||||
KQ_max_h2[j0/nwarps] = KQ_max_new;
|
||||
|
||||
half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps];
|
||||
KQ2_tmp[k0/WARP_SIZE] = h2exp(diff);
|
||||
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
||||
*((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask;
|
||||
KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE];
|
||||
KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE];
|
||||
}
|
||||
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
||||
|
||||
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
||||
KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
||||
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
||||
nvcuda::wmma::load_matrix_sync(
|
||||
KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
|
||||
KQ + j0*(kqar*kqs_padded) + k,
|
||||
kqar*kqs_padded);
|
||||
}
|
||||
}
|
||||
|
||||
frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n];
|
||||
#pragma unroll
|
||||
for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||
nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
||||
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
||||
|
||||
frag_a_V v_a;
|
||||
nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||
nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded);
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||
nvcuda::wmma::store_matrix_sync(
|
||||
KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
|
||||
VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
|
||||
D_padded, nvcuda::wmma::mem_col_major);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
half2 VKQ_scale;
|
||||
if (std::is_same<KQ_acc_t, float>::value) {
|
||||
VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]);
|
||||
} else {
|
||||
VKQ_scale = KQ_max_scale_h2[j0/nwarps];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
||||
break;
|
||||
}
|
||||
|
||||
half2 VKQ_add = make_half2(0.0f, 0.0f);
|
||||
#pragma unroll
|
||||
for (int l = 0; l < VKQ_ratio; ++l) {
|
||||
VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i];
|
||||
}
|
||||
VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j_VKQ = j0 + threadIdx.y;
|
||||
if (ic0 + j_VKQ >= ne01) {
|
||||
return;
|
||||
}
|
||||
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
||||
|
||||
float KQ_rowsum_j;
|
||||
if (std::is_same<KQ_acc_t, float>::value) {
|
||||
KQ_rowsum_j = KQ_rowsum_f[j0/nwarps];
|
||||
} else {
|
||||
KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + WARP_SIZE > D && i >= D) {
|
||||
break;
|
||||
}
|
||||
float dst_val = VKQ[j_VKQ*D_padded + i];
|
||||
if (parallel_blocks == 1) {
|
||||
dst_val /= KQ_rowsum_j;
|
||||
}
|
||||
dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val;
|
||||
}
|
||||
|
||||
if (parallel_blocks == 1 || threadIdx.x != 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
float2 dst_meta_val;
|
||||
if (std::is_same<KQ_acc_t, float>::value) {
|
||||
dst_meta_val.x = KQ_max_f[j0/nwarps];
|
||||
} else {
|
||||
dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
|
||||
}
|
||||
dst_meta_val.y = KQ_rowsum_j;
|
||||
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val;
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
}
|
||||
|
||||
constexpr int get_max_power_of_2(int x) {
|
||||
return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1;
|
||||
}
|
||||
|
||||
static_assert(get_max_power_of_2(1) == 1, "Test failed.");
|
||||
static_assert(get_max_power_of_2(2) == 2, "Test failed.");
|
||||
static_assert(get_max_power_of_2(4) == 4, "Test failed.");
|
||||
static_assert(get_max_power_of_2(6) == 2, "Test failed.");
|
||||
|
||||
// Number of VKQ rows calculated in parallel:
|
||||
constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) {
|
||||
return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m;
|
||||
}
|
||||
|
||||
static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed.");
|
||||
static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed.");
|
||||
static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
|
||||
|
||||
template <int D, int cols_per_block, typename KQ_acc_t>
|
||||
void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
constexpr int nwarps = 4;
|
||||
|
||||
constexpr int frag_m = cols_per_block == 8 && D % 32 == 0 ? 32 : 16;
|
||||
const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
|
||||
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
|
||||
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
if (4*blocks_num_pb1 < 2*nsm) {
|
||||
constexpr int parallel_blocks = 4;
|
||||
fattn_kernel_t fattn_kernel;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
}
|
||||
launch_fattn<D, cols_per_block, parallel_blocks, -1>(ctx, dst, fattn_kernel, nwarps, 0, true, true);
|
||||
return;
|
||||
}
|
||||
if (2*blocks_num_pb1 < 2*nsm) {
|
||||
constexpr int parallel_blocks = 2;
|
||||
fattn_kernel_t fattn_kernel;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
}
|
||||
launch_fattn<D, cols_per_block, parallel_blocks, -1>(ctx, dst, fattn_kernel, nwarps, 0, true, true);
|
||||
return;
|
||||
}
|
||||
constexpr int parallel_blocks = 1;
|
||||
fattn_kernel_t fattn_kernel;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
}
|
||||
launch_fattn<D, cols_per_block, parallel_blocks, -1>(ctx, dst, fattn_kernel, nwarps, 0, true, true);
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
const enum ggml_prec prec = ggml_flash_attn_ext_get_prec(KQV);
|
||||
|
||||
if (prec != GGML_PREC_DEFAULT) {
|
||||
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
|
||||
constexpr int cols_per_block = 16;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 112:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 256:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
constexpr int cols_per_block = 32;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 112:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
// case 256:
|
||||
// ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, float>(ctx, dst);
|
||||
// break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) {
|
||||
constexpr int cols_per_block = 8;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 256:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 32) {
|
||||
constexpr int cols_per_block = 16;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 112:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 256:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 32;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 112:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 256:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
}
|
|
@ -1,543 +1,3 @@
|
|||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
|
||||
#ifdef FP16_MMA_AVAILABLE
|
||||
#include <mma.h>
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
|
||||
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
|
||||
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t, bool use_logit_softcap>
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const float logit_softcap,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
const int ne03,
|
||||
const int ne10,
|
||||
const int ne11,
|
||||
const int ne12,
|
||||
const int ne13,
|
||||
const int ne31,
|
||||
const int nb31,
|
||||
const int nb01,
|
||||
const int nb02,
|
||||
const int nb03,
|
||||
const int nb11,
|
||||
const int nb12,
|
||||
const int nb13,
|
||||
const int nb21,
|
||||
const int nb22,
|
||||
const int nb23,
|
||||
const int ne0,
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
#ifdef FP16_MMA_AVAILABLE
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
|
||||
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||||
|
||||
static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE.");
|
||||
static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16.");
|
||||
constexpr int frag_m = ncols == 8 ? 32 : 16;
|
||||
constexpr int frag_n = ncols == 8 ? 8 : 16;
|
||||
static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::row_major> frag_a_K;
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_a_V;
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_b;
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
|
||||
|
||||
constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
|
||||
constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
|
||||
static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps.");
|
||||
|
||||
// Pad internal representation of KQ, KQV to reduce shared memory bank conflicts:
|
||||
constexpr int D_padded = D + 8;
|
||||
constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
|
||||
constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
|
||||
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
const float * Q_f = (const float *) (Q + nb02* blockIdx.y + nb01*ic0);
|
||||
const half * K_h = (const half *) (K + nb12*(blockIdx.y / gqa_ratio));
|
||||
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0;
|
||||
const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2);
|
||||
|
||||
const int stride_Q = nb01 / sizeof(float);
|
||||
const int stride_KV = nb11 / sizeof(half);
|
||||
|
||||
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
||||
const half slopeh = __float2half(slopef);
|
||||
const half2 slope2 = make_half2(slopef, slopef);
|
||||
|
||||
const half2 logit_softcap_2 = make_half2(logit_softcap, logit_softcap);
|
||||
|
||||
frag_b Q_b[D/16][ncols/frag_n];
|
||||
|
||||
// A single buffer for temporarily holding tiles of KQ and VKQ parts:
|
||||
constexpr int mem_KQ = ncols*kqs_padded*kqar;
|
||||
constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded;
|
||||
__shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts];
|
||||
float * KQ_f = (float *) KQ;
|
||||
half2 * KQ2 = (half2 *) KQ;
|
||||
|
||||
float KQ_rowsum_f[ncols/nwarps] = {0.0f};
|
||||
float KQ_max_f[ncols/nwarps];
|
||||
float KQ_max_scale_f[ncols/nwarps] = {0.0f};
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||
KQ_max_f[j] = -FLT_MAX/2.0f;
|
||||
}
|
||||
|
||||
half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
||||
half2 KQ_max_h2[ncols/nwarps];
|
||||
half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||
KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF);
|
||||
}
|
||||
|
||||
__shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
|
||||
half2 * VKQ2 = (half2 *) VKQ;
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
||||
break;
|
||||
}
|
||||
VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
|
||||
}
|
||||
}
|
||||
|
||||
// Convert Q to half and apply scale, temporarily store in KQ:
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + WARP_SIZE > D && i >= D) {
|
||||
break;
|
||||
}
|
||||
KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Load Q into tensor core fragments/registers since it will be used frequently:
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += 16) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||
nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Iterate over ne11 == previous tokens:
|
||||
for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) {
|
||||
// Calculate tile of KQ:
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
|
||||
frag_c_KQ KQ_c[ncols/frag_n];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||
nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f);
|
||||
}
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
|
||||
frag_a_K K_a;
|
||||
nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||
nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
|
||||
}
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||
nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Calculate softmax for each KQ column using the current max. value.
|
||||
// The divisor is stored in KQ_rowsum and will be applied at the end.
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
if (std::is_same<KQ_acc_t, float>::value) {
|
||||
float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE];
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
|
||||
|
||||
if (use_logit_softcap) {
|
||||
KQ_f_tmp[k0/WARP_SIZE] = logit_softcap*tanhf(KQ_f_tmp[k0/WARP_SIZE]);
|
||||
}
|
||||
}
|
||||
|
||||
float KQ_max_new = KQ_max_f[j0/nwarps];
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
|
||||
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
|
||||
}
|
||||
KQ_max_new = warp_reduce_max(KQ_max_new);
|
||||
|
||||
const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
|
||||
KQ_max_scale_f[j0/nwarps] = expf(diff);
|
||||
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
||||
KQ_max_scale_f[j0/nwarps] = 0.0f;
|
||||
}
|
||||
KQ_max_f[j0/nwarps] = KQ_max_new;
|
||||
|
||||
float KQ_rowsum_add = 0.0f;
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps];
|
||||
KQ_f_tmp[k0/WARP_SIZE] = expf(diff);
|
||||
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
||||
KQ_f_tmp[k0/WARP_SIZE] = 0.0f;
|
||||
}
|
||||
KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE];
|
||||
KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE];
|
||||
}
|
||||
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
||||
|
||||
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
||||
KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
|
||||
} else {
|
||||
half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)];
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
|
||||
|
||||
if (use_logit_softcap) {
|
||||
// There is no dedicated tangens hyperbolicus function for half2.
|
||||
KQ2_tmp[k0/WARP_SIZE] = h2exp(KQ2_tmp[k0/WARP_SIZE]*make_half2(2.0f, 2.0f));
|
||||
KQ2_tmp[k0/WARP_SIZE] = (KQ2_tmp[k0/WARP_SIZE] - make_half2(1.0f, 1.0f))
|
||||
/(KQ2_tmp[k0/WARP_SIZE] + make_half2(1.0f, 1.0f));
|
||||
|
||||
KQ2_tmp[k0/WARP_SIZE] *= logit_softcap_2;
|
||||
}
|
||||
}
|
||||
|
||||
half2 KQ_max_new = KQ_max_h2[j0/nwarps];
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
|
||||
KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
|
||||
}
|
||||
KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
|
||||
const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
|
||||
KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
|
||||
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
||||
*((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask;
|
||||
KQ_max_h2[j0/nwarps] = KQ_max_new;
|
||||
|
||||
half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps];
|
||||
KQ2_tmp[k0/WARP_SIZE] = h2exp(diff);
|
||||
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
||||
*((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask;
|
||||
KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE];
|
||||
KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE];
|
||||
}
|
||||
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
||||
|
||||
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
||||
KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
||||
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
||||
nvcuda::wmma::load_matrix_sync(
|
||||
KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
|
||||
KQ + j0*(kqar*kqs_padded) + k,
|
||||
kqar*kqs_padded);
|
||||
}
|
||||
}
|
||||
|
||||
frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n];
|
||||
#pragma unroll
|
||||
for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||
nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
||||
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
||||
|
||||
frag_a_V v_a;
|
||||
nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||
nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded);
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||
nvcuda::wmma::store_matrix_sync(
|
||||
KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
|
||||
VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
|
||||
D_padded, nvcuda::wmma::mem_col_major);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
half2 VKQ_scale;
|
||||
if (std::is_same<KQ_acc_t, float>::value) {
|
||||
VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]);
|
||||
} else {
|
||||
VKQ_scale = KQ_max_scale_h2[j0/nwarps];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
||||
break;
|
||||
}
|
||||
|
||||
half2 VKQ_add = make_half2(0.0f, 0.0f);
|
||||
#pragma unroll
|
||||
for (int l = 0; l < VKQ_ratio; ++l) {
|
||||
VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i];
|
||||
}
|
||||
VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j_VKQ = j0 + threadIdx.y;
|
||||
if (ic0 + j_VKQ >= ne01) {
|
||||
return;
|
||||
}
|
||||
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
||||
|
||||
float KQ_rowsum_j;
|
||||
if (std::is_same<KQ_acc_t, float>::value) {
|
||||
KQ_rowsum_j = KQ_rowsum_f[j0/nwarps];
|
||||
} else {
|
||||
KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + WARP_SIZE > D && i >= D) {
|
||||
break;
|
||||
}
|
||||
float dst_val = VKQ[j_VKQ*D_padded + i];
|
||||
if (parallel_blocks == 1) {
|
||||
dst_val /= KQ_rowsum_j;
|
||||
}
|
||||
dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val;
|
||||
}
|
||||
|
||||
if (parallel_blocks == 1 || threadIdx.x != 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
float2 dst_meta_val;
|
||||
if (std::is_same<KQ_acc_t, float>::value) {
|
||||
dst_meta_val.x = KQ_max_f[j0/nwarps];
|
||||
} else {
|
||||
dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
|
||||
}
|
||||
dst_meta_val.y = KQ_rowsum_j;
|
||||
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val;
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
constexpr int get_max_power_of_2(int x) {
|
||||
return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1;
|
||||
}
|
||||
|
||||
static_assert(get_max_power_of_2(1) == 1, "Test failed.");
|
||||
static_assert(get_max_power_of_2(2) == 2, "Test failed.");
|
||||
static_assert(get_max_power_of_2(4) == 4, "Test failed.");
|
||||
static_assert(get_max_power_of_2(6) == 2, "Test failed.");
|
||||
|
||||
// Number of VKQ rows calculated in parallel:
|
||||
constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) {
|
||||
return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m;
|
||||
}
|
||||
|
||||
static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed.");
|
||||
static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed.");
|
||||
static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
|
||||
|
||||
template <int D, int cols_per_block, typename KQ_acc_t>
|
||||
void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
constexpr int nwarps = 4;
|
||||
|
||||
constexpr int frag_m = cols_per_block == 8 && D % 32 == 0 ? 32 : 16;
|
||||
const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
|
||||
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
|
||||
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
if (4*blocks_num_pb1 < 2*nsm) {
|
||||
constexpr int parallel_blocks = 4;
|
||||
fattn_kernel_t fattn_kernel;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
}
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||
return;
|
||||
}
|
||||
if (2*blocks_num_pb1 < 2*nsm) {
|
||||
constexpr int parallel_blocks = 2;
|
||||
fattn_kernel_t fattn_kernel;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
}
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||
return;
|
||||
}
|
||||
constexpr int parallel_blocks = 1;
|
||||
fattn_kernel_t fattn_kernel;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
}
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||
}
|
||||
|
||||
#define DECL_FATTN_WMMA_F16_CASE(D, cols_per_block, KQ_acc_t) \
|
||||
template void ggml_cuda_flash_attn_ext_wmma_f16_case \
|
||||
<D, cols_per_block, KQ_acc_t>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
|
||||
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 64, 16, float);
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 80, 16, float);
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 96, 16, float);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(112, 16, float);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(128, 16, float);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(256, 16, float);
|
||||
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 64, 32, float);
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 80, 32, float);
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 96, 32, float);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(112, 32, float);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(128, 32, float);
|
||||
// extern DECL_FATTN_WMMA_F16_CASE(256, 16, float);
|
||||
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 64, 8, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 96, 8, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(128, 8, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(256, 8, half);
|
||||
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 64, 16, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 80, 16, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 96, 16, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(112, 16, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(128, 16, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(256, 16, half);
|
||||
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 64, 32, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 80, 32, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 96, 32, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(112, 32, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(128, 32, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(256, 16, half);
|
||||
void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-mma-f16.cuh"
|
||||
#include "fattn-tile-f16.cuh"
|
||||
#include "fattn-tile-f32.cuh"
|
||||
#include "fattn-vec-f16.cuh"
|
||||
|
@ -7,144 +8,56 @@
|
|||
#include "fattn-wmma-f16.cuh"
|
||||
#include "fattn.cuh"
|
||||
|
||||
#include <cstdint>
|
||||
template <int cols_per_block>
|
||||
static void ggml_cuda_flash_attn_ext_mma_f16_switch_hs(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
const enum ggml_prec prec = ggml_flash_attn_ext_get_prec(KQV);
|
||||
|
||||
if (prec != GGML_PREC_DEFAULT) {
|
||||
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
|
||||
constexpr int cols_per_block = 16;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 112:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 256:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
constexpr int cols_per_block = 32;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 112:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
// case 256:
|
||||
// ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
||||
// break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) {
|
||||
constexpr int cols_per_block = 8;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 256:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 32) {
|
||||
constexpr int cols_per_block = 16;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 112:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 256:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 32;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_case< 64, cols_per_block>(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_case< 80, cols_per_block>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_case< 96, cols_per_block>(ctx, dst);
|
||||
break;
|
||||
case 112:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_case<112, cols_per_block>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_case<128, cols_per_block>(ctx, dst);
|
||||
break;
|
||||
case 256:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_case<256, cols_per_block>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
if (Q->ne[1] <= 8) {
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_hs<8>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 16) {
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_hs<16>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 32) {
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_hs<32>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_hs<64>(ctx, dst);
|
||||
}
|
||||
|
||||
#define FATTN_VEC_F16_CASE(D, type_K, type_V) \
|
||||
if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case<D, type_K, type_V>(ctx, dst); \
|
||||
|
@ -323,10 +236,18 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
|||
}
|
||||
|
||||
if (!fp16_mma_available(cc)) {
|
||||
if (Q->ne[1] <= 8) {
|
||||
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
||||
if (prec == GGML_PREC_DEFAULT) {
|
||||
if (Q->ne[1] <= 8) {
|
||||
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
||||
} else {
|
||||
ggml_cuda_flash_attn_ext_tile_f16(ctx, dst);
|
||||
}
|
||||
} else {
|
||||
ggml_cuda_flash_attn_ext_tile_f16(ctx, dst);
|
||||
if (Q->ne[1] <= 8) {
|
||||
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
||||
} else {
|
||||
ggml_cuda_flash_attn_ext_tile_f32(ctx, dst);
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
@ -341,5 +262,11 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
|||
}
|
||||
}
|
||||
|
||||
ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst);
|
||||
// The MMA implementation needs Turing or newer, use the old WMMA code for Volta:
|
||||
if (cc == GGML_CUDA_CC_VOLTA) {
|
||||
ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
ggml_cuda_flash_attn_ext_mma_f16(ctx, dst);
|
||||
}
|
||||
|
|
|
@ -38,6 +38,7 @@
|
|||
#include "ggml-cuda/upscale.cuh"
|
||||
#include "ggml-cuda/wkv6.cuh"
|
||||
#include "ggml-cuda/gla.cuh"
|
||||
#include "ggml.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
|
@ -1205,7 +1206,7 @@ static void ggml_cuda_op_mul_mat_cublas(
|
|||
|
||||
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
|
||||
|
||||
if (compute_capability == GGML_CUDA_CC_CDNA) {
|
||||
if (GGML_CUDA_CC_IS_CDNA(compute_capability)) {
|
||||
const float alpha = 1.0f;
|
||||
const float beta = 0.0f;
|
||||
CUBLAS_CHECK(
|
||||
|
@ -1365,8 +1366,6 @@ static void ggml_cuda_op_mul_mat(
|
|||
const int64_t ne13 = src1->ne[3];
|
||||
const int64_t nrows1 = ggml_nrows(src1);
|
||||
|
||||
GGML_ASSERT(ne03 == ne13);
|
||||
|
||||
const int64_t ne0 = dst->ne[0];
|
||||
const int64_t ne1 = dst->ne[1];
|
||||
|
||||
|
@ -1380,9 +1379,11 @@ static void ggml_cuda_op_mul_mat(
|
|||
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
|
||||
|
||||
GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
|
||||
GGML_ASSERT(ne12 % ne02 == 0);
|
||||
GGML_ASSERT(ne13 % ne03 == 0);
|
||||
|
||||
const int64_t i02_divisor = ne12 / ne02;
|
||||
const int64_t i03_divisor = ne13 / ne03;
|
||||
|
||||
const size_t src0_ts = ggml_type_size(src0->type);
|
||||
const size_t src0_bs = ggml_blck_size(src0->type);
|
||||
|
@ -1398,6 +1399,7 @@ static void ggml_cuda_op_mul_mat(
|
|||
GGML_ASSERT(!(split && ne02 > 1));
|
||||
GGML_ASSERT(!(split && ne03 > 1));
|
||||
GGML_ASSERT(!(split && ne02 < ne12));
|
||||
GGML_ASSERT(!(split && ne03 < ne13));
|
||||
|
||||
ggml_tensor_extra_gpu * src0_extra = split ? (ggml_tensor_extra_gpu *) src0->extra : nullptr;
|
||||
|
||||
|
@ -1561,7 +1563,8 @@ static void ggml_cuda_op_mul_mat(
|
|||
}
|
||||
|
||||
// for split tensors the data begins at i0 == i0_offset_low
|
||||
char * src0_dd_i = dev[id].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
|
||||
const size_t nbytes_src0_matrix = ne01*ne00*src0_ts / src0_bs;
|
||||
char * src0_dd_i = dev[id].src0_dd + ((i03/i03_divisor)*ne02 + (i02/i02_divisor)) * nbytes_src0_matrix;
|
||||
float * src1_ddf_i = dev[id].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
|
||||
char * src1_ddq_i = dev[id].src1_ddq + src1_ddq_i_offset;
|
||||
float * dst_dd_i = dev[id].dst_dd + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff);
|
||||
|
@ -1605,8 +1608,9 @@ static void ggml_cuda_op_mul_mat(
|
|||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
|
||||
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream));
|
||||
if (src1_col_0 == 0 && !src0_is_contiguous && i03 % i03_divisor == 0 && i02 % i02_divisor == 0) {
|
||||
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
|
||||
src0_dd_i, src0, i03/i03_divisor, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream));
|
||||
}
|
||||
|
||||
// do the computation
|
||||
|
@ -1750,7 +1754,7 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
|
|||
beta = &beta_f32;
|
||||
}
|
||||
|
||||
if (ggml_cuda_info().devices[ctx.device].cc == GGML_CUDA_CC_CDNA) {
|
||||
if (GGML_CUDA_CC_IS_CDNA(ggml_cuda_info().devices[ctx.device].cc)) {
|
||||
cu_compute_type = CUBLAS_COMPUTE_32F;
|
||||
alpha = &alpha_f32;
|
||||
beta = &beta_f32;
|
||||
|
@ -1881,7 +1885,7 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
|
|||
//printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
|
||||
//printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
|
||||
|
||||
if (!split && use_mul_mat_vec && dst->ne[3] == 1 && (src0->ne[1] < MMV_MAX_ROWS || any_gpus_without_fp16_mma)) {
|
||||
if (!split && use_mul_mat_vec && (src0->ne[1] < MMV_MAX_ROWS || any_gpus_without_fp16_mma)) {
|
||||
// the custom F16 vector kernel can be used over batched cuBLAS GEMM
|
||||
// but this is only faster for GPUs without tensor cores or with a thin src0 matrix (particularly KQV in attention)
|
||||
ggml_cuda_mul_mat_vec(ctx, src0, src1, dst);
|
||||
|
@ -2215,12 +2219,7 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
|||
ggml_cuda_op_rms_norm_back(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_MUL_MAT:
|
||||
if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) {
|
||||
GGML_LOG_ERROR("%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, dst->name, dst->src[0]->ne[3], dst->src[1]->ne[3]);
|
||||
return false;
|
||||
} else {
|
||||
ggml_cuda_mul_mat(ctx, dst->src[0], dst->src[1], dst);
|
||||
}
|
||||
ggml_cuda_mul_mat(ctx, dst->src[0], dst->src[1], dst);
|
||||
break;
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
ggml_cuda_mul_mat_id(ctx, dst);
|
||||
|
@ -2997,9 +2996,6 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
|||
if (b->type == GGML_TYPE_F16 && a->type != GGML_TYPE_F16) {
|
||||
return false;
|
||||
}
|
||||
if (op->op == GGML_OP_MUL_MAT && a->ne[3] != b->ne[3]) {
|
||||
return false;
|
||||
}
|
||||
#ifdef GGML_USE_MUSA
|
||||
if (b->type == GGML_TYPE_F16 && b->ne[2]*b->ne[3] > 1 &&
|
||||
!ggml_is_transposed(a) && !ggml_is_transposed(b)) {
|
||||
|
@ -3139,6 +3135,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
|||
break;
|
||||
case GGML_OP_NORM:
|
||||
case GGML_OP_RMS_NORM:
|
||||
return true;
|
||||
case GGML_OP_RMS_NORM_BACK:
|
||||
return ggml_is_contiguous(op->src[0]) && op->ne[0] % WARP_SIZE == 0;
|
||||
break;
|
||||
|
@ -3181,7 +3178,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
|||
case GGML_OP_SUM_ROWS:
|
||||
case GGML_OP_ARGSORT:
|
||||
case GGML_OP_ACC:
|
||||
return true;
|
||||
case GGML_OP_GROUP_NORM:
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_ARANGE:
|
||||
|
|
|
@ -1,11 +1,67 @@
|
|||
// This file contains primitives that expose the tensor core PTX instructions for CUDA code.
|
||||
// The primitives can be used in a similar way as the nvcuda::wmma interface but with a well-defined memory layout.
|
||||
// The documentation for the PTX instructions can be found under:
|
||||
// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#matrix-multiply-accumulate-operation-using-mma-instruction
|
||||
//
|
||||
// Like with nvcuda::wmma there are three types of matrix tiles: A, B, and C with A @ B = C.
|
||||
// A is a row-major matrix with shape I x K.
|
||||
// B is a column-major matrix with shape K x J.
|
||||
// C is a column-major matrix with shape I x J.
|
||||
// Note that along their lowest dimension I, J, and K are measured in physical 32 bit elements instead of logical elements.
|
||||
// The functions get_i, get_j, and get_k can be used to get the physical 32 bit index of the lth element of a thread within a tile.
|
||||
// All matrix tiles have ne physical 32 bit elements per warp.
|
||||
//
|
||||
// As described in the documentation, all pointers for load_ldmatrix must be to shared memory and aligned to 16 bytes.
|
||||
|
||||
#include "common.cuh"
|
||||
|
||||
struct mma_int_A_I16K4 {
|
||||
|
||||
#if CUDART_VERSION >= 11080
|
||||
|
||||
static __device__ __forceinline__ int ggml_cuda_movmatrix(const int x) {
|
||||
int ret = 0;
|
||||
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
asm("movmatrix.sync.aligned.m8n8.trans.b16 %0, %1;"
|
||||
: "+r"(ret) : "r"(x));
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // defined(NEW_MMA_AVAILABLE)
|
||||
return ret;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
static __device__ __forceinline__ int ggml_cuda_movmatrix(const int x) {
|
||||
// Imagine transposing row-major matrix to column-major matrix.
|
||||
const int src_i_low = 2 * (threadIdx.x % 4);
|
||||
const int src_i_high = src_i_low + 1;
|
||||
const int src_j = threadIdx.x / 4;
|
||||
|
||||
const int src_laneid_low = src_i_low * 4 + src_j / 2;
|
||||
const int src_laneid_high = src_i_high * 4 + src_j / 2;
|
||||
|
||||
const int shift_low = ((src_j + 0) % 2) * 16;
|
||||
const int shift_high = ((src_j + 1) % 2) * 16;
|
||||
|
||||
const int ret_low = (__shfl_sync(0xFFFFFFFF, x, src_laneid_low, WARP_SIZE) >> shift_low) & 0x0000FFFF;
|
||||
const int ret_high = (__shfl_sync(0xFFFFFFFF, x, src_laneid_high, WARP_SIZE) << shift_high) & 0xFFFF0000;
|
||||
|
||||
return ret_low | ret_high;
|
||||
}
|
||||
|
||||
#endif // CUDART_VERSION >= 11080
|
||||
|
||||
|
||||
template <typename T>
|
||||
struct mma_A_I16K4 {
|
||||
static_assert(sizeof(T) == 4, "bad type size");
|
||||
|
||||
static constexpr int I = 16;
|
||||
static constexpr int K = 4;
|
||||
static constexpr int ne = 2;
|
||||
|
||||
int x[ne] = {0};
|
||||
T x[ne];
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
const int ret = (l%2) * (I/2) + threadIdx.x / K;
|
||||
|
@ -21,27 +77,35 @@ struct mma_int_A_I16K4 {
|
|||
return ret;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load(const int * __restrict__ xs0, const int & stride) {
|
||||
#if defined(INT8_MMA_AVAILABLE)
|
||||
const int * xs = xs0 + (threadIdx.x%I)*stride;
|
||||
asm("ldmatrix.sync.aligned.m8n8.x2.b16 {%0, %1}, [%2];"
|
||||
: "+r"(x[0]), "+r"(x[1])
|
||||
: "l"(xs));
|
||||
#else
|
||||
__device__ __forceinline__ void load_generic(const T * __restrict__ xs0, const int & stride) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne; ++l) {
|
||||
x[l] = xs0[get_i(l)*stride + get_k(l)];
|
||||
}
|
||||
#endif // defined(INT8_MMA_AVAILABLE)
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load_ldmatrix(const T * __restrict__ xs0, const int & stride) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * xi = (int *) x;
|
||||
const int * xs = (const int *) xs0 + (threadIdx.x%I)*stride;
|
||||
asm("ldmatrix.sync.aligned.m8n8.x2.b16 {%0, %1}, [%2];"
|
||||
: "+r"(xi[0]), "+r"(xi[1])
|
||||
: "l"(xs));
|
||||
#else
|
||||
load_generic(xs0, stride);
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
};
|
||||
|
||||
struct mma_int_A_I16K8 {
|
||||
template <typename T>
|
||||
struct mma_A_I16K8 {
|
||||
static_assert(sizeof(T) == 4, "bad type size");
|
||||
|
||||
static constexpr int I = 16;
|
||||
static constexpr int K = 8;
|
||||
static constexpr int ne = 4;
|
||||
|
||||
int x[ne] = {0};
|
||||
T x[ne];
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
const int ret = (l%2) * (I/2) + threadIdx.x / (K/2);
|
||||
|
@ -57,31 +121,62 @@ struct mma_int_A_I16K8 {
|
|||
return ret;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load(const int * __restrict__ xs0, const int & stride) {
|
||||
#if defined(INT8_MMA_AVAILABLE)
|
||||
const int * xs = xs0 + (threadIdx.x%I)*stride + (threadIdx.x/I)*(K/2);
|
||||
asm("ldmatrix.sync.aligned.m8n8.x4.b16 {%0, %1, %2, %3}, [%4];"
|
||||
: "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3])
|
||||
: "l"(xs));
|
||||
#else
|
||||
__device__ __forceinline__ void load_generic(const T * __restrict__ xs0, const int & stride) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne; ++l) {
|
||||
x[l] = xs0[get_i(l)*stride + get_k(l)];
|
||||
}
|
||||
#endif // defined(INT8_MMA_AVAILABLE)
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load_low(const int * __restrict__ xs0, const int & stride) {
|
||||
((mma_int_A_I16K4 *) x)[0].load(xs0, stride);
|
||||
__device__ __forceinline__ void load_ldmatrix(const T * __restrict__ xs0, const int & stride) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * xi = (int * ) x;
|
||||
const int * xs = (const int *) xs0 + (threadIdx.x%I)*stride + (threadIdx.x/I)*(K/2);
|
||||
asm("ldmatrix.sync.aligned.m8n8.x4.b16 {%0, %1, %2, %3}, [%4];"
|
||||
: "+r"(xi[0]), "+r"(xi[1]), "+r"(xi[2]), "+r"(xi[3])
|
||||
: "l"(xs));
|
||||
#else
|
||||
GGML_UNUSED(xs0);
|
||||
GGML_UNUSED(stride);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load_ldmatrix_trans(const T * __restrict__ xs0, const int & stride) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * xi = (int * ) x;
|
||||
const int * xs = (const int *) xs0 + (threadIdx.x%I)*stride + (threadIdx.x/I)*(K/2);
|
||||
asm("ldmatrix.sync.aligned.m8n8.x4.trans.b16 {%0, %1, %2, %3}, [%4];"
|
||||
: "+r"(xi[0]), "+r"(xi[2]), "+r"(xi[1]), "+r"(xi[3])
|
||||
: "l"(xs));
|
||||
#else
|
||||
GGML_UNUSED(xs0);
|
||||
GGML_UNUSED(stride);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void transpose() {
|
||||
int * xi = (int *) x;
|
||||
xi[0] = ggml_cuda_movmatrix(xi[0]);
|
||||
|
||||
const int tmp = ggml_cuda_movmatrix(xi[1]);
|
||||
xi[1] = ggml_cuda_movmatrix(xi[2]);
|
||||
xi[2] = tmp;
|
||||
|
||||
xi[3] = ggml_cuda_movmatrix(xi[3]);
|
||||
}
|
||||
};
|
||||
|
||||
struct mma_int_B_J8K4 {
|
||||
template <typename T>
|
||||
struct mma_B_J8K4 {
|
||||
static_assert(sizeof(T) == 4, "bad type size");
|
||||
|
||||
static constexpr int J = 8;
|
||||
static constexpr int K = 4;
|
||||
static constexpr int ne = 1;
|
||||
|
||||
int x[ne] = {0};
|
||||
T x[ne];
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int /* l */) {
|
||||
const int ret = threadIdx.x / K;
|
||||
|
@ -97,27 +192,34 @@ struct mma_int_B_J8K4 {
|
|||
return ret;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load(const int * __restrict__ xs0, const int & stride) {
|
||||
#if defined(INT8_MMA_AVAILABLE) && false // Loading as 4 byte values is faster
|
||||
const int * xs = xs0 + (threadIdx.x%J)*stride;
|
||||
asm("ldmatrix.sync.aligned.m8n8.x1.b16 {%0}, [%1];"
|
||||
: "+r"(x[0])
|
||||
: "l"(xs));
|
||||
#else
|
||||
__device__ __forceinline__ void load_generic(const T * __restrict__ xs0, const int & stride) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne; ++l) {
|
||||
x[l] = xs0[get_j(l)*stride + get_k(l)];
|
||||
}
|
||||
#endif // defined(INT8_MMA_AVAILABLE)
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load_ldmatrix(const T * __restrict__ xs0, const int & stride) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * xi = (int *) x;
|
||||
const int * xs = (const int *) xs0 + (threadIdx.x%J)*stride;
|
||||
asm("ldmatrix.sync.aligned.m8n8.x1.b16 {%0}, [%1];"
|
||||
: "+r"(xi[0]) : "l"(xs));
|
||||
#else
|
||||
load_generic(xs0, stride);
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
};
|
||||
|
||||
struct mma_int_B_J8K8 {
|
||||
template <typename T>
|
||||
struct mma_B_J8K8 {
|
||||
static_assert(sizeof(T) == 4, "bad type size");
|
||||
|
||||
static constexpr int J = 8;
|
||||
static constexpr int K = 8;
|
||||
static constexpr int ne = 2;
|
||||
|
||||
int x[ne] = {0};
|
||||
T x[ne];
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int /* l */) {
|
||||
const int ret = threadIdx.x / (K/2);
|
||||
|
@ -133,22 +235,31 @@ struct mma_int_B_J8K8 {
|
|||
return ret;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load(const int * __restrict__ xs0, const int & stride) {
|
||||
#if defined(INT8_MMA_AVAILABLE) && false // Loading as 4 byte values is faster
|
||||
const int * xs = xs0 + (threadIdx.x%J)*stride + ((threadIdx.x/J)*(K/2)) % K;
|
||||
asm("ldmatrix.sync.aligned.m8n8.x2.b16 {%0, %1}, [%2];"
|
||||
: "+r"(x[0]), "+r"(x[1])
|
||||
: "l"(xs));
|
||||
#else
|
||||
__device__ __forceinline__ void load_generic(const T * __restrict__ xs0, const int & stride) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne; ++l) {
|
||||
x[l] = xs0[get_j(l)*stride + get_k(l)];
|
||||
}
|
||||
#endif // defined(INT8_MMA_AVAILABLE)
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load_ldmatrix(const T * __restrict__ xs0, const int & stride) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * xi = (int *) x;
|
||||
const int * xs = (const int *) xs0 + (threadIdx.x%J)*stride + ((threadIdx.x/J)*(K/2)) % K;
|
||||
asm("ldmatrix.sync.aligned.m8n8.x2.b16 {%0, %1}, [%2];"
|
||||
: "+r"(xi[0]), "+r"(xi[1])
|
||||
: "l"(xs));
|
||||
#else
|
||||
load_generic(xs0, stride);
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
};
|
||||
|
||||
struct mma_int_C_I16J8 {
|
||||
template <typename T>
|
||||
struct mma_C_I16J8 {};
|
||||
|
||||
template <>
|
||||
struct mma_C_I16J8<int> {
|
||||
static constexpr int I = 16;
|
||||
static constexpr int J = 8;
|
||||
static constexpr int ne = 4;
|
||||
|
@ -169,8 +280,8 @@ struct mma_int_C_I16J8 {
|
|||
return ret;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void mma_K4(const mma_int_A_I16K4 & mma_A, const mma_int_B_J8K4 & mma_B) {
|
||||
#ifdef INT8_MMA_AVAILABLE
|
||||
__device__ __forceinline__ void mma(const mma_A_I16K4<int> & mma_A, const mma_B_J8K4<int> & mma_B) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
asm("mma.sync.aligned.m16n8k16.row.col.s32.s8.s8.s32 {%0, %1, %2, %3}, {%4, %5}, {%6}, {%0, %1, %2, %3};"
|
||||
: "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3])
|
||||
|
@ -188,11 +299,11 @@ struct mma_int_C_I16J8 {
|
|||
GGML_UNUSED(mma_A);
|
||||
GGML_UNUSED(mma_B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // INT8_MMA_AVAILABLE
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void mma_K8(const mma_int_A_I16K8 & mma_A, const mma_int_B_J8K8 & mma_B) {
|
||||
#ifdef INT8_MMA_AVAILABLE
|
||||
__device__ __forceinline__ void mma(const mma_A_I16K8<int> & mma_A, const mma_B_J8K8<int> & mma_B) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
asm("mma.sync.aligned.m16n8k32.row.col.s32.s8.s8.s32 {%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%0, %1, %2, %3};"
|
||||
: "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3])
|
||||
|
@ -216,6 +327,132 @@ struct mma_int_C_I16J8 {
|
|||
GGML_UNUSED(mma_A);
|
||||
GGML_UNUSED(mma_B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // INT8_MMA_AVAILABLE
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct mma_C_I16J8<half2> {
|
||||
static constexpr int I = 16;
|
||||
static constexpr int J = 4;
|
||||
static constexpr int ne = 2;
|
||||
|
||||
half2 x[ne] = {{0.0f, 0.0f}, {0.0f, 0.0f}};
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
const int ret = l * (I/2) + threadIdx.x / J;
|
||||
GGML_CUDA_ASSUME(ret >= 0);
|
||||
GGML_CUDA_ASSUME(ret < I);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int /* l */) {
|
||||
const int ret = threadIdx.x % J;
|
||||
GGML_CUDA_ASSUME(ret >= 0);
|
||||
GGML_CUDA_ASSUME(ret < J);
|
||||
return ret;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void mma(const mma_A_I16K8<half2> & mma_A, const mma_B_J8K8<half2> & mma_B) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * Axi = (int *) mma_A.x;
|
||||
int * Bxi = (int *) mma_B.x;
|
||||
int * xi = (int *) x;
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
asm("mma.sync.aligned.m16n8k16.row.col.f16.f16.f16.f16 {%0, %1}, {%2, %3, %4, %5}, {%6, %7}, {%0, %1};"
|
||||
: "+r"(xi[0]), "+r"(xi[1])
|
||||
: "r"(Axi[0]), "r"(Axi[1]), "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[0]), "r"(Bxi[1]));
|
||||
#else
|
||||
// On Turing m16n8k16 mma is not available, use 2x m8n8k8 mma instead:
|
||||
asm("mma.sync.aligned.m16n8k8.row.col.f16.f16.f16.f16 {%0, %1}, {%2, %3}, {%4}, {%0, %1};"
|
||||
: "+r"(xi[0]), "+r"(xi[1])
|
||||
: "r"(Axi[0]), "r"(Axi[1]), "r"(Bxi[0]));
|
||||
asm("mma.sync.aligned.m16n8k8.row.col.f16.f16.f16.f16 {%0, %1}, {%2, %3}, {%4}, {%0, %1};"
|
||||
: "+r"(xi[0]), "+r"(xi[1])
|
||||
: "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[1]));
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
#else
|
||||
GGML_UNUSED(mma_A);
|
||||
GGML_UNUSED(mma_B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
__device__ __forceinline__ mma_B_J8K8<half2> to_mma_B() {
|
||||
mma_B_J8K8<half2> mma_B;
|
||||
|
||||
int * xi = (int *) x;
|
||||
int * Bxi = (int *) mma_B.x;
|
||||
Bxi[0] = ggml_cuda_movmatrix(xi[0]);
|
||||
Bxi[1] = ggml_cuda_movmatrix(xi[1]);
|
||||
|
||||
return mma_B;
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct mma_C_I16J8<float> {
|
||||
static constexpr int I = 16;
|
||||
static constexpr int J = 8;
|
||||
static constexpr int ne = 4;
|
||||
|
||||
float x[ne] = {0.0f, 0.0f, 0.0f, 0.0f};
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
const int ret = (l/2) * (I/2) + threadIdx.x / (J/2);
|
||||
GGML_CUDA_ASSUME(ret >= 0);
|
||||
GGML_CUDA_ASSUME(ret < I);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int l) {
|
||||
const int ret = 2 * (threadIdx.x % (J/2)) + l%2;
|
||||
GGML_CUDA_ASSUME(ret >= 0);
|
||||
GGML_CUDA_ASSUME(ret < J);
|
||||
return ret;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void mma(const mma_A_I16K8<half2> & mma_A, const mma_B_J8K8<half2> & mma_B) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * Axi = (int *) mma_A.x;
|
||||
int * Bxi = (int *) mma_B.x;
|
||||
int * xi = (int *) x;
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
asm("mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 {%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%0, %1, %2, %3};"
|
||||
: "+r"(xi[0]), "+r"(xi[1]), "+r"(xi[2]), "+r"(xi[3])
|
||||
: "r"(Axi[0]), "r"(Axi[1]), "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[0]), "r"(Bxi[1]));
|
||||
#else
|
||||
// On Turing m16n8k16 mma is not available, use 2x m8n8k8 mma instead:
|
||||
asm("mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32 {%0, %1, %2, %3}, {%4, %5}, {%6}, {%0, %1, %2, %3};"
|
||||
: "+r"(xi[0]), "+r"(xi[1]), "+r"(xi[2]), "+r"(xi[3])
|
||||
: "r"(Axi[0]), "r"(Axi[1]), "r"(Bxi[0]));
|
||||
asm("mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32 {%0, %1, %2, %3}, {%4, %5}, {%6}, {%0, %1, %2, %3};"
|
||||
: "+r"(xi[0]), "+r"(xi[1]), "+r"(xi[2]), "+r"(xi[3])
|
||||
: "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[1]));
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
#else
|
||||
GGML_UNUSED(mma_A);
|
||||
GGML_UNUSED(mma_B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
__device__ __forceinline__ mma_B_J8K8<half2> to_mma_B() {
|
||||
mma_B_J8K8<half2> mma_B;
|
||||
mma_B.x[0] = make_half2(x[0], x[1]);
|
||||
mma_B.x[1] = make_half2(x[2], x[3]);
|
||||
|
||||
int * Bxi = (int *) mma_B.x;
|
||||
Bxi[0] = ggml_cuda_movmatrix(Bxi[0]);
|
||||
Bxi[1] = ggml_cuda_movmatrix(Bxi[1]);
|
||||
|
||||
return mma_B;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load_generic(const float * __restrict__ xs0, const int & stride) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne; ++l) {
|
||||
x[l] = xs0[get_j(l)*stride + get_i(l)];
|
||||
}
|
||||
}
|
||||
};
|
||||
|
|
|
@ -132,7 +132,7 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
|
|||
return false;
|
||||
}
|
||||
|
||||
if (int8_mma_available(cc)) {
|
||||
if (new_mma_available(cc)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -148,5 +148,5 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
|
|||
return cc < GGML_CUDA_CC_VOLTA || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
}
|
||||
|
||||
return (cc < GGML_CUDA_CC_RDNA3 && cc != GGML_CUDA_CC_CDNA && cc != GGML_CUDA_CC_VEGA20) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
return (!GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc) && !GGML_CUDA_CC_IS_GCN(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
}
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -1,25 +1,29 @@
|
|||
#include "ggml.h"
|
||||
#include "common.cuh"
|
||||
#include "mmv.cuh"
|
||||
|
||||
template <typename T, typename type_acc, int block_size>
|
||||
static __global__ void mul_mat_vec(
|
||||
const T * __restrict__ x, const float * __restrict__ y, float * __restrict__ dst, const int64_t ncols2, const int64_t stride_row,
|
||||
const int64_t channel_ratio, const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst) {
|
||||
const int64_t row = blockIdx.x;
|
||||
const int64_t channel = blockIdx.z;
|
||||
const int tid = threadIdx.x;
|
||||
const int64_t channel_ratio, const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst,
|
||||
const int64_t sample_ratio, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst) {
|
||||
const int64_t row = blockIdx.x;
|
||||
const int64_t channel = blockIdx.y;
|
||||
const int64_t sample = blockIdx.z;
|
||||
const int tid = threadIdx.x;
|
||||
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
|
||||
|
||||
x += (channel/channel_ratio)*stride_channel_x + row*stride_row;
|
||||
y += channel *stride_channel_y;
|
||||
dst += channel *stride_channel_dst;
|
||||
x += (sample/sample_ratio)*stride_sample_x + (channel/channel_ratio)*stride_channel_x + row*stride_row;
|
||||
y += sample *stride_sample_y + channel *stride_channel_y;
|
||||
dst += sample *stride_sample_dst + channel *stride_channel_dst;
|
||||
|
||||
const float2 * y2 = (const float2 *) y;
|
||||
|
||||
extern __shared__ char data_mmv[];
|
||||
float * buf_iw = (float *) data_mmv;
|
||||
|
||||
if (block_size > WARP_SIZE) {
|
||||
if (tid < WARP_SIZE) {
|
||||
if (block_size > warp_size) {
|
||||
if (tid < warp_size) {
|
||||
buf_iw[tid] = 0.0f;
|
||||
}
|
||||
__syncthreads();
|
||||
|
@ -67,16 +71,16 @@ static __global__ void mul_mat_vec(
|
|||
static_assert(std::is_same<T, void>::value, "unsupported type");
|
||||
}
|
||||
|
||||
sumf = warp_reduce_sum(sumf);
|
||||
sumf = warp_reduce_sum<warp_size>(sumf);
|
||||
|
||||
if (block_size > WARP_SIZE) {
|
||||
buf_iw[tid/WARP_SIZE] = sumf;
|
||||
if (block_size > warp_size) {
|
||||
buf_iw[tid/warp_size] = sumf;
|
||||
__syncthreads();
|
||||
if (tid >= WARP_SIZE) {
|
||||
if (tid >= warp_size) {
|
||||
return;
|
||||
}
|
||||
sumf = buf_iw[tid];
|
||||
sumf = warp_reduce_sum(sumf);
|
||||
sumf = warp_reduce_sum<warp_size>(sumf);
|
||||
}
|
||||
|
||||
if (tid != 0) {
|
||||
|
@ -90,16 +94,28 @@ template <typename T, typename type_acc>
|
|||
static void launch_mul_mat_vec_cuda(
|
||||
const T * x, const float * y, float * dst,
|
||||
const int64_t ncols, const int64_t nrows, const int64_t stride_row, const int64_t nchannels_x, const int64_t nchannels_y,
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst,
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
|
||||
const int64_t nsamples_y, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
|
||||
cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % 2 == 0);
|
||||
GGML_ASSERT(stride_row % 2 == 0);
|
||||
GGML_ASSERT(nchannels_y % nchannels_x == 0);
|
||||
GGML_ASSERT(nsamples_y % nsamples_x == 0);
|
||||
const int64_t channel_ratio = nchannels_y / nchannels_x;
|
||||
const int64_t sample_ratio = nsamples_y / nsamples_x;
|
||||
int device;
|
||||
int warp_size;
|
||||
|
||||
int64_t block_size_best = WARP_SIZE;
|
||||
int64_t niter_best = (ncols + 2*WARP_SIZE - 1) / (2*WARP_SIZE);
|
||||
for (int64_t block_size = 2*WARP_SIZE; block_size <= 256; block_size += WARP_SIZE) {
|
||||
CUDA_CHECK(cudaGetDevice(&device));
|
||||
warp_size = ggml_cuda_info().devices[device].warp_size;
|
||||
|
||||
int64_t block_size_best = warp_size;
|
||||
int64_t niter_best = (ncols + 2*warp_size - 1) / (2*warp_size);
|
||||
int64_t max_block_size = 256;
|
||||
if(ggml_cuda_info().devices[device].cc > GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_info().devices[device].cc < GGML_CUDA_CC_RDNA1) {
|
||||
max_block_size = 128;
|
||||
}
|
||||
for (int64_t block_size = 2*warp_size; block_size <= max_block_size; block_size += warp_size) {
|
||||
const int64_t niter = (ncols + 2*block_size - 1) / (2*block_size);
|
||||
if (niter < niter_best) {
|
||||
niter_best = niter;
|
||||
|
@ -107,41 +123,49 @@ static void launch_mul_mat_vec_cuda(
|
|||
}
|
||||
}
|
||||
|
||||
const int smem = WARP_SIZE*sizeof(float);
|
||||
const dim3 block_nums(nrows, 1, nchannels_y);
|
||||
const int smem = warp_size*sizeof(float);
|
||||
const dim3 block_nums(nrows, nchannels_y, nsamples_y);
|
||||
const dim3 block_dims(block_size_best, 1, 1);
|
||||
switch (block_size_best) {
|
||||
case 32: {
|
||||
mul_mat_vec<T, type_acc, 32><<<block_nums, block_dims, smem, stream>>>
|
||||
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
|
||||
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 64: {
|
||||
mul_mat_vec<T, type_acc, 64><<<block_nums, block_dims, smem, stream>>>
|
||||
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
|
||||
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 96: {
|
||||
mul_mat_vec<T, type_acc, 96><<<block_nums, block_dims, smem, stream>>>
|
||||
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
|
||||
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 128: {
|
||||
mul_mat_vec<T, type_acc, 128><<<block_nums, block_dims, smem, stream>>>
|
||||
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
|
||||
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 160: {
|
||||
mul_mat_vec<T, type_acc, 160><<<block_nums, block_dims, smem, stream>>>
|
||||
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
|
||||
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 192: {
|
||||
mul_mat_vec<T, type_acc, 192><<<block_nums, block_dims, smem, stream>>>
|
||||
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
|
||||
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 224: {
|
||||
mul_mat_vec<T, type_acc, 224><<<block_nums, block_dims, smem, stream>>>
|
||||
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
|
||||
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 256: {
|
||||
mul_mat_vec<T, type_acc, 256><<<block_nums, block_dims, smem, stream>>>
|
||||
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
|
||||
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ABORT("fatal error");
|
||||
|
@ -153,16 +177,19 @@ template<typename T>
|
|||
static void mul_mat_vec_cuda(
|
||||
const T * x, const float * y, float * dst,
|
||||
const int64_t ncols, const int64_t nrows, const int64_t stride_row, const int64_t nchannels_x, const int64_t nchannels_y,
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst,
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
|
||||
const int64_t nsamples_y, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
|
||||
enum ggml_prec prec, cudaStream_t stream) {
|
||||
switch (prec) {
|
||||
case GGML_PREC_DEFAULT: {
|
||||
launch_mul_mat_vec_cuda<T, half>(x, y, dst, ncols, nrows, stride_row, nchannels_x, nchannels_y,
|
||||
stride_channel_x, stride_channel_y, stride_channel_dst, stream);
|
||||
launch_mul_mat_vec_cuda<T, half>
|
||||
(x, y, dst, ncols, nrows, stride_row, nchannels_x, nchannels_y, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_y, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case GGML_PREC_F32: {
|
||||
launch_mul_mat_vec_cuda<T, float>(x, y, dst, ncols, nrows, stride_row, nchannels_x, nchannels_y,
|
||||
stride_channel_x, stride_channel_y, stride_channel_dst, stream);
|
||||
launch_mul_mat_vec_cuda<T, float>
|
||||
(x, y, dst, ncols, nrows, stride_row, nchannels_x, nchannels_y, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_y, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
@ -171,10 +198,19 @@ void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor *
|
|||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
GGML_TENSOR_BINARY_OP_LOCALS;
|
||||
|
||||
GGML_ASSERT(src1->ne[1] == 1);
|
||||
const size_t ts_src0 = ggml_type_size(src0->type);
|
||||
const size_t ts_src1 = ggml_type_size(src1->type);
|
||||
const size_t ts_dst = ggml_type_size(dst->type);
|
||||
|
||||
GGML_ASSERT(ne11 == 1);
|
||||
GGML_ASSERT(ne12 == ne2);
|
||||
GGML_ASSERT(ne13 == ne3);
|
||||
|
||||
GGML_ASSERT(nb00 == ts_src0);
|
||||
GGML_ASSERT(nb10 == ts_src1);
|
||||
GGML_ASSERT(nb0 == ts_dst);
|
||||
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
const enum ggml_prec prec = fast_fp16_available(cc) ? ggml_prec(dst->op_params[0]) : GGML_PREC_F32;
|
||||
|
@ -182,29 +218,22 @@ void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor *
|
|||
const float * src1_d = (const float *) src1->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
const int64_t ne12 = src1->ne[2];
|
||||
GGML_ASSERT(dst->ne[2] == ne12);
|
||||
|
||||
GGML_ASSERT(src0->ne[3] == 1);
|
||||
GGML_ASSERT(src1->ne[3] == 1);
|
||||
GGML_ASSERT( dst->ne[3] == 1);
|
||||
|
||||
const int64_t stride_row = src0->nb[1] / ggml_type_size(src0->type);
|
||||
const int64_t channel_stride_x = src0->nb[2] / ggml_type_size(src0->type);
|
||||
const int64_t channel_stride_y = src1->nb[2] / ggml_type_size(src1->type);
|
||||
const int64_t channel_stride_dst = dst->nb[2] / ggml_type_size( dst->type);
|
||||
const int64_t s01 = src0->nb[1] / ts_src0;
|
||||
const int64_t s02 = src0->nb[2] / ts_src0;
|
||||
const int64_t s12 = src1->nb[2] / ts_src1;
|
||||
const int64_t s2 = dst->nb[2] / ts_dst;
|
||||
const int64_t s03 = src0->nb[3] / ts_src0;
|
||||
const int64_t s13 = src1->nb[3] / ts_src1;
|
||||
const int64_t s3 = dst->nb[3] / ts_dst;
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F16: {
|
||||
const half * src0_d = (const half *) src0->data;
|
||||
mul_mat_vec_cuda(src0_d, src1_d, dst_d, ne00, ne01, stride_row, ne02, ne12,
|
||||
channel_stride_x, channel_stride_y, channel_stride_dst, prec, ctx.stream());
|
||||
mul_mat_vec_cuda(src0_d, src1_d, dst_d, ne00, ne01, s01, ne02, ne12, s02, s12, s2, ne03, ne13, s03, s13, s3, prec, ctx.stream());
|
||||
} break;
|
||||
case GGML_TYPE_BF16: {
|
||||
const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0->data;
|
||||
mul_mat_vec_cuda(src0_d, src1_d, dst_d, ne00, ne01, stride_row, ne02, ne12,
|
||||
channel_stride_x, channel_stride_y, channel_stride_dst, prec, ctx.stream());
|
||||
mul_mat_vec_cuda(src0_d, src1_d, dst_d, ne00, ne01, s01, ne02, ne12, s02, s12, s2, ne03, ne13, s03, s13, s3, prec, ctx.stream());
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type));
|
||||
|
@ -233,20 +262,27 @@ void ggml_cuda_op_mul_mat_vec(
|
|||
const int64_t stride_row = ne00;
|
||||
const int64_t nchannels_x = 1;
|
||||
const int64_t nchannels_y = 1;
|
||||
const int64_t channel_stride_x = 0;
|
||||
const int64_t channel_stride_y = 0;
|
||||
const int64_t channel_stride_dst = 0;
|
||||
const int64_t stride_channel_x = 0;
|
||||
const int64_t stride_channel_y = 0;
|
||||
const int64_t stride_channel_dst = 0;
|
||||
const int64_t nsamples_x = 1;
|
||||
const int64_t nsamples_y = 1;
|
||||
const int64_t stride_sample_x = 0;
|
||||
const int64_t stride_sample_y = 0;
|
||||
const int64_t stride_sample_dst = 0;
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F16: {
|
||||
const half * src0_d = (const half *) src0_dd_i;
|
||||
mul_mat_vec_cuda(src0_d, src1_ddf_i, dst_dd_i, ne00, row_diff, stride_row,
|
||||
nchannels_x, nchannels_y, channel_stride_x, channel_stride_y, channel_stride_dst, prec, stream);
|
||||
nchannels_x, nchannels_y, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_y, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
|
||||
} break;
|
||||
case GGML_TYPE_BF16: {
|
||||
const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0_dd_i;
|
||||
mul_mat_vec_cuda(src0_d, src1_ddf_i, dst_dd_i, ne00, row_diff, stride_row,
|
||||
nchannels_x, nchannels_y, channel_stride_x, channel_stride_y, channel_stride_dst, prec, stream);
|
||||
nchannels_x, nchannels_y, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_y, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type));
|
||||
|
|
|
@ -1,12 +1,20 @@
|
|||
#include "norm.cuh"
|
||||
#include <cstdint>
|
||||
|
||||
template <int block_size>
|
||||
static __global__ void norm_f32(const float * x, float * dst, const int ncols, const float eps) {
|
||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||
const int tid = threadIdx.x;
|
||||
static __global__ void norm_f32(
|
||||
const float * x, float * dst, const int ncols, const int64_t stride_row, const int64_t stride_channel,
|
||||
const int64_t stride_sample, const float eps) {
|
||||
const int nrows = gridDim.x;
|
||||
const int nchannels = gridDim.y;
|
||||
|
||||
x += int64_t(row)*ncols;
|
||||
dst += int64_t(row)*ncols;
|
||||
const int row = blockIdx.x;
|
||||
const int channel = blockIdx.y;
|
||||
const int sample = blockIdx.z;
|
||||
const int tid = threadIdx.x;
|
||||
|
||||
x += sample*stride_sample + channel*stride_channel + row*stride_row;
|
||||
dst += ((sample*nchannels + channel)*nrows + row)*ncols;
|
||||
|
||||
float2 mean_var = make_float2(0.0f, 0.0f);
|
||||
|
||||
|
@ -97,12 +105,19 @@ static __global__ void group_norm_f32(const float * x, float * dst, const int gr
|
|||
}
|
||||
|
||||
template <int block_size>
|
||||
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
|
||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||
const int tid = threadIdx.x;
|
||||
static __global__ void rms_norm_f32(
|
||||
const float * x, float * dst, const int ncols, const int64_t stride_row, const int64_t stride_channel,
|
||||
const int64_t stride_sample, const float eps) {
|
||||
const int nrows = gridDim.x;
|
||||
const int nchannels = gridDim.y;
|
||||
|
||||
x += int64_t(row)*ncols;
|
||||
dst += int64_t(row)*ncols;
|
||||
const int row = blockIdx.x;
|
||||
const int channel = blockIdx.y;
|
||||
const int sample = blockIdx.z;
|
||||
const int tid = threadIdx.x;
|
||||
|
||||
x += sample*stride_sample + channel*stride_channel + row*stride_row;
|
||||
dst += ((sample*nchannels + channel)*nrows + row)*ncols;
|
||||
|
||||
float tmp = 0.0f; // partial sum for thread in warp
|
||||
|
||||
|
@ -186,13 +201,16 @@ static __global__ void rms_norm_back_f32(
|
|||
}
|
||||
}
|
||||
|
||||
static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
|
||||
static void norm_f32_cuda(
|
||||
const float * x, float * dst, const int ncols, const int nrows, const int nchannels, const int nsamples,
|
||||
const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, cudaStream_t stream) {
|
||||
const dim3 blocks_num(nrows, nchannels, nsamples);
|
||||
if (ncols < 1024) {
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||||
norm_f32<WARP_SIZE><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
|
||||
} else {
|
||||
const dim3 block_dims(1024, 1, 1);
|
||||
norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||||
norm_f32<1024><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -207,13 +225,16 @@ static void group_norm_f32_cuda(
|
|||
}
|
||||
}
|
||||
|
||||
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
|
||||
static void rms_norm_f32_cuda(
|
||||
const float * x, float * dst, const int ncols, const int nrows, const int nchannels, const int nsamples,
|
||||
const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, cudaStream_t stream) {
|
||||
const dim3 blocks_num(nrows, nchannels, nsamples);
|
||||
if (ncols < 1024) {
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||||
rms_norm_f32<WARP_SIZE><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
|
||||
} else {
|
||||
const dim3 block_dims(1024, 1, 1);
|
||||
rms_norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||||
rms_norm_f32<1024><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -229,23 +250,26 @@ static void rms_norm_back_f32_cuda(const float * grad, const float * xf, float *
|
|||
|
||||
void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
GGML_TENSOR_UNARY_OP_LOCALS;
|
||||
|
||||
float eps;
|
||||
memcpy(&eps, dst->op_params, sizeof(float));
|
||||
GGML_ASSERT(eps >= 0.0f);
|
||||
|
||||
norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
|
||||
const size_t ts0 = ggml_type_size(src0->type);
|
||||
GGML_ASSERT(nb00 == ts0);
|
||||
const int64_t s01 = nb01 / ts0;
|
||||
const int64_t s02 = nb02 / ts0;
|
||||
const int64_t s03 = nb03 / ts0;
|
||||
|
||||
norm_f32_cuda(src0_d, dst_d, ne00, ne01, ne02, ne03, s01, s02, s03, eps, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
@ -254,8 +278,6 @@ void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
|
|||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
|
@ -271,23 +293,26 @@ void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
|
|||
|
||||
void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
GGML_TENSOR_UNARY_OP_LOCALS;
|
||||
|
||||
float eps;
|
||||
memcpy(&eps, dst->op_params, sizeof(float));
|
||||
GGML_ASSERT(eps >= 0.0f);
|
||||
|
||||
rms_norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
|
||||
const size_t ts0 = ggml_type_size(src0->type);
|
||||
GGML_ASSERT(nb00 == ts0);
|
||||
const int64_t s01 = nb01 / ts0;
|
||||
const int64_t s02 = nb02 / ts0;
|
||||
const int64_t s03 = nb03 / ts0;
|
||||
|
||||
rms_norm_f32_cuda(src0_d, dst_d, ne00, ne01, ne02, ne03, s01, s02, s03, eps, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_rms_norm_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
|
|
@ -18,7 +18,7 @@ __device__ float __forceinline__ t2f32<half>(half val) {
|
|||
#ifdef __clang__
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wpass-failed"
|
||||
#endif
|
||||
#endif // __clang__
|
||||
template <bool use_shared, int ncols_template, int block_size_template, typename T>
|
||||
static __global__ void soft_max_f32(
|
||||
const float * x, const T * mask, float * dst, const int ncols_par, const int nrows_y,
|
||||
|
@ -126,7 +126,7 @@ static __global__ void soft_max_f32(
|
|||
}
|
||||
#ifdef __clang__
|
||||
#pragma clang diagnostic pop
|
||||
#endif
|
||||
#endif // __clang__
|
||||
|
||||
static __global__ void soft_max_back_f32(
|
||||
const float * grad, const float * dstf, float * dst, const int ncols, const float scale) {
|
||||
|
|
|
@ -0,0 +1,10 @@
|
|||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-mma-f16.cuh"
|
||||
|
||||
DECL_FATTN_MMA_F16_CASE(64, 16);
|
||||
DECL_FATTN_MMA_F16_CASE(80, 16);
|
||||
DECL_FATTN_MMA_F16_CASE(96, 16);
|
||||
DECL_FATTN_MMA_F16_CASE(112, 16);
|
||||
DECL_FATTN_MMA_F16_CASE(128, 16);
|
||||
DECL_FATTN_MMA_F16_CASE(256, 16);
|
|
@ -0,0 +1,10 @@
|
|||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-mma-f16.cuh"
|
||||
|
||||
DECL_FATTN_MMA_F16_CASE(64, 32);
|
||||
DECL_FATTN_MMA_F16_CASE(80, 32);
|
||||
DECL_FATTN_MMA_F16_CASE(96, 32);
|
||||
DECL_FATTN_MMA_F16_CASE(112, 32);
|
||||
DECL_FATTN_MMA_F16_CASE(128, 32);
|
||||
DECL_FATTN_MMA_F16_CASE(256, 32);
|
|
@ -0,0 +1,10 @@
|
|||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-mma-f16.cuh"
|
||||
|
||||
DECL_FATTN_MMA_F16_CASE(64, 64);
|
||||
DECL_FATTN_MMA_F16_CASE(80, 64);
|
||||
DECL_FATTN_MMA_F16_CASE(96, 64);
|
||||
DECL_FATTN_MMA_F16_CASE(112, 64);
|
||||
DECL_FATTN_MMA_F16_CASE(128, 64);
|
||||
DECL_FATTN_MMA_F16_CASE(256, 64);
|
|
@ -0,0 +1,10 @@
|
|||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-mma-f16.cuh"
|
||||
|
||||
DECL_FATTN_MMA_F16_CASE(64, 8);
|
||||
DECL_FATTN_MMA_F16_CASE(80, 8);
|
||||
DECL_FATTN_MMA_F16_CASE(96, 8);
|
||||
DECL_FATTN_MMA_F16_CASE(112, 8);
|
||||
DECL_FATTN_MMA_F16_CASE(128, 8);
|
||||
DECL_FATTN_MMA_F16_CASE(256, 8);
|
|
@ -1,10 +0,0 @@
|
|||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-wmma-f16.cuh"
|
||||
|
||||
DECL_FATTN_WMMA_F16_CASE(64, 16, float);
|
||||
DECL_FATTN_WMMA_F16_CASE(80, 16, float);
|
||||
DECL_FATTN_WMMA_F16_CASE(96, 16, float);
|
||||
DECL_FATTN_WMMA_F16_CASE(112, 16, float);
|
||||
DECL_FATTN_WMMA_F16_CASE(128, 16, float);
|
||||
DECL_FATTN_WMMA_F16_CASE(256, 16, float);
|
|
@ -1,9 +0,0 @@
|
|||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-wmma-f16.cuh"
|
||||
|
||||
DECL_FATTN_WMMA_F16_CASE(64, 32, float);
|
||||
DECL_FATTN_WMMA_F16_CASE(80, 32, float);
|
||||
DECL_FATTN_WMMA_F16_CASE(96, 32, float);
|
||||
DECL_FATTN_WMMA_F16_CASE(112, 32, float);
|
||||
DECL_FATTN_WMMA_F16_CASE(128, 32, float);
|
|
@ -1,10 +0,0 @@
|
|||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-wmma-f16.cuh"
|
||||
|
||||
DECL_FATTN_WMMA_F16_CASE(64, 16, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(80, 16, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(96, 16, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(112, 16, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(128, 16, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(256, 16, half);
|
|
@ -1,10 +0,0 @@
|
|||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-wmma-f16.cuh"
|
||||
|
||||
DECL_FATTN_WMMA_F16_CASE(64, 32, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(80, 32, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(96, 32, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(112, 32, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(128, 32, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(256, 32, half);
|
|
@ -1,8 +0,0 @@
|
|||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-wmma-f16.cuh"
|
||||
|
||||
DECL_FATTN_WMMA_F16_CASE(64, 8, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(96, 8, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(128, 8, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(256, 8, half);
|
|
@ -12,13 +12,13 @@ SOURCE_FATTN_VEC = """// This file has been autogenerated by generate_cu_files.p
|
|||
DECL_FATTN_VEC_F{vkq_size}_CASE({head_size}, {type_k}, {type_v});
|
||||
"""
|
||||
|
||||
SOURCE_FATTN_WMMA_START = """// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
SOURCE_FATTN_MMA_START = """// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-wmma-f16.cuh"
|
||||
#include "../fattn-mma-f16.cuh"
|
||||
|
||||
"""
|
||||
|
||||
SOURCE_FATTN_WMMA_CASE = "DECL_FATTN_WMMA_F16_CASE({head_size}, {cols_per_block}, {kq_acc_t});\n"
|
||||
SOURCE_FATTN_MMA_CASE = "DECL_FATTN_MMA_F16_CASE({head_size}, {cols_per_block});\n"
|
||||
|
||||
TYPES_MMQ = [
|
||||
"GGML_TYPE_Q4_0", "GGML_TYPE_Q4_1", "GGML_TYPE_Q5_0", "GGML_TYPE_Q5_1", "GGML_TYPE_Q8_0",
|
||||
|
@ -57,20 +57,12 @@ for vkq_size in [16, 32]:
|
|||
with open(f"fattn-vec-f{vkq_size}-instance-hs{head_size}-{get_short_name(type_k)}-{get_short_name(type_v)}.cu", "w") as f:
|
||||
f.write(SOURCE_FATTN_VEC.format(vkq_size=vkq_size, head_size=head_size, type_k=type_k, type_v=type_v))
|
||||
|
||||
for kq_acc_t in ["half", "float"]:
|
||||
for cols_per_block in [8, 16, 32]:
|
||||
if kq_acc_t == "float" and cols_per_block == 8:
|
||||
continue
|
||||
for cols_per_block in [8, 16, 32, 64]:
|
||||
with open(f"fattn-mma-f16-instance-cpb{cols_per_block}.cu", "w") as f:
|
||||
f.write(SOURCE_FATTN_MMA_START)
|
||||
|
||||
with open(f"fattn-wmma-f16-instance-kq{kq_acc_t}-cpb{cols_per_block}.cu", "w") as f:
|
||||
f.write(SOURCE_FATTN_WMMA_START)
|
||||
|
||||
for head_size in [64, 80, 96, 112, 128, 256]:
|
||||
if cols_per_block == 8 and head_size % 32 != 0: # wmma fragment is 8x32
|
||||
continue
|
||||
if kq_acc_t == "float" and cols_per_block == 32 and head_size == 256: # register spilling, bad performance
|
||||
continue
|
||||
f.write(SOURCE_FATTN_WMMA_CASE.format(kq_acc_t=kq_acc_t, cols_per_block=cols_per_block, head_size=head_size))
|
||||
for head_size in [64, 80, 96, 112, 128, 256]:
|
||||
f.write(SOURCE_FATTN_MMA_CASE.format(cols_per_block=cols_per_block, head_size=head_size))
|
||||
|
||||
for type in TYPES_MMQ:
|
||||
with open(f"mmq-instance-{get_short_name(type)}.cu", "w") as f:
|
||||
|
|
3
ggml/src/ggml-cuda/vendors/hip.h
vendored
3
ggml/src/ggml-cuda/vendors/hip.h
vendored
|
@ -1,5 +1,6 @@
|
|||
#pragma once
|
||||
|
||||
#define HIP_ENABLE_WARP_SYNC_BUILTINS 1
|
||||
#include <hip/hip_runtime.h>
|
||||
#include <hipblas/hipblas.h>
|
||||
#include <hip/hip_fp16.h>
|
||||
|
@ -8,6 +9,7 @@
|
|||
// for rocblas_initialize()
|
||||
#include "rocblas/rocblas.h"
|
||||
#endif // __HIP_PLATFORM_AMD__
|
||||
|
||||
#define CUBLAS_COMPUTE_16F HIPBLAS_R_16F
|
||||
#define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
|
||||
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
|
||||
|
@ -25,6 +27,7 @@
|
|||
#define CU_MEM_LOCATION_TYPE_DEVICE hipMemLocationTypeDevice
|
||||
#define CU_MEM_ACCESS_FLAGS_PROT_READWRITE hipMemAccessFlagsProtReadWrite
|
||||
#define CU_CHECK(fn) {hipError_t err = fn; if(err != hipSuccess) { GGML_ABORT("HipVMM Failure: %s\n", hipGetErrorString(err)); }}
|
||||
#define __shfl_sync(mask, var, laneMask, width) __shfl(var, laneMask, width)
|
||||
#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
|
||||
#define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
|
||||
#define cublasCreate hipblasCreate
|
||||
|
|
|
@ -46,11 +46,14 @@ endif()
|
|||
|
||||
message(STATUS "HIP and hipBLAS found")
|
||||
|
||||
# Workaround old compilers
|
||||
set(CMAKE_HIP_FLAGS "${CMAKE_HIP_FLAGS} --gpu-max-threads-per-block=1024")
|
||||
|
||||
file(GLOB GGML_HEADERS_ROCM "../ggml-cuda/*.cuh")
|
||||
list(APPEND GGML_HEADERS_ROCM "../../include/ggml-cuda.h")
|
||||
|
||||
file(GLOB GGML_SOURCES_ROCM "../ggml-cuda/*.cu")
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-wmma*.cu")
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-mma*.cu")
|
||||
list(APPEND GGML_SOURCES_ROCM ${SRCS})
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/mmq*.cu")
|
||||
list(APPEND GGML_SOURCES_ROCM ${SRCS})
|
||||
|
|
|
@ -19,8 +19,15 @@
|
|||
// max number of MTLCommandBuffer used to submit a graph for processing
|
||||
#define GGML_METAL_MAX_COMMAND_BUFFERS 8
|
||||
|
||||
#ifndef TARGET_OS_VISION
|
||||
#define TARGET_OS_VISION 0
|
||||
#endif
|
||||
|
||||
// create residency sets only on macOS >= 15.0
|
||||
#if TARGET_OS_OSX && __MAC_OS_X_VERSION_MAX_ALLOWED >= 150000
|
||||
#if TARGET_OS_OSX && __MAC_OS_X_VERSION_MAX_ALLOWED >= 150000 || \
|
||||
TARGET_OS_IOS && __IPHONE_OS_VERSION_MAX_ALLOWED >= 180000 || \
|
||||
TARGET_OS_TV && __TV_OS_VERSION_MAX_ALLOWED >= 180000 || \
|
||||
TARGET_OS_VISION && __VISION_OS_VERSION_MAX_ALLOWED >= 200000
|
||||
#define GGML_METAL_HAS_RESIDENCY_SETS 1
|
||||
#endif
|
||||
|
||||
|
@ -1071,7 +1078,7 @@ static bool ggml_backend_metal_buffer_rset_init(
|
|||
}
|
||||
|
||||
#if defined(GGML_METAL_HAS_RESIDENCY_SETS)
|
||||
if (@available(macOS 15.0, *)) {
|
||||
if (@available(macOS 15.0, iOS 18.0, tvOS 18.0, visionOS 2.0, *)) {
|
||||
MTLResidencySetDescriptor * desc = [[MTLResidencySetDescriptor alloc] init];
|
||||
desc.label = @"ggml_backend_metal";
|
||||
desc.initialCapacity = ctx->n_buffers;
|
||||
|
@ -1106,7 +1113,7 @@ static bool ggml_backend_metal_buffer_rset_init(
|
|||
// rset free
|
||||
static void ggml_backend_metal_buffer_rset_free(struct ggml_backend_metal_buffer_context * ctx) {
|
||||
#if defined(GGML_METAL_HAS_RESIDENCY_SETS)
|
||||
if (@available(macOS 15.0, *)) {
|
||||
if (@available(macOS 15.0, iOS 18.0, tvOS 18.0, visionOS 2.0, *)) {
|
||||
if (ctx->rset) {
|
||||
[ctx->rset endResidency];
|
||||
[ctx->rset removeAllAllocations];
|
||||
|
@ -1201,12 +1208,13 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
|
|||
case GGML_OP_SUM_ROWS:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
case GGML_OP_GROUP_NORM:
|
||||
return has_simdgroup_reduction;
|
||||
return has_simdgroup_reduction && ggml_is_contiguous(op->src[0]);
|
||||
case GGML_OP_RMS_NORM:
|
||||
return has_simdgroup_reduction && (op->ne[0] % 4 == 0);
|
||||
return has_simdgroup_reduction && (op->ne[0] % 4 == 0 && ggml_is_contiguous_1(op->src[0]));
|
||||
case GGML_OP_ARGMAX:
|
||||
case GGML_OP_NORM:
|
||||
return true;
|
||||
case GGML_OP_NORM:
|
||||
return has_simdgroup_reduction && (op->ne[0] % 4 == 0 && ggml_is_contiguous_1(op->src[0]));
|
||||
case GGML_OP_ROPE:
|
||||
{
|
||||
const int mode = ((const int32_t *) op->op_params)[2];
|
||||
|
|
|
@ -29,7 +29,7 @@ if (MUSAToolkit_FOUND)
|
|||
list(APPEND GGML_HEADERS_MUSA "../../include/ggml-cuda.h")
|
||||
|
||||
file(GLOB GGML_SOURCES_MUSA "../ggml-cuda/*.cu")
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-wmma*.cu")
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-mma*.cu")
|
||||
list(APPEND GGML_SOURCES_MUSA ${SRCS})
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/mmq*.cu")
|
||||
list(APPEND GGML_SOURCES_MUSA ${SRCS})
|
||||
|
|
|
@ -1045,7 +1045,28 @@ bool rpc_server::copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_co
|
|||
ggml_free(ctx);
|
||||
return false;
|
||||
}
|
||||
GGML_PRINT_DEBUG("[%s] src->buffer: %p, dst->buffer: %p\n", __func__, (void*)src->buffer, (void*)dst->buffer);
|
||||
|
||||
uint64_t src_size = (uint64_t) ggml_nbytes(src);
|
||||
uint64_t dst_data = (uint64_t) dst->data;
|
||||
uint64_t dst_base = (uint64_t) ggml_backend_buffer_get_base(dst->buffer);
|
||||
uint64_t dst_buf_sz = (uint64_t) ggml_backend_buffer_get_size(dst->buffer);
|
||||
|
||||
if (dst_data + src_size > dst_base + dst_buf_sz) {
|
||||
GGML_PRINT_DEBUG("[%s] out-of-bounds write in rpc_server::copy_tensor:\n"
|
||||
" write range : [0x%" PRIx64 ", 0x%" PRIx64 "]\n"
|
||||
" buffer base: [0x%" PRIx64 ", 0x%" PRIx64 "]\n",
|
||||
__func__,
|
||||
dst_data,
|
||||
dst_data + src_size,
|
||||
dst_base,
|
||||
dst_base + dst_buf_sz);
|
||||
ggml_free(ctx);
|
||||
return false;
|
||||
}
|
||||
|
||||
GGML_PRINT_DEBUG("[%s] src->buffer: %p, dst->buffer: %p\n",
|
||||
__func__, (void*) src->buffer, (void*) dst->buffer);
|
||||
|
||||
response.result = ggml_backend_buffer_copy_tensor(src, dst);
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
|
|
|
@ -103,11 +103,10 @@ void print_device_detail(int id, sycl::device &device, std::string device_type)
|
|||
name = std::regex_replace(name, std::regex("\\(TM\\)"), "");
|
||||
|
||||
auto global_mem_size = prop.get_global_mem_size()/1000000;
|
||||
std::string xmx = gpu_has_xmx(device) ? "yes" : "no";
|
||||
GGML_LOG_INFO("|%2d|%19s|%39s|%7s|%7d|%8d|%5d|%6luM|%21s|%14s|\n", id, device_type.c_str(),
|
||||
GGML_LOG_INFO("|%2d|%19s|%39s|%7s|%7d|%8d|%5d|%6luM|%21s|\n", id, device_type.c_str(),
|
||||
name.c_str(), version.c_str(), prop.get_max_compute_units(),
|
||||
prop.get_max_work_group_size(), prop.get_max_sub_group_size(),
|
||||
global_mem_size, device.get_info<sycl::info::device::driver_version>().c_str(), xmx.c_str());
|
||||
global_mem_size, device.get_info<sycl::info::device::driver_version>().c_str());
|
||||
}
|
||||
|
||||
void ggml_backend_sycl_print_sycl_devices() {
|
||||
|
@ -118,16 +117,16 @@ void ggml_backend_sycl_print_sycl_devices() {
|
|||
|
||||
GGML_LOG_INFO(
|
||||
"| | | | "
|
||||
" |Max | |Max |Global | | XMX |\n");
|
||||
" |Max | |Max |Global | |\n");
|
||||
GGML_LOG_INFO(
|
||||
"| | | | "
|
||||
" |compute|Max work|sub |mem | | or |\n");
|
||||
" |compute|Max work|sub |mem | |\n");
|
||||
GGML_LOG_INFO(
|
||||
"|ID| Device Type| "
|
||||
"Name|Version|units |group |group|size | Driver version| Tensor Cores |\n");
|
||||
"Name|Version|units |group |group|size | Driver version|\n");
|
||||
GGML_LOG_INFO(
|
||||
"|--|-------------------|---------------------------------------|------"
|
||||
"-|-------|--------|-----|-------|---------------------|--------------|\n");
|
||||
"-|-------|--------|-----|-------|---------------------|\n");
|
||||
|
||||
for (int id = 0; id < device_count; ++id) {
|
||||
sycl::device device = dpct::dev_mgr::instance().get_device(id);
|
||||
|
@ -4537,14 +4536,17 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
|
|||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_NORM:
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_ADD1:
|
||||
case GGML_OP_LOG:
|
||||
case GGML_OP_SUB:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
return true;
|
||||
case GGML_OP_NORM:
|
||||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_GROUP_NORM:
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
case GGML_OP_SCALE:
|
||||
case GGML_OP_SQR:
|
||||
case GGML_OP_SQRT:
|
||||
|
@ -4576,7 +4578,6 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
|
|||
case GGML_OP_SUM_ROWS:
|
||||
case GGML_OP_ARGSORT:
|
||||
case GGML_OP_ACC:
|
||||
case GGML_OP_GROUP_NORM:
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue